数学建模中选址问题(Lingo程序)

数学建模中选址问题(Lingo程序)
数学建模中选址问题(Lingo程序)

P94,例3.4 选址问题

目录

题目 (1)

第一步,旧址基础上只求运量的LP程序 (1)

第二步,旧址基础上选择新址的NLP程序 (2)

题目

6个工地的地址(坐标表示,距离单位KM)及水泥用量(单位:吨)如下表,而在P(5,1)及Q(2,7)处有两个临时料场,日储量各有20t,如何安排运输,可使总的吨公里数最小?

新料场应选何处?能节约多少吨公里数?

第一步,旧址基础上只求运量的LP程序

MODEL:

Title Location Problem;

sets:

demand/1..6/:a,b,d;

supply/1..2/:x,y,e;

link(demand,supply):c;

endsets

data:

!locations for the demand(需求点的位置);

a=1.25,8.75,0.5,5.75,3,7.25;

b=1.25,0.75,4.75,5,6.5,7.75;

!quantities of the demand and supply(供需量);

d=3,5,4,7,6,11; e=20,20;

x,y=5,1,2,7;

enddata

init:

!initial locations for the supply(初始点);

endinit

!Objective function(目标);

[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );

!demand constraints(需求约束);

@for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i););

!supply constraints(供应约束);

@for(supply(i):[SUPPL Y_CON] @sum(demand(j):c(j,i)) <=e(i); );

!@for(supply: @free(x);!@free(Y);!);

@for(supply: @bnd(0.5,X,8.75); @bnd(0.75,Y,7.75); );

END

运行可得到全局最优解

Global optimal solution found.

Objective value: 136.2275

Total solver iterations: 1

Model Title: Location Problem

Variable Value Reduced Cost

X( 1) 5.000000 0.000000

X( 2) 2.000000 0.000000

Y( 1) 1.000000 0.000000

Y( 2) 7.000000 0.000000

E( 1) 20.00000 0.000000

E( 2) 20.00000 0.000000

第二步,旧址基础上选择新址的NLP程序

!选新址的NLP程序;

MODEL:

Title Location Problem;

sets:

demand/1..6/:a,b,d;

supply/1..2/:x,y,e;

link(demand,supply):c;

endsets

data:

!locations for the demand(需求点的位置);

a=1.25,8.75,0.5,5.75,3,7.25;

b=1.25,0.75,4.75,5,6.5,7.75;

!quantities of the demand and supply(供需量);

d=3,5,4,7,6,11; e=20,20;

enddata

init:

!initial locations for the supply(初始点);

!x,y=5,1,2,7;

endinit

!Objective function(目标);

[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );

!demand constraints(需求约束);

@for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i););

!supply constraints(供应约束);

@for(supply(i):[SUPPL Y_CON] @sum(demand(j):c(j,i)) <=e(i); );

!@for(supply: @free(x);!@free(Y);!);

@for(supply: @bnd(0.5,X,8.75); @bnd(0.75,Y,7.75); );

END

求解结果

只得到局部最优解

Local optimal solution found.

Objective value: 89.88347

Total solver iterations: 67

Model Title: Location Problem

Variable Value Reduced Cost

X( 1) 5.695966 0.000000

X( 2) 7.250000 -0.3212138E-05

Y( 1) 4.928558 0.000000

Y( 2) 7.750000 -0.1009767E-05

如果不要初始数据,可能计算时间更长,本例的结果更优:

Local optimal solution found.

Objective value: 85.26604

Total solver iterations: 29

Model Title: Location Problem

Variable Value Reduced Cost

X( 1) 3.254883 0.000000

X( 2) 7.250000 -0.2958858E-05

Y( 1) 5.652332 0.000000

Y( 2) 7.750000 -0.1114154E-05

如果想求全局最优解,结果将会出现如下错误

版本限制,但会得到一个的局部最优解,结果与不要初始数据时算出的结果一样。

Local optimal solution found.

