大豆油脂肪酸甲酯化条件的研究

大豆油脂肪酸甲酯化条件的研究
大豆油脂肪酸甲酯化条件的研究

甲酯化方法

一、主题内容与适用范围 本标准适用于所有的动植物油脂和脂肪酸。 二、目的 油脂及脂肪酸(特别是12碳以上的长碳链脂肪酸)一般不直接进行气相色谱分析,其原因是脂肪酸脂肪酸及油脂的沸点高,高温下不稳定,易裂解,分析中易造成损失。因此,对脂肪酸及油脂的脂肪酸组分分析时,先将脂肪酸或油脂与甲醇反映,制备脂肪酸甲酯,降低沸点,提高稳定性,然后进行气相色谱分析。 三、BF3甲酯化法 1、仪器 (1)50ml及100ml磨口圆底烧瓶 (2)回流冷凝器(长度20~30cm,有磨口连接,与烧瓶配套) (3)250ml分液漏斗 (4)滴管 (5)带磨口玻璃塞的试管 (6)10ml移液管 (7)沸石 2、试剂 (1)正庚烷,色谱纯 (2)轻汽油(沸程40~60℃) (3)无水硫酸钠,分析纯 (4)0.5M的氢氧化钠甲醇溶液(不用标定),配制如下: 称取2g NaOH溶于100ml甲醇中(甲醇的含水量不得超过0.5%),该溶液放置一段时间后会出现白色沉淀,这不影响脂肪酸甲酯化制备。 (5)12~25%(m/m)BF3的甲酯溶液

(6)饱和的NaCl水溶液 (7)甲基红指示剂:用60%的乙醇配置0.1%的甲基红溶液 (8)氮气:含氧量低于5mg/kg 3、操作方法,(1)取大约350mg油样加入50ml烧杯中,移取6ml 0.5M的NaOH于油样中,并加入几粒沸石,连接回流装置,开始加热回流,回流过程中要不断摇动烧瓶。 (2)当烧瓶内的油珠消失,溶液变得透明时(大约需要5~10分钟),从冷凝器上端加7ml BF3甲醇溶液于烧杯内(用移液管移取),然后继续回流1分钟。 (3)然后从冷凝管上端加入2~5ml正庚烷后,再回流1分钟。 (4)撤离火源,取出烧瓶,向烧瓶中加入一定量的饱和NaCl溶液,轻轻上下颠倒数次后,静置分层。 (5)从烧杯内的上层溶液中取出约1ml转移到磨口试管中,并加入适量的无水硫酸钠,以去除痕量的水分,得到的此甲酯化样品以备气相色谱分析用。 4、注解 (1)BF3有毒,因此该试验应在通风厨中进行,同时,用后的所有玻璃仪器应立即清洗;(2)如果待测脂肪酸或构成油脂的脂肪酸含有2个以上的双键,建议反应的烧杯中先充氮处理; (3)若样品为纯脂肪酸,则试验可省去皂化,直接取一定量的脂肪酸,加入适量的BF3甲醇溶液,煮沸2分钟,然后同上方法的3、4、5、6步骤操作; (4)BF3甲醇溶液货架期短,一般现配现用,或者置于冰箱中储藏,否则会使GLC中分析中出现怪峰,甚至造成多不饱和酸的损失; (5)BF3甲酯化法适用于AV>2的油脂或脂肪酸; (6)若待测脂肪酸中不含有二十碳及二十碳以上的成分,则可用正己烷代替正庚烷;

