新戊烷压缩因子

新戊烷压缩因子

AGA8—92DC计算方法天然气压缩因子计算(最漂亮的)

AGA8—92DC计算方法天然气压缩因子计算 摘要:按照GB/T 17747.2—1999《天然气压缩因子的计算第2部分:用摩尔组成进行计算》,采用AGA8—92DC计算方法,用VB编程计算了天然气压缩因子。用二分法求解状态方程,精度满足工程需要。 关键词:压缩因子;AGA8—92DC计算方法;二分法 1概述 工作状态下的压缩因子是天然气最重要的物性参数之一,涉及到天然气的勘探、开发、输送、计量和利用等各个方面。实测天然气压缩因子所需的仪器设备价格高,不易推广,因此计算方法发展很快,主要为经验公式和状态方程计算方法。1992年6月26日,国际标准化组织(ISO)天然气技术委员会(TC193)及分析技术分委员会(TC193/SC1)在挪威斯泰万格(Stavanger)召开了第四次全体会议,会上推荐了两个精度较高的计算工作状态下天然气压缩因子的方程,目 PAGA8-92DC方程、SGERG-88方程[1]。随后,国际标准化组织于1994年形成了国际标准草案[2]。 AGA8-92DC方程来自美国煤气协会(AGA)。美国煤气协会在天然气压缩因子和超压缩因子表的基础上,开展了大量研究,于1992年发表了以状态方程为基础计算压缩因子的AGA No.8报告及AGA8-92DC方程[2]。 1994年,四川石油管理局天然气研究所遵照中国石油天然气总公司技术监督局的指示,对国际标准化组织1992年挪威斯泰万格会议推荐的AGA8-92DC 方程、SGERG-88方程进行验证研究,于1996年底基本完成[2]。1999年,四川石油管理局天然气研究院(前身为四川石油管理局天然气研究所)起草的《天然气压缩因子的计算》GB/T 17747.1~3—1999被批准、发布。 《天然气压缩因子的计算》GB/T 17747.1~3—1999包括3个部分:《天然气压缩因子的计算第1部分:导论和指南》GB/T 17747.1—1999,《天然气压缩因子的计算第2部分:用摩尔组成进行计算》GB/T 17747.2—1999,《天然气压缩因子的计算第3部分:用物性值进行计算》GB/T 17747.3—1999。GB/T 17747.1等效采用ISO 12213—1:1997《天然气压缩因子的计算导论和指南》。GB/T 17747.2等效采用ISO 12213-2:1997《天然气压缩因子的计算用摩尔组成进行计算》,给出了用已知的气体的详细的摩尔组成计算压缩因子的方法,目PAGA8—92DC计算方法。GB/T 17747.3等效采用ISO 12213-3:1997《天然气压缩因子的计算用物性值进行计算》,给出了用包括可获得的高位发热量(体积基)、相对密度、C02含量和H2含量(若不为零)等非详细的分析数据计算压缩因子的方法,即SGERG-88计算方法。笔者在输气管道和城镇高压燃气管道水力计算中,按照GB/T 17747.2采用AGA8-92DC计算方法进行天然气压缩因子计算,效果良好。本文对其中的一些问题进行探讨,受篇幅所限,一些内容文中适当省略,详见GB/T 17747.2。 2AGA8—92DC方法的计算过程 2.1已知条件、待求量、计算步骤 2.1.1已知条件 按照GB/T 17747.2的要求,以CH4、N2、CO2、C2H6、C3H8、H2O、H2S、H2、

医学计算公式

1.体循环阻力: 体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/C.O. MAP=平均动脉压 RAP=右心房压 C.O.=心输出量 正常值=900-1300(dyne×sec)/ cm5 2.平均动脉压(MAP): MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 3.心输出量: 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱和度—静脉血氧饱和度。 心脏指数是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 4.总外周血管阻力: SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为100-130kpa.s/L 5.杜克平板测验分数:

杜克平板测验分数= 未出现心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×1 测试因心绞痛中止:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×2风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 6.校正的QT间期: 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: 0.45(婴儿<6个月) 0.44(儿童) 0.425(青少年和成人 7.氧供应(DO2): DO2=1.34×[SaO2(动脉血氧饱和度)×Hb(血红蛋白)]×CO×10 8.氧消耗(VO2): VO2=1.34×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO×10 CaO2=1.34×SaO2×Hb CvO2=1.34×SvO2×Hb 9.氧耗量(给定心输出量): 氧耗量(ml/min)=心输出量(C.O.)×(13×Hgb)×(SaO2-SvO2) SaO2=动脉血氧饱和度 SvO2=静脉血氧饱和度 正常值=110-160ml/min/M2 若平均体表面积为1.73M2,则正常值=190-275ml/min 10.动脉血CO2分压: PaCO2=0.863×VCO2/VA VCO2为CO2排出量(ml/min) Va为每分钟肺泡通气量(L/min) 0.863为使气体容量(ml)变为Kpa(mmHg)的转换因子 11.动脉血氧分压(PaO2): 坐位:

天然气基本压缩因子计算方法

天然气基本压缩因子计算方法 编译:阙洪培(西南石油大学) 审校:刘廷元 这篇文章提出一个简便展开算法:任一压力-温度的基本压缩因子的输气监测计算。这个算法中的二次维里系数来源于参考文献1。计算的压缩因子接近AGA 8状态方程值[2]。 1 测量 在天然气工业实用计量中,压力、温度变化作为基本(或标准)条件,不仅地区间有差别,而且在天然气销售合同也有不同。 在美国,通常标准参考条件是60°F和14.73 psia。欧洲常用的基本条件是0 ℃和101.325 kPa,而标准条件是15 ℃和101.325 kPa。阿根廷也用15 ℃和101.325 kPa,而墨西哥则用的是20 ℃和1kg/ sq cm(绝对)。 计算真实气体的热值、密度、基本密度、基本体积、以及沃贝指数时要求已知基本条件的压缩因子。表1是理想气体值。 表1中的理想气体值不能用于密闭输气,必须计算相应基本条件的压缩因子。 参考文献提供的一些数据表和获取基本条件压缩因子方法,基本条件只能是60°F,14.73或14.696 psia。 计算其它基本条件的压缩因子可用AGA 8 程序,但代数计算较复杂,计算机编程共有三组软件,比较耗时。 本文提出了一个展开算法,计算密闭输气基本条件(基本条件可是任何压力温度)的压缩因子。 2 压缩因子 接近外界条件时,即压力小于16 psia,截断维里状态方程(方程组中的方程1)较好地描述了天然气的体积性质。 方程1中,各符号的物理意义是: Z = 基本条件下压缩因子 B = 二次维里系数 R = 气体常数 P = 基本条件的绝对压力 T = 温度条件的绝对压力 天然气基本压缩因子接近1,如0.99,B必然为负(图1) 方程2是混合物的二次维里系数,式中B ij = B ji为组分i和j的二次交互维里系数,B ii为纯组分i 的二次维里系数。二次维里系数是温度的函数。 也可用方程3求B,便于手工计算。比较适合密闭输气计算,方程3中B i的平方根为总因子,参见参考文献1,3,4。 问题的提出:表中常见60°F总因子值,而未见有其它基本温度条件的总因子值。由此本文献出一种方法,求解任一温度的压缩因子。 本方法不用因子求和法而用了好用便于书写的二次维里系数法。 方程3假定方程4已作校正。下面举出2例说明这种方程的用法。

医药学常用计算公式

心脏学公式 体循环阻力 体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/C.O. MAP=平均动脉压 RAP=右心房压 C.O.=心输出量 正常值=900-1300(dyne×sec)/ cm5 平均动脉压(MAP) MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 心输出量 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱和度—静脉血氧饱和度。

心脏指数是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 总外周血管阻力(SVR) SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为100-130kpa.s/L 杜克平板测验分数 杜克平板测验分数= 未出现心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×1 测试因心绞痛中止:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×2 风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 校正的QT间期 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: 0.45(婴儿<6个月) 0.44(儿童) 0.425(青少年和成人) 氧供应(DO2)

DO2=1.34×[SaO2(动脉血氧饱和度)×Hb(血红蛋白)]×CO×10 氧消耗(VO2) VO2=1.34×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO×10 CaO2=1.34×SaO2×Hb CvO2=1.34×SvO2×Hb 氧耗量(给定心输出量) 氧耗量(ml/min)=心输出量(C.O.)×(13×Hgb)×(SaO2-SvO2) SaO2=动脉血氧饱和度 SvO2=静脉血氧饱和度 正常值=110-160ml/min/M2 若平均体表面积为1.73M2,则正常值=190-275ml/min 肺脏学公式 动脉血CO2分压(PaCO2) PaCO2=0.863×VCO2/VA VCO2为CO2排出量(ml/min) Va为每分钟肺泡通气量(L/min) 0.863为使气体容量(ml)变为Kpa(mmHg)的转换因子 动脉血氧分压(P a O2) 坐位: P a O2=104.2-0.27×年龄