Objective value: 85.26604

Extended solver steps: 18

Total solver iterations: 16121

Model Title: Location Problem

Variable Value Reduced Cost

X( 1) 3.254883 0.000000

X( 2) 7.250000 0.8084079E-07

Y( 1) 5.652332 0.000000

Y( 2) 7.750000 0.2675276E-06

数学建模 学校选址问题模型

学校选址问题 摘 要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: ∑==16 1i i x s 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析

1. 问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 表1-1备选校址表 备选校址 1 2 3 4 5 6 7 8 覆盖小区 1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,20 1,4,6,7, 12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址 9 10 11 12 13 14 15 16 覆盖小区 7,9,13, 14,15, 17,18, 19 9,10,14,15,16, 18,19 1,2,4,6, 7 5,10,11, 16,20, 12,13,14,17, 18 9,10,14, 15 2,3,,5, 11,20 2,3,4,5,8 1.2 问题提出: 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 ?? ???-??+=, 否则, 若学生人数超过学生人数0600 )600(50 1002000i i i c βα 其中i α和i β由表1-2给出: 表1-2 学校建设成本参数表(单位:百万元) 备选校址 1 2 3 4 5 6 7 8 i α 5 5 5 5 5 5 5 3.5 i β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1 备选校址 9 10 11 12 13 14 15 16 i α 3.5 3.5 3.5 3.5 2 2 2 2 i β 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表1-3: 表1-3.各小区1到6年级学龄儿童数平均值(样本均值) 小区 1 2 3 4 5 6 7 8 9 10 学龄儿童数 120 180 230 120 150 180 180 150 100 160

数学建模学校选址问题

学校选址问题 摘要 本文为解决学校选址问题,建立了相应的数学模型。 针对模型一 首先,根据已知信息,对题目中给出的数据进行处理分析。在保证每个小区,学生至少有一个校址可供选择的情况下,运用整数规划中的0-1规划法,列出建校方案的目标函数与其约束条件,通过LINGO软件,使用计算机搜索算法进行求解。得出建立校址的最少数目为4个。再运用MATLAB软件编程,运行得到当建校的个数为4个时,学 首先,对文中给出的学校建设成本参数表和各校区1到6年级学龄儿童的平均值(样本均值)进行分析,可知20个小区估计共有4320个学龄儿童,当每个学校的平均人数都小于600时,至少需要建设8个学校;其次,模型一得到最少的建校数目为4个,运用MATLAB软件编程,依次列出学校个数为4、5、6、7、8时的最优建校方案,分别算出其最优建校方案下的总成本;最后,通过对比得出,最低的建校总成本为1650万,即选取校址10、11、13、14、15、16建设学校。 最后,我们不但对模型进行了灵敏度分析,,保证了模型的有效可行。 关键词:MATLAB灵敏度 0-1规划总成本选址 1 问题重述

当代教育的普及,使得学校的建设已成为不得不认真考虑的问题。 1.1已知信息 1、某地新开发的20个小区需要建设配套的小学,备选的校址共有16个,各校址覆盖的小区情况如表1所示: 2、在问题二中,每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 (单元:元)学生人数)600-(50100200010? ?? ???+=i i i c βα,若学生人数超过600人,其中 i α和i β由表2给出: 并且考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表3: 1.2提出问题 1、要求建立数学模型并利用数学软件求解出学校个数最少的建校方案。 2、求出总成本最低的建校方案。 2 问题假设与符号说明

数学建模论文__物流与选址问题

物流预选址问题 (2) 摘要 .............................................................................................. 错误!未定义书签。 一、问题重述 (3) 二、问题的分析 (3) 2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (4) 2.2 问题二:建立合理的仓库选址和建造规模模型 (4) 2.3 问题三:工厂向中心仓库供货的最佳方案问题 (5) 2.4 问题四:根据一组数据对自己的模型进行评价 (5) 三、模型假设与符号说明 (5) 3.1条件假设 (5) 3.2模型的符号说明 (5) 四、模型的建立与求解 (6) 4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (6) 4.1.1模型的建立 (7) 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (10) 4.2.1 基于重心法选址模型 (10) 4.2.2 基于多元线性回归法确定中心仓库的建造规模 (12) 4.3 问题三:工厂向中心仓库供货方案 (13)

4.4 问题四:选用一组数据进行计算 (14) 五、模型评价 (21) 5.1模型的优缺点 (21) 5.1.1 模型的优点 (21) 5.1.2 模型的缺点 (21) 六参考文献 (21) 物流预选址问题 摘要 在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。 本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用

数学建模 学校选址问题模型

学校选址问题 摘要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数最小花费固定成本规模成本灵敏度分析 1.问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 1.2 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i个备选校址的建校成本 c可表示为 i

《数学建模》选题.