常用增塑剂简介

常用增塑剂简介 1.邻苯二甲酸酯类邻苯二田酸酣类是目前最广泛使用的主增塑剂,品种多、产量高,井具有色泽浅、毒性低、电性能好、挥发件小、气味少、耐低温性一般等特点。目前邻苯二酸酯类的消耗量约占增塑剂总消耗量的80-85%,而其中最常用的是邻苯二甲酸二辛酯和邻苯二甲酸二异辛酯两种。 (1)邻苯二甲酸二辛酯((简称DOP)无色油状液体,有特殊气味。 (2)邻苯二甲酸二异辛酯(简称DIOP) 几乎是无色的粘稠液体,溶于大多数有机溶剂和烃类, (3)邻苯二甲酸二异癸酯(简称DIDP) 粘稠液体,溶于大多数有机溶剂和烃类,不溶于或微溶于甘油、乙二醇和某些胺类。它的挥发性比DOP小。耐迁移,是一种低挥发性增塑剂,又耐老化,电性能好,但相溶性差些。 (4)邻苯二甲酸二异壬酯(简称DINP)透明油状液体,其高温下的挥发性只是DOP的一半。 (5)邻苯二甲酸二丁酯(简称DBP)无色透明液体,具有芳香族气味,溶于大多数有机溶剂和烃类。DBP对PVC的临界塑化温度为90—95℃。 (6)邻苯二甲酸二异丁酯(简称DIBP) 无色透明液体, DIBP在PVC农用薄膜中使用时曾发现由于它的析出致使水稻烂秧的问题。 (7)邻苯二甲酸丁苄酯(简称BBP) 透明油状液体,溶于有机溶剂和烃类,不溶于水。BBP对PVC的临界塑化温度为96-100℃。 (8)邻苯二甲酸二甲酯(简称DMP) 无色油状液体,微带芳香族气味,常温下不溶于水,和脂肪烃混溶,与大多数树脂相溶性良好. (9)邻苯二甲酸二乙酯(简称DEP) 无色油状液体,无毒,微带芳香族气味,溶于大多数有机溶剂。 (10)邻苯二甲酸二环己酯(DCHP) 具有芳香族气味的白色结晶状粉末.溶于大多数有机溶剂,在热的汽油和矿物油中完全溶解,微溶于乙二醇类和某些胺类。 (11)对苯二甲酸二辛酯(DOTP) DOTP与DOP的物理性能相似,制品的机械性能也相似,但DOTP 的挥发件比DOP小得多。 2. 脂肪酸酯类脂肪酸酯类的低温性能很好,但与聚氯乙烯的相溶性较差故只能用作耐寒的副增塑剂与邻苯二甲酸酯类并用。最常用的品种是己二酸二辛酯和癸二酸二辛酯。 (1)己二酸二辛酯(简称DOA) 无色无嗅液体,无毒,溶于大多数有机溶剂,微溶于乙二醇类,不溶于水,DOA对PVC的临界塑化温度为12l一125℃。 (2)已二酸二异癸酯(简称DIDA) 清澈易流动的油状液体。 (3)壬二酸二辛酯(简称D0Z) 几乎是无色的透明液体, (4)癸二酸二丁酸(简称DBS) 几乎是无色的液体, (5)癸二酸二辛酯(简称DOS) 几乎是无色的油状液体,不溶于水,溶于醇、苯、醚等有机溶剂。 (6)癸二酸二异辛酯(简称DIOS) 无色清澈液体,溶于酮、醇、酯、芳香烃和脂肪烃等大多数有机溶剂,微溶于胺和多元醇。 (7)二(2—乙基丁酸)三缩乙二醇酯(简称3GH) 它是安全玻璃用聚乙烯醇缩丁醛薄膜中最为广泛使用的增塑剂,同时它对纤维索塑料、丙烯酸酯塑料和聚氯乙烯也是良好的增塑剂。 3.磷酸酯类磷酸酯与聚氯乙烯等树脂有良好的相溶性,透明性也好,但有毒性。它们既是增塑剂,又是阻燃剂。芳香族磷酸醋的低温性能很差,而脂肪族磷酸酯的低温性能较好,但热稳定性较差,耐久性不如芳香族磷酸酯。其主要品种有磷酸三甲苯酯和磷酸三苯酯。 (1)磷酸三甲苯酯(简称TCP) (2)磷酸三苯酯(简称TPP) 微带芳香气味的白色针状结晶,微溶于乙醇,醚、苯、氯仿、丙酮。