压缩因子计算

天然气压缩因子的计算 气田上大多数在高压下生产,为控制其流动需要安装节流阀。当气流经过节流阀时,气体产生膨胀,其温度降低。如果气体温度变得足够低,将形成水合物 (一种固体结晶状的冰雪物质)。这就会导致管道和设备的堵塞。【1】从而,在天 然气的集输过程当中,不管对天然气或天然气管道进行怎样的处理,都离不开气体的三个状态参数:压力P 、体积V、温度T。而根据真实气体状态方程PV ZnRT =可知,在确定某个状态参数的时候需要先计算一个压缩因子Z。如果能够更精确的确定压缩因子,从而确定气体的状态参数,对于研究天然气的收集、预处理和输送等问题具有重要意义。下面简要介绍下压缩因子及其计算方法。 真实气体是实实在在的气体,它是为了区别于理想气体而引人的。真实气体占有一定空间,分子之间存在作用力,因此真实气体性质与理想气体性质就有偏离。压缩因子就是反映这种真实气体对理想气体的偏离程度大小。在温度比临界温度高的多、压力很小时,偏离不太显著;反之偏离就很显著。下面将介绍一种计算压缩因子的方法(Dranchuk-Purvis-Robinson 法)。 压缩因子的关系式如下: 563521437383 1()()()(1)exp()pr pr pr pr pr A A A A A Z A A T T T T A A A T =++++++++-52pr pr pr 222 pr pr pr ρρρρρρ (1) 式中A 1到A 8都是常数,具体数据可到参考文献上查阅,ρ pr 为无因次拟对比密 度,它和压缩因子满足关系式: 0.27pr pr pr p ZT ρ= (2) 其中p pr 和T pr 分别为拟对比压力和拟对比温度。 由于式(2)为非线性方程,欲计算Z ,可采用牛顿迭代法(Newton-Raphson )。在已知p pr 和T pr 的情况下,需经过迭代过程求解ρpr ,其公式如下: ( )( 1)()'( )() ()i pr i i pr pr i pr f f ρρρρ+=- (3) 迭代求得拟对比密度ρpr ,即可易求得压缩因子。【2】 参考文献: [1] 曾自强,张育芳.天然气集输工程.北京:石油工业出版社,2001.1 [2] 严铭卿,廉乐明.天然气输配工程.北京:中国建筑工业出版社,2005.32

2010最新换算公式--人和动物及各类动物间药物剂量的换算方法

五、人和动物及各类动物间药物剂量的换算方法 1.人与动物用药量换算人与动物对同一药物的耐受性是相差很大的。一般说来,动物的耐受性要比人大,也就是单位体重的用药量动物比人要大。人的各种药物的用药量在很多书上可以查得,但动物用药量可查的书较少,一般动物用的药物种类远不如人用的那么多。因此,必须将人的用药量换算成动物的用药量。一般按下列比例换算:按每公斤体重人用药量为1,大白鼠、小白鼠为25~50,兔、豚鼠为15~20,犬、猫为5~10。 此外,可以采用人与动物的体表面积计算法来计算: (1)人体体表面积计算法:计算我国人的体表面积,一般认为许文生公式尚较适用,即:体表面积(m2)=0.0061×身高(cm)+0.0128×体重(公斤)-0.1529。例:某人身高168cm,体重55kg,试计算其体表面积。解:0.0061×168+0.0128×55-0.1529=1.576m2。 (2)动物的体表面积计算法:有许多种,在需要由体重推算体表面积时,一般认为Meeh-Rubner公式较适用,即: A(体表面积,以m2计算)=K×(W2/3/10000);式中W为体重,以克计算;K 为一常数,随动物种类不同而不同;小白鼠和大白鼠9.1、豚鼠9.8、家兔10.1、猫9.8、犬11.2、猴11.8、人11.6(上列K值各家报道略有出入)。应当指出,这样计算出来的体表面积还是一种粗略的估计值,不一定完全符合每个动物的实测数值。 例:试计算体重1.50kg家兔的体表面积。K=10.1 W=15002/3 解:A=10.1×(15002/3/10000)式中两边取对数后得: logA=log10.1+2/3log1500-log10000=1.1218 A=0.1324m2(体重 1.5kg家兔的体表面积)。 2.人与不同种类动物之间药物剂量的换算 (1)直接计算法:即按A=K×(2002/3/10000)计算。例:某利尿药大白鼠灌胃给药时的剂量为250mg/kg左右,试粗略估计犬灌胃给药时可以试用的剂量。解:实验用大白鼠的体重一般在200g左右,其体表面积(A)为:A=9.1×(2002/3/10000)=0.0311m2。

压缩因子

物理化学 -> 1.6.3 压缩因子图 三、压缩因子图 荷根(Hougen)和华特生(Watson)测定了许多气体有机物质和无机物质压缩因子随对比温度和对比压力变化的关系,绘制成曲线,所得关系图称为"普遍化压缩因子图"。见图1-14。当实际气体的临界压力p c和临界温度T c的数据为已知,可将某态下的压力p和温度T换算成相应的对比压力p r和对比温度T r,从图中找出该对比态下的压缩因子Z。再由下式计算气体的摩尔体积V m: (1-38) 图1-14 压缩因子Z随p r及T r变化关系 当然,计算并不仅限于体积。上式形式简单,计算方便,并可应用于高温高压,作为一般估算,准确定基本上可以满足,在化工计算上常驻采用。一般说来,对非极性气体,准确度较高(误差约在 5% 以内);对极性气体,误差大些。但对 H2、He、Ne 则为例外,这三种气体,根据经验采用以下修正公式: (1-77)