《数学建模》选题(一) 1、选址问题研究 在社会经济发展过程中, 经常需要在系统中设置一个或多个集散物质、传输信息或执行某种服务的“中心”。在设计和规划商业中心、自来水厂、消防站、医院、飞机场、停车场、通讯系统中的交换台站等的时候,经常需要考虑将场址选在什么位置才能使得系统的运行效能最佳。选址问题, 是指在指定的范围内, 根据所要求的某些指标,选择最满意的场址。在实际问题中,也就是关于为需要设置的“设施”选择最优位置的问题。选址问题是一个特殊类型的最优化问题,它属于非线性规划和组合最优化的研究范围。由于它本身所具有的特点,存在着单独研究的必要性和重要性。 1.1“中心”为点的情形 如图1,有一条河,两个工厂P 和Q位于河岸L(直线)的同一侧,工厂 P 和 Q 距离河岸L分别为8千米和10千米,两个工厂的距离为14千米,现要在河的工厂一侧选一点R,在R处建一个水泵站,向两工厂P、Q 输水,请你给出一个经济合理的设计方案。 图1 图2 (即找一点 R ,使 R 到P、Q及直线l的距离之和为最小。) 要求和给分标准: 提出合理方案,建立坐标系,分情况定出点R的位置,0分——70分。 将问题引申: (1)、若将直线 L缩成一个点(如向水库取水),则问题就是在三角形内求一点R,使R到三角形三顶点的距离之和为最小(此点即为费尔马点)。 (2)、若取水的河道不是直线,是一段圆弧(如图2),该如何选点? 对引申问题给出给出模型和讨论30分——50分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺点讨论扣10分。 1.2“中心”为线的情形

在油田管网和公路干线的设计中提出干线网络的选址问题: 问题A :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ∑=n i i i L P d w 1 ),( (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题B :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ∑=n i i i L X d w 1 ),( (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 问题C :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ),(max 1L P d w i i n i ≤≤ (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题D :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ),(max 1i i n i L X d w ≤≤ (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 参考文献 【1】林诒勋, 尚松蒲. 平面上的点—线选址问题[J]. 运筹学学报,2002,6(3):61—68. 【2】尚松蒲, 林诒勋. 平面上的min-max 型点—线选址问题[J]. 运筹学学报,2003,7(3):83—91. 要求和给分标准: 选择问题A 和B(或者C 和D)进行研究:根据文献重述模型(10分),提出自己的算法(30分),计算机仿真验证算法的正确性(40分,含如何在平面上随机产生n 个点,对每个点随机赋权,按照算法编程实现求干线的程序,并将寻得的干线和点在平面上图示,建议用MATLAB 编程)。 将问题引申: 如果同时确定两条、三条干线,应该如何讨论?其他情形的讨论? 对引申问题给出给出模型和讨论20分——30分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺

机场选址问题数学建模论文

机场选址问题 摘要 针对机场选址问题,文章共建立了三个模型用以解决该类问题。为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。 对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。我们设了第i个 y以及第i个城市是否是以第j个支线机场为最近机场的()j i x,。城市是否建支线机场的 i 然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量()j i x,,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。 对于问题2,该问题是属于多目标规划的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。 对于问题3,我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均客流量水平上下浮动。通过LINGO程序的运行得到的六个机场的坐标见表6,六个机场的分布见图7。 针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。 关键词:选址问题;多目标规划;LINGO;0-1变量法;加权