α -亚麻酸生物合成方法研究

巴斯德毕赤酵母催化生成α -亚麻酸的工艺条件优化 冯康,葛军军,张昕欣 ( 台州职业技术学院生物与化工学院,浙江台州318000) 摘要: 利用正交实验优化了巴斯德毕赤酵母催化硬脂酸生成α -亚麻酸的工艺条件,结果显示催化时巴斯德 毕赤酵母接种 量对催化效率影响显著,在此基础上得到的最佳催化条件为pH 值6. 5,硬脂酸乙醇饱和溶液加量4 mL, 巴斯德毕赤酵母接种量为 1 mL。在此条件下,以α -亚麻酸甲酯气相色谱积分面积( 18∶3) /硬脂酸甲酯气相色谱积分面积( 18∶0) 为标准计算出的转化率 为7. 16。 关键词: 巴斯德毕赤酵母; α -亚麻酸; 正交试验; 催化 中图分类号: Q815 文献标志码: B 文章编号: 1001 -9677( 2015) 017 -0080 -02 * 基金项目: 台州市海洋科技创新团队子项目( No. MBR2012073) 。 通讯作者: 张昕欣( 1980 -) ,女,讲师,主要从事微生物制药的教学和研发。 α -亚麻酸是人体正常生理活动所必须的不饱和脂肪酸之一[1],它对人的早期营养. 婴儿脑发育. 心脑血管疾病、高血脂症的治疗改善等均有一定的作用[2],还能防止皮肤衰老. 抗炎抗过敏,对人体的健康有非常重要的积极意义[1]。但α -亚麻酸在人体内普遍缺乏,目前我国普通人群体内缺乏α -亚麻酸的比例大于95% ,人均摄入量不到世界卫生组织推荐量( 1 g /d) 的一半[1],各国都在对其高含量生产方法进行研究,以供在药剂,生命科学等方面使用[2]。截止目前,国内外对α -亚麻酸的合成研究很多,但大多数工艺都需要高温、高压条件,工艺复杂,转化率较低[2 -4]。尚无法进行产业化。本研究利用正交实验初步优化了巴斯德毕赤酵母催化硬脂酸生成α -亚麻酸的工艺条件。由于巴斯德毕赤酵母体内具有催化硬脂酸生成α -亚麻酸的完整代谢酶系,可进行高密度发酵,遗传稳定性高,不易染菌。因此利用巴斯德毕赤酵母来催化硬脂酸制备α -亚麻酸成本低,工艺简单,无污染,具有很好的产业可行化,以及重要的经济价值和社会 价值。 1 材料与方法 1. 1 培养基配制 YEPD 培养基的配制: 酵母粉10 g; 葡萄糖20 g; 蛋白胨20 g; 蒸馏水1000 mL,调节PH 为酸性,采用高压蒸汽灭菌113 ℃,灭菌30 min,制成YEPD 培养基。 1. 2 巴斯德毕赤酵母细胞培养

脂肪酸测试

脂肪酸检测--科标检测 通过实验结果,发现在大部分含油脂丰富的食物中,有一半左右的热量是由脂肪和油类提供的。天然的脂肪和油类通常是由一种以上的脂肪酸与甘油形成的各种酯的混合物。脂肪是人体的三大供能营养素之一,对人体有许多重要的生理作用。脂肪的成分中大于90%是脂肪酸,而脂肪酸可分为饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸,其中多不饱和脂肪酸中n-6系和n-3系含有人体的必需脂肪酸,也就是人体无法合成而必须从食物中获取的脂肪酸。所以对食品中脂肪酸的检测十分必要。 在众多脂肪酸检测方法中,GC-MS联用技术发展较早,成熟度较高,其优势在于:微量或痕量分析,灵敏度高,检出限低,分离度好,分辨率高,重复性佳,保留时间稳定;且由于已有成熟的商品化标准谱图数据库,可对未知化合物进行快速检索和鉴定,是一种较为理想的脂肪酸分析技术。 科标化工分析检测中心可依照ISO、ASTM、DIN、GB、HB等标准完成食品、饲料、药品、纺织品、农业、高分子材料、生物产品、建筑材料以及其他产品理化性能、力学性能、电气性能等测试。中心通过了中国国家认证认可监督管理委员会(CMA)实验室认证认可,能出具权威的第三方检测报告。此外,本中心分析能力较强,能对橡胶、塑料、油墨、涂料、各类助剂、胶黏剂、未知物等进行成分分析和鉴定,能对市场上新的产品进行配方分析,为顾客产品研发生产排忧解难。 脂肪酸检测(气相色谱质谱联用法) 一、实验原理 科标中心参照国标及各种文献将脂肪酸衍生化成脂肪酸甲酯,使用十九酸内标,用正己烷提取后稀释后用气相色谱质谱联用仪,外标法结合内标法定量分析。 二、仪器和试剂 Thermo Trace1310气相色谱质谱联用仪,HH-4数显恒温水浴锅;盐酸、甲醇、氯仿为分析纯试剂,正己烷为色谱纯试剂。 三、试验方法 1、样品提取 称取适量样品,加入4mL的甲醇/CH2Cl2(1:3)混合溶液,摇匀;恒温在30℃以下超声抽提10min。取出离心管,放于离心机中离心(1800rpm,10min),收集上清液,重复3次;将萃取液在柔和氮气流下吹干。