所得结果更准确。为进一步提高计算方法的准确性,常需引入更多的参数,最常用的是三参数法。需要时读者可参阅有关专著,在此不赘述。 〔例3〕试用压缩因子图法计算 573K 和 20265kPa 下甲醇的摩尔体积。甲醇的临界常数:T c=513K,p c=7974.3kPa。 〔解〕 由图1-14查出T r=1.12,p r=2.54 时,Z=0.45 实验值为 0.114dm3,误差为 7.5%。用理想气体状态方程式计算,V m=0.244dm3! 而用范德华方程式计算, V m=0.126dm3。可见此法不仅方便,且较准确。 〔例4〕一容积为 3dm3的钢筒内容有 3.20kg 的甲烷,室温为 273.4K。试求钢筒中气体的压力。已知甲烷T c=191.1K,p c=4640kPa。 〔解〕 或p r=3.26Z 在T r附近,作p c=3.26Z直线交T r于Z=0.76 处(参考图1-15),此Z值即为同时满足T r=1.43 和 p r=3.26Z的对应态的压缩因子值,以之代入公式

天然气压缩因子计算

1.天然气相关物性参数计算 密度计算: T ZR PM m =ρ ρ——气体密度,Kg/m 3; P ——压力,Pa ; M ——气体千摩尔质量,Kg/Kmol ; Z ——气体压缩因子; T ——气体温度,K ; R m ——通用气体常数,8314.4J/Kmol·K 。 2.压缩因子计算: 已知天然气相对密度?时。 96 .28M =? M ——天然气的摩尔质量。 ?+=62.17065.94pc T 510)05.493.48(??-=pc P ;pc pr P P P = pc pr T T T =; P ——工况下天然气的压力,Pa ;T ——工况下天然气的温度,k ;P Pc —临界压力;T Tc ——临界温度。 对于长距离干线输气管道,压缩因子常用以下两式计算: 668.34273.01--=pr pr T P Z 320107.078.068.110241.01pr pr pr pr T T T P Z ++-- = 对于干燥天然气也可用经验公式估算: 15.1117.0100100P Z +=

标况流量和工况流量转换。为了控制Welas 的5L/min 既 0.3立方米每小时的工况流量。 Q 2------流量计需要调节的流量值 P 2------0.1Mpa T 2------293.15K (20℃ ) Z 2------标况压缩因子 Q 1------0.3m 3/h P 1------ 工况压力(绝对压力MPa ) T 1------开尔文K Z 1-------工况压缩因子 转换公式为 12221211 p T Z Q Q p T Z

Matlab编程天然气压缩因子计算模型

1程序目的 利用AGA8-92DC模型计算天然气的压缩因子,该程序主要应用于在输气和配气正常进行的压力P和温度T围的管输气的压缩因子计算 2数学模型:AGA8-92DC模型 2.1模型介绍 此模型是已知气体详细的摩尔分数组成和相关压力、温度来计算气体压缩因子。 输入变量包括绝对压力、热力学温度和摩尔组成。 摩尔组成是以摩尔分数表示下列组分:CO 2、N 2 、H 2 、CO、CH 4 、C 2 H 6 、C 3 H 8 、 i-C 4H 10 、n-C 4 H 10 、i-C 5 H 12 、n-C 5 H 12 、n-C 6 H 14 、n-C 7 H 16 、n-C 8 H 18 。 2.2 模型适用条件 绝对压力:0MPa<P<12MPa 热力学温度:263K≤T≤338K 高位发热量:30MJ·m-3≤H S ≤45 MJ·m-3 相对密度:0.55≤d≤0.80 天然气中各组分的摩尔分数应在以下围: CH4:0.7≤x CH4 ≤1.0 N2:0≤x N2 ≤0.20 CO2:0≤x CO2 ≤0.20 C2H6:0≤x C2H6 ≤0.10 C3H8:0≤x C3H8 ≤0.035 C4H10:0≤x C4H10 ≤0.015 C5H12:0≤x C5H12 ≤0.005 C6H14:0≤x C6H14 ≤0.001 C7H16:0≤x C7H16 ≤0.0005 C8H18和更高碳数烃类: C8H18:0≤x C8H18 ≤0.0005 H2:0≤x H2 ≤0.10