1.问题的重述 近年来,随着我国经济社会的迅猛发展,公共交通基础设施日趋需要进一步完善与提高。支线机场作为我国交通运输体系的有机组成部分,对促进欠发达地区经济社会的发展具有基础性的作用。现某区域有30个城市,本区域计划在未来的五年里拟建6个支线机场。 任务1,确定6个支线机场的所在城市,建立居民到最近机场之间的平均距离最小的数学模型。 任务2,在任务一基础上,确定6个支线机场的所在城市,建立使得每个支线机场所覆盖的居民人数尽可能均衡的数学模型。 任务3,在任务一基础上,根据近一年每个城市的GDP 情况,确定6个支线机场的所在城市,建立使得每个支线机场的客流量尽量均衡的数学模型。 2.问题的分析 2.1 问题1 题目要求是建立居民到最近机场之间的平均距离最小的数学模型,该问题其实就是利用的0-1变量建立的模型。首先我们设两个0-1变量,一个是控制某个城市是否为支线机场的i y ,一个是控制某个城市的最近机场是哪一个的ij x 。针对于上述两个0-1变量,我们分别设立了约束条件。同时又为了满足问题所要求的使局面平均距离最小,我们将某一个城市到离它最近的机场的距离与该城市的人口乘积作为目标函数,在LINGO 软件中,通过设立一约束条件,最后将目标函数进行最优化求解。 2.2 问题2 该问题可以归结为多元目标线性规划的问题,所以我们在第一问的基础上又增加了一个目标函数,最后利用加权的方法将两个目标函数转化成了一个目标函数,将另一个目标函数作为约束条件。同时我们又引入了正负偏差变量,通过控制该变量达到覆盖居民人数均衡以及居民到城市之间的平均距离尽量小。 2.3 问题3 该问题要求的是客流量尽量均衡,经过分析可以知道,城市的GDP 越高,说明该城市经济越繁荣,货币流通越快,从而反映出客流量越大。另一方面城市越大、人口越多,也在一定程度上反映出了该城市客流量越大。基于上述两点,我们对GDP 跟城市人口分别给予了不同的权重来反映其对客流量的影响大小。按照第二问的方法,我们依然利用多元目标线性规划的只是进行求解。通过LINGO 编写程序,最中求得可行解。

数学建模论文--物流与选址问题

物流预选址问题 (2) 摘要............................................................................................................. 错误!未定义书签。 一、问题重述 (2) 二、问题的分析 (3) 2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (3) 2.2 问题二:建立合理的仓库选址和建造规模模型 (3) 2.3 问题三:工厂向中心仓库供货的最佳方案问题 (3) 2.4 问题四:根据一组数据对自己的模型进行评价 (4) 三、模型假设与符号说明 (4) 3.1条件假设 (4) 3.2模型的符号说明 (4) 四、模型的建立与求解 (5) 4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (5) 4.1.1模型的建立 (5) 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (7) 4.2.1 基于重心法选址模型 (8) 4.2.2 基于多元线性回归法确定中心仓库的建造规模 (10) 4.3 问题三:工厂向中心仓库供货方案 (10) 4.4 问题四:选用一组数据进行计算 (11) 五、模型评价 (16) 5.1模型的优缺点 (16) 5.1.1 模型的优点 (16) 5.1.2 模型的缺点 (16) 六参考文献 (16)

物流预选址问题 摘要 在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。 本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进行实例化分析,我们确定了工厂和中心仓库位置和建造规模。对于问题三我们运用LINGO软件简单的解决了工厂对中心仓库的供货情况。问题四我们选用了一组数据通过求解多元线性规划对问题进行了实例化分析。为中心仓库的选址问题做了合理说明。最后我们对模型进行了评价和分析。 关键词:物流网络重心法选址模型多元线性规划 一、问题重述 某公司是生产某种商品的省知名厂家。该公司根据需要,计划在本省建设两个生产工厂和若干个中心仓库向全省所有城市供货。根据市场调研,全省有m个城市,每个城市单位时间需要该公司的物资量是已知的,有关运费的信息也是确定的,工厂和中心仓库

数学建模报告选址问题

长沙学院数学建模课程设计说明书 题目选址问题 系(部) 数学与计算机科学 专业(班级) 数学与应用数学 姓名 学号 指导教师 起止日期 2015、6、1——2015、6、5

课程设计任务书 课程名称:数学建模课程设计 设计题目:选址问题 已知技术参数和设计要求: 选址问题(难度系数1.0) 已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近? 各阶段具体要求: 1.利用已学数学方法和计算机知识进行数学建模。 2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。 3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。 4.设计中绝对禁止抄袭他人的设计成果。 5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。 6.所设计的程序必须满足实际使用要求,编译出可执行的程序。 7.要求程序结构简单,功能齐全,使用方便。 设计工作量: 论文:要求撰写不少于3000个文字的文档,详细说明具体要求。 1v 5