气相色谱法测定大豆油中脂肪酸成份

油脂中脂肪酸含量测定 ―――气相色谱法测定大豆油中脂肪酸成分一、目的与要求 油脂是食品加工中重要的原料和辅料,也是食品的重要组分和营养成分。必需脂肪酸是维持人体生理活动的必要条件,人体所必需的脂肪酸一般取自食品用油,即食用油脂。气相色谱法测定油脂脂肪酸组分是现在最常用的方法,也是一些相关标准(如:GB/T17377)规定应用的检测方法。 甲酯化是分析动植物油脂脂肪酸成分的常用的前处理方法,也是常用的标准方法(GB/T 17376-1998)。 本实验要求了解气相色谱法测食用油脂肪酸组成的原理,掌握样品的前处理方法,学习食用油脂中脂肪酸组分的色谱分析技术。 二、原理 本实验甲酯化方法采用国标--GB/T 17376-1998,甘油酯皂化后,释出的脂肪酸在三氟化硼存在下进行酯化,萃取得到脂肪酸甲酯用于气象色谱分析。 样品中的脂肪酸(甘油酯)经过适当的前处理(甲酯化)后,进样,样品在汽化室被汽化,在一定的温度下,汽化的样品随载气通过色谱柱,由于样品中组分与固定相间相互用的强弱不同而被逐一分离,分离后的组分,到达检测器(detceter)时经检测口的相应处理(如FID的火焰离子化),产生可检测的信号。根据色谱峰的保留时间定性,归一法确定不同脂肪酸的百分含量。 三、仪器与试剂 (一)仪器--------------北京普瑞分析仪器有限公司 1.气相色谱仪:GC---7800主机,配氢火焰离子化检测器(FID)。 2.恒温水浴锅 3.移液管 4.胶头滴管 5.小圆底烧瓶 6.冷凝管 7. 样品瓶

(二)试剂:.石油醚、乙醚、氢氧化钾、甲醇均为AR级。 四、实验步骤 (一)样品预处理 酯化测定: 取0.2g油样于10ml容量瓶中,家5.0ml 4:3石油醚—乙醚,使其溶解,在加4.0ml 0.5mol/L氢氧化钾—甲醇溶液,振摇1分钟,放置8min后加水1.0ml,静止20min使之分层,取上层液注入色谱仪,保留时间定性,面积归一化法定量。 测定: (1)气相色谱条件 ①色谱柱:石英弹性毛细管柱,0.32mm(内径)×30m,内膜厚度0.5um。 ②程序升温:150℃保持3min,5℃/min升温至220℃,保持10min;进样口温度250℃;检测器温度300℃。 ③气体流速:氮气:40mL/min,氢气:40mL/min,空气:450mL/min,分流比30﹕1。 ④柱前压:25kpa (2)色谱分析 自动进样,吸取0.4-1μL试样液注入气相色谱仪,记录色谱峰的保留时间和峰高。利用标准图谱确定每个色谱峰的性质(定性),利用软件自带的自动积分方法计算各脂肪酸组分的百分含量。 五、鉴别 1.测定常见植物油主要脂肪酸的构成比并查阅有关资料,经统计学处理,不同的植物油主要脂肪酸的组成大部分有相同之处,但是主要脂肪酸的含量是不相同的。根据脂肪酸组成与含量,即可鉴别油品种类。 2.气相色谱法测定脂肪酸,通常用硫酸—甲醇法,和AOAC-IUPAC 标准法,我们采用了氢氧化钾-甲醇法,经试验3种方法测定结果差异无显著性。