CO :0≤x CO ≤0.03 如果已知体积分数组成,则应将其换算成摩尔分数组成。所有摩尔分数大于0.00005的组分都不可忽略。 2.3 模型描述 2.3.1 已知条件 绝对压力P 、热力学温度T 、组分数N ; 各组分的摩尔分数,i = 1~N ; 查附表1、2、3得到的以下数据: 58种物质的状态方程参数,, ,,,,,,, ; 14种识别组分的特征参数,,,,,,, ; 14种识别组分的二元交互作用参数, , , 。 2.3.2 待求量 压缩因子 Z 2.3.3 计算步骤 a) 第二维利系数B 的计算: 318 *2 111 B (K K ) n N N u n i j ij i j n i j a T x x B -====∑∑∑ 11*2 2(G 1g )(1)(F F 1f )(S S 1s )(WW 1w )n n n n n g q f s w nij ij n i j n i j n i j n i j n B QQ q =+-+-+-+-+-二元参数E ij 和G ij ,由以下两式计算: 1* 2 (E E )ij ij i j E E = *()/2 ij ij i j G G G G =+ b) 计算系数,n = 13~58 *2(1)()(1)n n n n n g q f u u n n n n n C a G g Q Q q F f U T -=+-+-+- 用以下方程求解混合方程,计算混合物参数U ,G ,Q 。 555 25 22 11 11 (2(1)())i i ij N N N i i j i i j U x E U E E -===+=+-∑∑∑ 1 *1 11 2(1)()N N N i i i j ij i j i i j i G x G x x G G G -===+=+-+∑∑ ∑

碳排放计算公式

碳排放计算公式(部分)【自己算一算】 家居用电的二氧化碳排放量(千克)=耗电量×0.785 开私家车的二氧化碳排放量(千克)=油耗公升数×2.7 乘坐飞机的二氧化碳排放量(千克): 200公里以内=公里数×0.275 200公里至1000公里=55+0.105×(公里数-200) 1000公里以上=公里数×0.139 家用天然气二氧化碳排放量(千克)=天然气使用度数×0.19 家用自来水二氧化碳排放量(千克)=自来水使用度数×0.91 走楼梯上下一层楼能减少0.218千克碳排放,少开空调一小时减少0.621千克碳排放,少用一吨水减少0.194千克碳排放……哥本哈根气候变化大会结束之后,“低碳”概念开始高频率地走进人们日常生活。现在,杭州开始建设低碳城市,大家对碳排放量的多少非常关心,但又知道得很模糊,不知道到底该怎么算的。 事实上,碳排放和我们每天的衣食住行息息相关。至于碳排放量有多少,有关专家给出碳排放的计算公式: 家居用电的二氧化碳排放量(公斤)=耗电度数×0.785; 开车的二氧化碳排放量(公斤)=油耗公升数×0.785; 坐飞机的二氧化碳排放量(公斤): 短途旅行:200公里以内=公里数×0.275; 中途旅行:200至1000公里=55+0.105×(公里数-200); 长途旅行:1000公里以上=公里数×0.139。 火车旅行的二氧化碳排放量=公里数×0.04 此外,还有人发布了肉食的二氧化碳排放量—— 肉食的二氧化碳排放量(公斤)=公斤数×1.24。 这些计算公式是如何得出的? 据了解,碳足迹计算国际上有很多通用公式,这些公式是由联合国及一些环保组织共同制作的。在这些公式的基础上使用中国本土的统计数据和转换因子,使计算更符合中国国情,也更准确地反映你的实际碳足迹。

浅谈压缩因子及其在燃气计量中的影响

浅谈压缩因子及其在燃气计量中的影响 Gas Compression Factor(气体压缩因子) 摘要:本文通过对压缩因子的介绍,浅要分析了其在燃气计算中的影响。 关键词:临界温度;临界压力;势能;动能;压缩因子;燃气计量 1 前言 随着燃气业的不断发展,工商业燃气用户也越来越多,特别是将来天然气在广东珠三角的推广将使珠三角燃气行业得到更迅猛的发展。由于燃气公司与供应商,燃气公司与用户之间,都是存在经济的利益关系,因而在燃气计量上必然存在着或多或少的矛盾。特别是大型工业用户与燃气公司的计量问题的更容易发生矛盾。为了减少此类矛盾的激化,燃气公司在自身利益不受损害的情况下,都将会尽量减少计量上的误差,使两者的矛盾得到缓和。因而燃气公司在计量上就应了解许多注意事项,其中压缩因子就是众多影响计量准确度的潜在因素之一。 2 压缩因子的产生及在计量上的影响 在实际的气体计量的过程中,气体状态方程:Z=PV/RT,压缩因子z在计算中引入了临界温度Tc和临界压力Pc两种参数,其中压缩因子Z=f(Pc,Tc)是随温度及压力而变化的(关系图l,2),其中:临界温度指的是气体加压液化所允许的最高温度,一般分子间的引力越大对应的临界温度越高;如甲烷临界温度Tc为191.05K,丙烷临界温度Tc为368.85K; 临界压力指的是气体在临界温度时发生液化所需要的最小压力;如甲烷临界压力Pc为4.6407MPa,丙烷临界压力Pc为4.3975MPa; 在实际计算中,还要引入对比压力Pr和对比温度Tr,所谓的对比压力就是实际工作压力和临界压力Pc的比值,对比温度同理亦是实际工作温度和临界温度Tc的比值。 压缩因子的数值在不同温度压力下的也不是完全沿一个趋势变化的,如天然气是先随压力增大而变小,到达一定程度后又逐渐随压力增大而变大。那为什么会出现这种情况呢?从微观上讲,这主要是由于分子间的作用力造成的。一定温度下的气体在压力较小时,分子间的距离较大,分子间一般表现为引力,造成实际气体比理想气体更易于被压缩,但随着压力增加气体分子逐渐靠近,分子间的作用力表现为排斥力造成气体难于被压缩,进而形成压缩因子的数值上的变化,并且该数值随气体种类不同而不同。 根据气体压缩因子与对比温度及对比压力的曲线图可发现:在一般的计量工况下(温度小于50℃,压力小于10MPa),天然气的压缩因子均大于液化石油气的压缩因子,亦是说气态液化石油气在该条件下体积受压缩因子的影响大于对气态天然气的体积的影响。根据计算公式,V o=VPT o/(P o TZ),液化石油气和天然气在同等工况下修正系数可通过计算得出: 例一:已知混合气体的容积成分为y C3H6=50%, y C4H10=50%,压力为1.0MPa,温度为25℃的压缩因子。