工作计划: 提前一周:分组、选题;明确需求分析、组内分工; 第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解; 第五天:完成设计说明书,答辩; 第六天:针对答辩意见修改设计说明书,打印、上交。 注意事项 ?提交文档 长沙学院课程设计任务书(每学生1份) 长沙学院课程设计论文(每学生1份) 长沙学院课程设计鉴定表(每学生1份) 指导教师签名:日期: 教研室主任签名:日期: 系主任签名:日期:

4.第17讲 应急设施的优化选址问题(数学建模)

第17讲应急设施的优化选址问题 问题(AMCM-86B题)里奥兰翘镇迄今还没有自己的应急设施。1986年该镇得到了建立两个应急设施的拨款,每个设施都把救护站、消防队和警察所合在一起。图17-1指出了1985年每个长方形街区发生应急事件的次数。在北边的L形状的区域是一个障碍,而在南边的长方形区域是一个有浅水池塘的公园。应急车辆驶过一条南北向的街道平均要花15秒,而通过一条东西向的街道平均花20秒。你的任务是确定这两个应急设施的位置,使得总响应时间最少。 图17-1 1985年里奥兰翘每个长方街区应急事件的数目(I)假定需求集中在每个街区的中心,而应急设施位于街角处。 (II)假定需求是沿包围每个街区的街道上平均分布的,而应急设施可位于街道的任何地方。 §1 若干假设 1、图17-1所标出的1985年每个长方形街区应急事件的次数具有典型代表性,能够反映该街区应急事件出现的概率的大小。 2、应急车辆的响应时间只考虑在街道上行驶时间,其他因纱(如转弯时间等)可以忽略不计。 3、两个应急设施的功能完全相同。在应急事件出现时,只要从离事件发生地点最近的应急设施派出应急车辆即可。 4、执行任何一次应急任务的车辆都从某一个应急设施出发,完成任务后回到原设施。不出现从一个应急事件点直接到另一事件点的情况。(这是因为,每一个地点发生事件的概率都很小,两个地点同时发生事故的概率就更是小得可以忽略不计)。

§2 假定(I )下的模 在假定(I )下,应急需求集中在每个街区中心。我们可以进一步假定应急车辆只要到达该街区四个街角中最近的一个,就认为到达了该街区,可以开始工作了。按假定(I ),每个应急设施选在街角处,可能的位置只有6×11=66个。两个应急设施的位置的可能的组合至多只有66×65/2=2145个。这个数目对计算机来说并不大,可用计算机进行穷举,对每种组合一一算出所对应的总响应时间,依次比较得出最小的响应时间及对应的选址方案。具体算法是: 建立直角坐标系,以该镇的西北角为原点,从北到南为X -轴正方向,从西到东为Y -轴正方向,在南北、东西方向上分别以一个街区的长作为单位长,则街角的坐标),(Y X 是满足条件50,100≤≤≤≤Y X 的整数。而每个街区中心的坐标具有形式)5.0,5.0(++j i ,其中j i ,是满足条件:40,90≤≤≤≤j i 的整数。如果不考虑障碍和水塘的影响,同应急车辆从设在),(Y X 点的应急设施到以)5.0,5.0(++j i 为中心的街区的行驶时间等于 )5.05.0(20)5.05.0(15),,,(---+---=j Y i X j i Y X t )5.17)5.0(20)5.0((15-+-++-=j Y i X 秒 记),(j i p 为以)5.0,5.0(++j i 为中心的街区的事故发生频率(即在图上该街区所标的数字)。如果应急设施设在),(),,(2211Y X Y X 这两点,总不妨设21X X ≤,则该设置方案的总响应时间为 ),,,(2211Y X Y X T ∑∑===904 02211)},,,(),,,,(min{),(i j j i Y X t j i Y X t j i p 让1X 取遍0—10,2X 取遍101-X ,21,Y Y 分别独立地取遍0—4。依次对四数组),,,(2211Y X Y X 的每一个值算出对应的总响应时间的最小值及对应的四数组。 以上算法不难用计算机编程实现。由于数组的个数不算多(只有两千多个),计算机可很快得出答案。答案是: 两个应急设施分别设在点(2,3),(6,3)时最优。 这是在不考虑L 形障碍区域和水塘的影响的假定下得出的最优解,但从这两个点到