脂肪酸甲酯化方法

一、主题内容与适用范围本标准适用于所有的动植物油脂和脂肪酸。 二、目的油脂及脂肪酸(特别是12 碳以上的长碳链脂肪酸) 一般不直接进行气相色谱分析,其原因是脂肪酸脂肪酸及油脂的沸点高,高温下不稳定,易裂解,分析中易造成损失。因此,对脂肪酸及油脂的脂肪酸组分分析时,先将脂肪酸或油脂与甲醇反映,制备脂肪酸甲酯,降低沸点,提高稳定性,然后进行气相色谱分析。 三、BF3甲酯化法 1、仪器 (1)50ml及100ml磨口圆底烧瓶 (2)回流冷凝器(长度20?30cm,有磨口连接,与烧瓶配套) ( 3) 250ml 分液漏斗 ( 4)滴管 ( 5)带磨口玻璃塞的试管 ( 6) 10ml 移液管 ( 7)沸石 2、试剂 ( 1 )正庚烷,色谱纯 (2)轻汽油(沸程40?60 C) ( 3)无水硫酸钠,分析纯 ( 4) 0.5M 的氢氧化钠甲醇溶液(不用标定) ,配制如下: 称取2g NaOH溶于100ml甲醇中(甲醇的含水量不得超过0.5%),该溶液放置一段时间后会出现白色沉淀,这不影响脂肪酸甲酯化制备。 (5)12?25%( m/m ) BF3的甲酯溶液; (6)饱和的NaCI水溶液 (7)甲基红指示剂:用60%的乙醇配置0.1%的甲基红溶液 ( 8)氮气:含氧量低于5mg/kg 3、操作方法, (1)取大约350mg油样加入50ml烧杯中,移取6ml 0.5M的NaOH于油样中,并加入几粒沸石,连接回流装置,开始加热回流,回流过程中要不断摇动烧瓶。 (2)当烧瓶内的油珠消失,溶液变得透明时(大约需要5?10分钟),从冷凝器上端加7ml BF3甲醇溶液于烧杯内(用移液管移取),然后继续回流1分钟。 (3)然后从冷凝管上端加入2?5ml 正庚烷后,再回流 1 分钟。 (4)撤离火源,取出烧瓶,向烧瓶中加入一定量的饱和NaCI溶液,轻轻上下颠 倒数次后,静置分层。 (5)从烧杯内的上层溶液中取出约1ml 转移到磨口试管中,并加入适量的无水硫酸钠,以去除痕量的水分,得到的此甲酯化样品以备气相色谱分析用。 4、注解; (1)BF3有毒,因此该试验应在通风厨中进行,同时,用后的所有玻璃仪器应立即清洗; ( 2)如果待测脂肪酸或构成油脂的脂肪酸含有 2 个以上的双键,建议反应的烧 杯中先充氮处理; ( 3)若样品为纯脂肪酸,则试验可省去皂化,直接取一定量的脂肪酸,加入适 量的BF3甲醇溶液,煮沸2分钟,然后同上方法的3、4、5、6步骤操作;

气相色谱仪应用领域以及有关分析实例

气相色谱仪应用领域以及有关分析实例 气相色谱仪在石油、化工、生物化学、医药卫生、食品工业、环保等方面应用很广。它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。 一、应用领域: 1、石油和石油化工分析: 油气田勘探中的化学分析、原油分析、炼厂气分析、模拟蒸馏、油料分析、单质烃分析、含硫/含氮/含氧化合物分析、汽油添加剂分析、脂肪烃分析、芳烃分析。 2、环境分析: 大气污染物分析、水分析、土壤分析、固体废弃物分析。 3、食品分析: 农药残留分析、香精香料分析、添加剂分析、脂肪酸甲酯分析、食品包装材料分析。 4、药物和临床分析: 雌三醇分析、儿茶酚胺代谢产物分析、尿中孕二醇和孕三醇分析、血浆中睾丸激素分析、血液中乙醇/麻醉剂及氨基酸衍生物分析。 5、农药残留物分析: 有机氯农药残留分析、有机磷农药残留分析、杀虫剂残留分析、除草剂残留分析等。 6、精细化工分析: 添加剂分析、催化剂分析、原材料分析、产品质量控制。

7、聚合物分析: 单体分析、添加剂分析、共聚物组成分析、聚合物结构表征/聚合物中的杂质分析、热稳定性研究。 8、合成工业: 方法研究、质量监控、过程分析。 二、分析实例: (一) 天然气常量分析: 选用热导检测器,适用于城市燃气用天然气O2、N2、CH4、CO2、C2H6、C3H8、i-C40、n-C40、i-C50、n-C50等组分的常量分析。分析结果符合国标GB10410.2-89。 (二) 人工煤气分析: 选用热导检测器、双阀多柱系统,自动或手动进样,适用于人工煤气中H2、O2、N2、CO2、CH4、C2H4、C2H6、C3H6等主要成分的测定。分析结果符合国标GB10410.1-89。 (三) 液化石油气分析①: 选用热导检测器、填充柱系统、阀自动或手动切换,并配有反吹系统,适用于炼油厂生产的液化石油气中C2-C4及总C5烃类组成的分析(不包括双烯烃和炔烃)。分析结果符合SH/T10230-92。 液化石油气分析②: 选用热导检测器,填充柱系统、阀自动或手动切换,并配有反吹 系统,适用于液化石油气中C5以下气态烃类组分的分析(不包括炔烃)。分析结果符合GB10410.3-89。