天然气压缩因子的计算 第3部分:用物性值进行计算(标准状态:现行)

I C S75.060 E24 中华人民共和国国家标准 G B/T17747.3 2011 代替G B/T17747.3 1999 天然气压缩因子的计算 第3部分:用物性值进行计算 N a t u r a l g a s C a l c u l a t i o no f c o m p r e s s i o n f a c t o r P a r t3:C a l c u l a t i o nu s i n gp h y s i c a l p r o p e r t i e s (I S O12213-3:2006,MO D) 2011-12-05发布2012-05-01实施中华人民共和国国家质量监督检验检疫总局

G B/T17747.3 2011 目次 …………………………………………………………………………………………………………前言Ⅰ1范围1………………………………………………………………………………………………………2规范性引用文件1…………………………………………………………………………………………3术语和定义1………………………………………………………………………………………………4计算方法1…………………………………………………………………………………………………附录A(规范性附录)符号和单位6 ………………………………………………………………………附录B(规范性附录)S G E R G-88计算方法描述9 ………………………………………………………附录C(规范性附录)计算示例17 ………………………………………………………………………… …………………………………………………………………………附录D(规范性附录)换算因子18附录E(资料性附录)管输气规范21 ………………………………………………………………………附录F(资料性附录)更宽范围的应用效果24 ……………………………………………………………

医学计算公式

医学计算公式资料 1.体循环阻力: 体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/C、O、 MAP=平均动脉压 RAP=右心房压 C、O、=心输出量 正常值=900-1300(dyne×sec)/ cm5 2、平均动脉压(MAP): MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 3、心输出量: 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱与度—静脉血氧饱与度。 心脏指数就是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 4、总外周血管阻力: SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为100-130kpa、s/L 5、杜克平板测验分数: 杜克平板测验分数= 未出现心绞痛:测试持续时间(min)-5、0×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-5、0×最大ST段下降(mm)-4、0×1 测试因心绞痛中止:测试持续时间(min)-5、0×最大ST段下降(mm)-4、0×2 风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 6、校正的QT间期: 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: 0、45(婴儿<6个月) 0、44(儿童)

7、氧供应(DO2): DO2=1、34×[SaO2(动脉血氧饱与度)×Hb(血红蛋白)]×CO×10 8、氧消耗(VO2): VO2=1、34×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO×10 CaO2=1、34×SaO2×Hb CvO2=1、34×SvO2×Hb 9、氧耗量(给定心输出量): 氧耗量(ml/min)=心输出量(C、O、)×(13×Hgb)×(SaO2-SvO2) SaO2=动脉血氧饱与度 SvO2=静脉血氧饱与度 正常值=110-160ml/min/M2 若平均体表面积为1、73M2,则正常值=190-275ml/min 10.动脉血CO2分压: PaCO2=0、863×VCO2/V A VCO2为CO2排出量(ml/min) Va为每分钟肺泡通气量(L/min) 0、863为使气体容量(ml)变为Kpa(mmHg)的转换因子 11、动脉血氧分压(PaO2): 坐位: PaO2=104、2-0、27×年龄 仰卧位: PaO2=103、5-0、42×年龄 12、动脉血氧含量: CaO2=0、003×PaO2+1、34×SaO2×Hb 13、动脉血氧饱与度(SaO2): SaO2=HbO2÷(HbO2+Hb)×100% HbO2就是血红蛋白结合的氧量 14、急性肺损伤比率: 急性肺损伤的氧合指数=动脉血氧分压/吸入气氧分数 氧合指数<300,诊断为急性肺损伤(ALI) 氧合指数<200,诊断为急性呼吸窘迫综合症(ARDS) 15、肺泡-动脉血氧分压差 (P(A-aa)O2): (1)吸入气氧分压PIO2=(大气压—PH2O)×吸入氧浓度% (2)肺泡气PO2(PAO2)=PIO2—PCO2×1、25 (3)肺泡动脉氧分压差(P(A-a)O2)=PAO2—PaO2 将(2)的结果代入(3)中即可得P(A-a)O2 16、肺泡气公式: 肺泡氧分压(PaO2)(mmHg)=[FIO2(%)×(大气压-PH2O)]-(PaCO2×1、25)] FIO2=吸入气浓度(%) PH2O=气道水蒸气压力,通常为6、3Kpa,即47mmHg PaCO2=动脉血二氧化碳分压 17、肺顺应性: 肺顺应性(Cdyn)=潮气量÷(最大气道压-呼气末正压) 18、尿HCO3 ̄排泄率:

带压缩因子的粒子群算法

主程序: %------基本粒子群优化算法(Particle Swarm Optimization)----------- %------名称:带压缩因子的粒子群优化算法(PSO) %------作用:求解优化问题 %------说明:全局性,并行性,高效的群体智能算法,提高解的精度 %------初始格式化-------------------------------------------------- clear all; clc; format long; %------给定初始化条件---------------------------------------------- %c1=1.4962; %学习因子1 c1=3; c2=2; %c2=1.4962; %学习因子2 w=0.7298; %惯性权重 MaxDT=100; %最大迭代次数 D=6; %搜索空间维数(未知数个数) N=20; %初始化群体个体数目 eps=10^(-6); %设置精度(在已知最小值时候用) phi=c1+c2; if phi<=4 disp('c1与c2的和必须大于4! '); xm=NaN; fv=NaN; return; end %------初始化种群的个体(可以在这里限定位置和速度的范围)------------ for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------先计算各个粒子的适应度,并初始化Pi和Pg---------------------- figure(3) for i=1:N P(i)=fitness2(x(i,:)); y(i,:)=x(i,:); end Pg=x(N,:); %Pg为全局最优 for i=1:(N-1) if fitness2(x(i,:))

2010最新换算公式--人和动物及各类动物间药物剂量的换算方法

人和动物及各类动物间药物剂量的换算方法 1.人与动物用药量换算人与动物对同一药物的耐受性是相差很大的。一般说来,动物的耐受性要比人大,也就是单位体重的用药量动物比人要大。人的各种药物的用药量在很多书上可以查得,但动物用药量可查的书较少,一般动物用的药物种类远不如人用的那么多。因此,必须将人的用药量换算成动物的用药量。一般按下列比例换算:按每公斤体重人用药量为1,大白鼠、小白鼠为25~50,兔、豚鼠为15~20,犬、猫为5~10。 此外,可以采用人与动物的体表面积计算法来计算: (1)人体体表面积计算法:计算我国人的体表面积,一般认为许文生公式尚较适用,即:体表面积(m2)=0.0061×身高(cm)+0.0128×体重(公斤)-0.1529。例:某人身高168cm,体重55kg,试计算其体表面积。解:0.0061×168+0.0128×55-0.1529=1.576m2。 (2)动物的体表面积计算法:有许多种,在需要由体重推算体表面积时,一般认为Meeh-Rubner公式较适用,即: A(体表面积,以m2计算)=K×(W2/3/10000);式中W为体重,以克计算;K 为一常数,随动物种类不同而不同;小白鼠和大白鼠9.1、豚鼠9.8、家兔10.1、猫9.8、犬11.2、猴11.8、人11.6(上列K值各家报道略有出入)。应当指出,这样计算出来的体表面积还是一种粗略的估计值,不一定完全符合每个动物的实测数值。 例:试计算体重1.50kg家兔的体表面积。K=10.1 W=15002/3 解:A=10.1×(15002/3/10000)式中两边取对数后得: logA=log10.1+2/3log1500-log10000=1.1218 A=0.1324m2(体重 1.5kg家兔的体表面积)。 2.人与不同种类动物之间药物剂量的换算 (1)直接计算法:即按A=K×(2002/3/10000)计算。例:某利尿药大白鼠灌胃给药时的剂量为250mg/kg左右,试粗略估计犬灌胃给药时可以试用的剂量。解:实验用大白鼠的体重一般在200g左右,其体表面积(A)为:A=9.1×(2002/3/10000)=0.0311m2。