选址问题数学模型

选址问题数学模型 摘要 本题是用图论与算法结合的数学模型,来解决居民各社区生活中存在三个的问题:合理的建立3个煤气缴费站的问题;如何建立合理的派出所;市领导人巡视路线最佳安排方案的问题。通过对原型进行初步分析,分清各个要素及求解目标,理出它们之间的联系.在用图论模型描述研究对象时,为了突出与求解目标息息相关的要素,降低思考的复杂度。对客观事物进行抽象、化简,并用图来描述事物特征及内在联系的过程.建立图论模型是为了简化问题,突出要点,以便更深入地研究问题 针对问题1:0-1规划的穷举法模型。该模型首先采用改善的Floyd-Warshall 算法计算出城市间最短路径矩阵见附录表一;然后,用0-1规划的穷举法获得模型目标函数的最优解,其煤气缴费站设置点分别在Q、W、M社区,各社区居民缴费区域见表7-1,居民与最近的缴费点之间平均距离的最小值11.7118百米。 针对问题2:为避免资源的浪费,且满足条件,建立了以最少分组数为目标函数的单目标最优化模型,用问题一中最短路径的Floyd算法,运用LINGO软件编程计算,得到个社区之间的最短距离,再经过计算可得到本问的派出所管辖范围是2.5千米。最后采用就近归组的搜索方法,逐步优化,最终得到最少需要设置3个派出所,其所在位置有三种方案,分别是:(1)K区,W区,D区;(2)K区,W区,R区;(3)K区,W区,Q区。最后根据效率和公平性和工作负荷考虑考虑,其第三种方案为最佳方案,故选择K区,W区,Q区,其各自管辖区域路线图如图8-1。 针对问题3:建立了双目标最优化模型。首先将问题三转化为三个售货员的最佳旅行售货员问题,得到以总路程最短和路程均衡度最小的目标函数,采用最短路径Floyd算法,并用MATLAB和LINGO软件编程计算,得到最优树图,然后按每块近似有相等总路程的标准将最优树分成三块,最后根据最小环路定理,得到三组巡视路程分别为11.8km、11km和12.5km,三组巡视的总路程达到35.3km,路程均衡度为12%,具体巡视路线安排见表9-1和图9.2 。 关键词Floyd-Warshall算法穷举法最小生成树最短路径 1问题重述 1.1问题背景 这是一个最优选址问题,是一种重要的长期决策,它的好坏直接影响到服务方法,服务质量,服务效率,服务成本,所以选址问题的研究有着重大的经济社

数学建模物流配送中心选址模型

数学建模物流配送中心 选址模型 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

物流配送中心选址模型 姓名:学号:班级: 摘要:在现代络中,配送中心不仅执行一般的职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个络的灵魂所在。因此,发展现代化配送中心是现代业的发展方向。文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。 关键词:物流选址;选址;重心法;优化模型; 1.背景介绍 1.1 研究主题 如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。 1.2 前人研究进展 1.2.1国内外的研究现状:

国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。归纳起来,这些配送中心选址方法可分为三类: (1)应用连续型模型选择地点; (2)应用离散型模型选择地点; (3)应用德尔菲(Delphi)专家咨询法选择地点。 第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。解析方法的优点在于计算简单,数据容易搜集,易于理解。由于通常不需要对进行整体评估,所以在单一设施定位时应用解析方法简便易行。 第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。 第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。 国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。北方交通大学鲁晓春等对配送中心的重心法地址做出了深入的研究,认为原有的重心法存在着问题,并把原有的计算公式用流通费用偏微分方程来取代。中国矿业大学周梅

选址问题及最佳巡视路线的数学模型 (1)