环氧脂肪酸甲酯可行性报告书

环氧脂肪酸甲酯可行性报告书 篇一:硫代脂肪酸甲酯项目可行性研究报告 硫代脂肪酸甲酯项目可行性研究报告 核心提示:硫代脂肪酸甲酯项目投资环境分析,硫代脂肪酸甲酯项目背景和发展概况,硫代脂肪酸甲酯项目建设的必要性,硫代脂肪酸甲酯行业竞争格局分析,硫代脂肪酸甲酯行业财务指标分析参考,硫代脂肪酸甲酯行业市场分析与建设规模,硫代脂肪酸甲酯项目建设条件与选址方案,硫代脂肪酸甲酯项目不确定性及风险分析,硫代脂肪酸甲酯行业发展趋势分析 提供国家发改委甲级资质 专业编写: 硫代脂肪酸甲酯项目建议书 硫代脂肪酸甲酯项目申请报告

硫代脂肪酸甲酯项目环评报告 硫代脂肪酸甲酯项目商业计划书 硫代脂肪酸甲酯项目资金申请报告 硫代脂肪酸甲酯项目节能评估报告 硫代脂肪酸甲酯项目规划设计咨询 硫代脂肪酸甲酯项目可行性研究报告 主要用途发改委立项,政府批地,融资,贷款,申请国家补助资金等 关键词硫代脂肪酸甲酯项目可行性研究报告、申请报告 交付方式特快专递、E-mail 交付时间2-3个工作日 报告格式Word格式;PDF格式 报告价格此报告为委托项目报告,具体价格根据具体的要求协商,欢迎进入公司网站,了解详情,工程师(高建先生)会给您满意的答复。 报告说明 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不

同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、上马、融资提供全程指引服务。 可行性研究报告是在制定某一建设或科研项目之前,对该项目实施的可能性、有效性、技术方案及技术政策进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报 告。可行性研究报告主要内容是要求以全面、系统的分析为主要方法,经济效益为核心,围绕影响项目的各种因素,运用大量的数据资料论证拟建项目是否可行。对整个可行性研究提出综合分析评价,指出优缺点和建议。为了结论的需要,往往还需要加上一些附件,如试验数据、论证材料、计算图表、附图等,以增强可行性报告的说服力。 可行性研究是确定建设项目前具有