医药学常用计算公式

体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/. MAP=平均动脉压 RAP=右心房压 .=心输出量 正常值=900-1300(dyne×sec)/ cm5 平均动脉压(MAP) MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 心输出量 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱和度—静脉血氧饱和度。 心脏指数是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 总外周血管阻力(SVR) SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为L 杜克平板测验分数 杜克平板测验分数=

未出现心绞痛:测试持续时间(min)-×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-×最大ST段下降(mm)-×1 测试因心绞痛中止:测试持续时间(min)-×最大ST段下降(mm)-×2风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 校正的QT间期 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: (婴儿<6个月) (儿童) (青少年和成人) 氧供应(DO2) DO2=×[SaO2(动脉血氧饱和度)×Hb(血红蛋白)]×CO×10 氧消耗(VO2) VO2=×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO×10 CaO2=×SaO2×Hb CvO2=×SvO2×Hb 氧耗量(给定心输出量) 氧耗量(ml/min)=心输出量(.)×(13×Hgb)×(SaO2-SvO2) SaO2=动脉血氧饱和度 SvO2=静脉血氧饱和度 正常值=110-160ml/min/M2

-人和动物药物等效剂量换算直接计算法

直接计算法(指导) (1) 先计算己知药用量的人或动物的体表面积。 A :人体表面积(m2) =0.0061 身高(cm ) +0.0128 体重(kg ) -0.1529 B :动物体表面积(m2 ) =K X 体重面积/10000 K 为一常数,随动物种类而不同(表 1-1 ) C :体重面 积=体重克数2/3 (2) (3) (4) 待试动物剂量=已知动物剂量(mg/m2 ) x 待试动物体表面积(m2) /待试动 物体重(kg ) 其中:大鼠的K 值为9.1 人与动物及各类动物间药物剂量的换算方法 1 .人与动物用药量换算 人与动物对同一药物的耐受性是相差很大的。一般说来,动物的耐受性要比 人大,也 就是单位体重的用药理动物比人要大。 人的各种药物的用量在很多书上可以查得, 而且动物用的药物种类远不如人用的那么多。因此,必须将人的用药量换算成动物的用药量。 例换算:人用药量为 1,小白鼠、大白鼠为 25-50,兔、豚鼠为15-20,狗、猫为 此外,可以采用人与动物的体表面积计算法来换算: (1)人体体表面积计算法 计算我国人的体表面积, 一般认为许文生氏公式 (中国生理学杂志 12:327,1937 ) 尚较适用,即: 体表面积(m2 ) =0.0061 X 身高(cm ) +0.0128 X 体重(kg )-0.1529 例:某人身高168cm ,体重55kg ,试计算其体表面积。 解:0.061 X 168+0.0128 X 55.0.1529=1.576m2 (2 )动物的体表面积计算法 有许多种,在需要由体重推算体表面积时,一般认为 较适用,即: W (体皿WR 讣尊护" ■比沐农面現,以mr 卜灯)土 K 疑 式中的K 为一常数,随动物种类而不同:小白鼠和大白鼠 9.1、豚鼠9.8、家兔10.1、猫9.8、狗11.2、猴 11.8、人10.6(上列K 值各家报导略有岀入)。应当指岀,这样计算岀来的表面积还是一种粗略的估计值,不一 定完全符合于每个动物的实测数 值。 例:试计算体重 1.50kg 家兔的体表面积。 10U00 log A = logiou + ^loglSOD - logl QOOO = 1 .1218 J 人-0.132 (休J?:l,30kg 家兔的体:抡面枳) 2 .人及不同种类动物之间药物剂量的换算 已知药物量 mg/kg 折算 mg/m2 :药物量 mg/kgx 体重kg/体表面积(m2 ) 待试动物的体表面积(公式 B ) 计算待试动物的用药剂量( mg/kg ) 但动物用药量可查的书较少, 一 般可按下列比 5-10。 Meeh-Rubner 氏公式尚

医学计算公式(完整资料).doc

医学计算公式资料 【最新整理,下载后即可编辑】 1.体循环阻力: 体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/C.O. MAP=平均动脉压 RAP=右心房压 C.O.=心输出量 正常值=900-1300(dyne×sec)/ cm5 2.平均动脉压(MAP): MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 3.心输出量: 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱和度—静脉血氧饱和度。 心脏指数是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 4.总外周血管阻力: SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为100-130kpa.s/L 5.杜克平板测验分数:

杜克平板测验分数= 未出现心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×1 测试因心绞痛中止:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×2 风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 6.校正的QT间期: 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: 0.45(婴儿<6个月) 0.44(儿童) 0.425(青少年和成人 7.氧供应(DO2): DO2=1.34×[SaO2(动脉血氧饱和度)×Hb(血红蛋白)]×CO×10 8.氧消耗(VO2): VO2=1.34×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO× 10 CaO2=1.34×SaO2×Hb CvO2=1.34×SvO2×Hb 9.氧耗量(给定心输出量):

相关文档
最新文档