本科14组 许泽东,邹志翔,陈佳成 选址问题及最佳巡视路线的数学模型 摘 要 本文解决的问题是缴费站、派出所选址和最佳巡视路线的确定。合理设置缴费站,可以为居民缴费节省大量时间和精力。派出所位置和数量的不同选择,会产生不同的建设成本和管理经费。而最佳巡视路线的确立,可以让领导在最短时间内巡视完所有社区。为解决以上问题,我们建立的三个最优化模型。 针对问题一,我们先用floyd 算法求出各社区间的最短路,然后用计算机枚举出所有选址方案。对每一种选址方案都会产生一个平均距离S ,我们以此为指标对方案进行评估。经过合理化推导,我们得出最优解11712S .=(百米),且此时应该在M,Q,W 三社区设置煤气缴费站。 针对问题二,我们在问题一求出的最短路基础上,建立了0-1线性规划模型。然后借助matlab 软件求得最优解3=X (即应该设置3个派出所),并给出了各派出所管辖范围。这样既满足了每个社区在3分钟内至少能得到一个派出所服务,也为派出所的建设管理节省了不少成本。具体结果如下表3: 构建了社区网络的完全图,然后考虑到最优哈密顿圈的求解极其困难,我们连续使用30次模拟退火的方法求得连接各社区的近似最优哈密顿圈。其中,我们对每次求出的哈密顿圈都进行了合理划分,产生了三个子圈,即三组巡视路线。最终得到近似最优解128,见表4。接着,我们还对哈密顿圈划分方法进行了改进,求得近似最优解125(具体结果见表5)。 1.问题重述 问题背景 社区已是现代都市的的基础,随着城市社会经济的飞速发展,社区与人们生活的联系越来越密切,人们需要在社区解决日常生活涉及的各种利益和需要,因而人们对社区社会生活服务提出更高的要求,而政府也希望能够更好的指导和管理城市社区,社区生

数学建模学校选址问题模型

数学建模学校选址问题 模型 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

学校选址问题 摘要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。

其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数最小花费固定成本规模成本灵敏度分析 1.问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 表1-1备选校址表

数学建模选址问题

摘要 目前,社区的优化管理和最佳服务已经成为一种趋势,并且为城市的发展作出了一定的贡献。本文针对在社区中选址问题及巡视路线问题,分别建立了多目标决策模型、约束最优化线路模型,并分别提供了选址社区和巡视路线。 对于问题一,我们建立了单目标优化模型,考虑到各社区居民到收费站点的平均距离最小,我们使用floyd 算法并通过matlab 编程,算出任意两个社区之间的最短路径,并以此作为工具,使用0-1变量列出了目标函数。在本题中,我们根据收费站数、超额覆盖等确定了约束条件,以保证收费站覆盖每个社区,同时保证居民与最近煤气站之间的平均距离最小,最终利用lingo 软件求得收费站建在M、Q、W三个社区。 对于问题二,同样是单目标优化模型,较之问题一不同的是,问题二不需要考虑人口问题,但需要确定选址的个数。接下来的工作分了两步,第一步,我们通过0-1变量列出目标函数,以超额覆盖等确定约束条件,用lingo 软件编程求出最小派出所站点的个数;第二步,我们利用第一步中求出的派出所个数作为新的约束条件,建立使总距离最小的优化模型,最终利用lingo 软件求得三个派出所分别建在W、Q、K社区。 对于问题三,我们建立了约束最优化线路模型,根据floyd 算法求得的任意两个社区之间的最短路径,建立了以w 点为树根的最短路径生成树,并据此对各点的集中区域进行划分,再利用破圈法得到最短回路。在本题中,我们初定了两种方案,并引入均衡度α对两种方案进行比较,最终采用了方案二。最后,我们用matlab编程求解方案二中各组的巡视路线为113百米,123百米,117百米,均衡度α=8.13%。具体路线见 关键词:最短路径 hamilton圈最优化 floyd算法

数学建模中选址问题(Lingo程序)

P94,例选址问题 目录 题目......................................................... 错误!未定义书签。 第一步,旧址基础上只求运量的LP程序......................... 错误!未定义书签。 第二步,旧址基础上选择新址的NLP程序......................... 错误!未定义书签。题目 6个工地的地址(坐标表示,距离单位KM)及水泥用量(单位:吨)如下表,而在P(5,1)及Q(2,7)处有两个临时料场,日储量各有20t,如何安排运输,可使总的吨公里数最小? 新料场应选何处能节约多少吨公里数 第一步,旧址基础上只求运量的LP程序 MODEL: Title Location Problem;

sets: demand/1..6/:a,b,d; supply/1..2/:x,y,e; link(demand,supply):c; endsets data: !locations for the demand(需求点的位置); a=,,,,3,; b=,,,5,,; !quantities of the demand and supply(供需量); d=3,5,4,7,6,11; e=20,20; x,y=5,1,2,7; enddata init: !initial locations for the supply(初始点); endinit !Objective function(目标); [OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) ); !demand constraints(需求约束); @for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i););

数学建模学校选址问题模型

数学建模学校选址问题模 型 Revised by Jack on December 14,2020

学校选址问题 摘要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数最小花费固定成本规模成本灵敏度分析 1.问题重述 问题背景:

某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 问题提出: 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 其中i α和i β由表1-2给出: 考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表1-3:

数学建模选址问题完整版

数学建模选址问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

选址问题 摘要 目前,社区的优化管理和最佳服务已经成为一种趋势,并且为城市的发展作出了一定的贡献。本文针对在社区中选址问题及巡视路线问题,分别建立了多目标决策模型、约束最优化线路模型,并分别提供了选址社区和巡视路线。 对于问题一,我们建立了单目标优化模型,考虑到各社区居民到收费站点的平均距离最小,我们使用floyd 算法并通过matlab 编程,算出任意两个社区之间的最短路径,并以此作为工具,使用0-1变量列出了目标函数。在本题中,我们根据收费站数、超额覆盖等确定了约束条件,以保证收费站覆盖每个社区,同时保证居民与最近煤气站之间的平均距离最小,最终利用lingo 软件求得收费站建在M、Q、W三个社区。 对于问题二,同样是单目标优化模型,较之问题一不同的是,问题二不需要考虑人口问题,但需要确定选址的个数。接下来的工作分了两步,第一步,我们通过0-1变量列出目标函数,以超额覆盖等确定约束条件,用lingo 软件编程求出最小派出所站点的个数;第二步,我们利用第一步中求出的派出所个数作为新的约束条件,建立使总距离最小的优化模型,最终利用lingo 软件求得三个派出所分别建在W、Q、K社区。 对于问题三,我们建立了约束最优化线路模型,根据floyd 算法求得的任意两个社区之间的最短路径,建立了以w 点为树根的最短路径生成树,并据此对各点的集中区域进行划分,再利用破圈法得到最短回路。在本题中,我们初定了两种方案,并引入均衡度α对两种方案进行比较,最终采用了方案二。最后,我们用matlab编程求解方案二中各组的巡视路线为113百米,123百米,117百米,均衡度α=%。具体路线见 关键词:最短路径 hamilton圈最优化 floyd算法

数学建模选址问题

选址问题 摘要 目前,社区的优化管理和最佳服务已经成为一种趋势,并且为城市的发展作出了一定的贡献。本文针对在社区中选址问题及巡视路线问题,分别建立了多目标决策模型、约束最优化线路模型,并分别提供了选址社区和巡视路线。 对于问题一,我们建立了单目标优化模型,考虑到各社区居民到收费站点的平均距离最小,我们使用floyd 算法并通过matlab 编程,算出任意两个社区之间的最短路径,并以此作为工具,使用0-1变量列出了目标函数。在本题中,我们根据收费站数、超额覆盖等确定了约束条件,以保证收费站覆盖每个社区,同时保证居民与最近煤气站之间的平均距离最小,最终利用lingo 软件求得收费站建在M、Q、W三个社区。 对于问题二,同样是单目标优化模型,较之问题一不同的是,问题二不需要考虑人口问题,但需要确定选址的个数。接下来的工作分了两步,第一步,我们通过0-1变量列出目标函数,以超额覆盖等确定约束条件,用lingo 软件编程求出最小派出所站点的个数;第二步,我们利用第一步中求出的派出所个数作为新的约束条件,建立使总距离最小的优化模型,最终利用lingo 软件求得三个派出所分别建在W、Q、K社区。 对于问题三,我们建立了约束最优化线路模型,根据floyd 算法求得的任意两个社区之间的最短路径,建立了以w 点为树根的最短路径生成树,并据此对各点的集中区域进行划分,再利用破圈法得到最短回路。在本题中,我们初定了两种方案,并引入均衡度 对两种方案进行比较,最终采用了方案二。最后,我们用matlab编程求解方案二中各组的巡视路线为113百米,123百米,117百米,

均衡度 =8.13%。具体路线见 关键词:最短路径hamilton圈最优化floyd算法

相关文档
最新文档