浙江嘉澳环保科技股份有限公司6万吨环氧植物油脂增塑剂项目的

浙江嘉澳环保科技股份有限公司年产6万吨环氧植物油脂增塑剂项目 环境影响报告书 (简本) 浙江环科环境咨询有限公司 国环评证:甲字第2003号 二○一二年五月

一、项目由来 增塑剂是世界产量和消费量最大的塑料助剂之一,主要应用在电线、电缆、汽车、房地产、地板、壁纸、人造革、各类食品医药包装膜等塑料制品领域,市场容量巨大。2010年中国塑料消费量已超过6000万吨,占世界塑料消费量2.45亿吨的五分之一强。2009年全世界增塑剂生产能力约750 万吨/年,总产量为590 万吨/年。增塑剂市场整体发展较为成熟,年增长率在5%左右,亚洲增长率为最高,年增长率在7-8%。未来十年,亚洲地区将继续成为全球增塑剂需求增速最快的地区。 目前,我国80%以上的塑胶企业通常使用邻苯类增塑剂,包括DOP(邻苯二甲酸二辛酯)、DBP(邻苯二甲酸二丁酯)和DINP(邻苯二甲酸二异壬酯)等仍被大量用在PVC 软管、薄膜、人造革等软制品中。该类产品中由于具有某些芳香族结构以及金属元素含量超标等因素,经口、呼吸道、静脉输液、皮肤吸收等多种途径进入人体,对机体多个系统均有毒性作用,被认为是一种环境内分泌干扰因子。PVC 医疗器械中的DOP 释放到患者体内,对患者具有更大的危害性,尤其是处于发育早期和分化发育敏感阶段的儿童和孕妇。因此,国际国家对使用增塑剂有着严格的规定。欧盟、美国等国通过“REACH指令”等法律、法规,从根本上限制了邻苯类增塑剂产品的使用。环氧植物油脂增塑剂产品是一种国际通用的环保增塑剂产品,能够通过国际SGS环保认证和国际REACH安全认证,本产品无毒且色泽更浅,可以在透明质聚氯乙烯制品中添加使用,应用范围更广,与聚氯乙烯制品具有更佳的稳定性能与相容性能,具有优良的增塑性能和耐光性、耐拉伸、耐老化、阻燃等优良特性,产品投放市场,应用前景良好。 浙江嘉澳环保科技股份有限公司前身是桐乡嘉澳化工有限公司,公司成立于2003年,是由阿联酋迪拜YOUNUS IBRAHIM ABDULRAHMAN先生投资的外商独资企业。经过多年的发展,目前已经成为一家专门从事塑料助剂研发、生产的大型企业,现有公司位于桐乡经济开发区。公司为实现快速发展,拟在现有厂区内实施年产6万吨环氧植物油脂增塑剂项目。项目产品的开发成功,填补了国内空白,技术达到国内领先水平,提高我国绿色、环境友好型增塑剂的大规模应用范围,突破美国、欧盟等对PVC制品设立的绿色壁垒。 二、现有项目概况和工程分析 浙江嘉澳环保科技股份有限公司是一家中外合资投资建设、专门从事塑料助剂产品的生产企业, 成立于2003年。现有员工140多人,2010年实现产值

脂肪酸检测

生物样品中脂肪酸检测--科标技术 科标技术分析中心简称“科标技术”,是青岛科标(检测)研究院旗下的专业分析研发品牌,由科标技术研发中心(青岛)有限公司独立运营。科标技术依托科标检测品牌旗下的技术、设备、人员、平台等优势资源,地处化工行业产学研示范基地,可利用资源包括气相色谱质谱联用仪、液相色谱仪、ICP-OES等200余台/套先进的研发分析配套设备、5000平方米的实验室,保证分析的精度,为客户提供一站式的分析技术服务和整套解决方案。 科标技术作为“科标检测”品牌重点投资建设的专业研发品牌,可共享科标检测品牌旗下的优势团队资源。专业研发团队150余人,其中教授(高级工程师、研究员)共9人,研究生以上学历共90余人,专业实验人员60余人。 科标品牌的发展得到了国家、省、市的大力支持与认可,是国家化工行业产学研示范基地分析研发板块支撑单位、科技部中小企业公共分析检测与科研创新资源共享服务平台、青岛市技术转移服务机构、青岛市名牌单位、青岛市“专、精、特、新”计划单位。 科标技术专业提供生物、环境、药品、精细化工、能源、材料等领域分析研发技术服务,专业解决国内外企业、高校院所、科研机构的分析方法开发与优化、课题外包、项目攻关等服务,致力于为客户提供最专业的分析研发解决方案,支撑科技进步,成为社会尊重、客户信赖的研究型分析研发机构。 科标技术始终引领分析研发行业的科学化、标准化发展,秉承“敢为人先、开拓创新、同心协力、勇承重载”的科标精神,以服务赢得信任,以品质铸就辉煌。 科标技术——“让研发更简单”。 脂肪酸在生物中广泛存在,脂肪酸的检测是生物研究者常做项目,我中心利用GC-MS联用技术开发了脂肪酸检测方法,该方法比同行中常用的方法存在以下优势:需要样品量较少、灵敏度高、检出限低、可用于微量或痕量分析、数据准确。 脂肪酸检测(气相色谱质谱联用法) 一、实验原理 科标技术研发中心参照国标及各种文献将脂肪酸衍生化成脂肪酸甲酯,使用十九酸内标,用正己烷提取后稀释后用气相色谱质谱联用仪,外标法结合内标法定量分析。 二、仪器和试剂 Thermo Trace1310气相色谱质谱联用仪,HH-4数显恒温水浴锅;盐酸、甲醇、氯仿为分析纯试剂,正己烷为色谱纯试剂。 三、试验方法 1、样品提取 称取适量样品,加入4mL的甲醇/CH2Cl2(1:3)混合溶液,摇匀;恒温在30℃

环氧大豆油

环氧大豆油 【导读】环氧大豆油和大豆油一样吗?环氧大豆油可不可以食用?环氧大豆油的具体应用是哪些?针对环氧大豆油怎么辨别好坏?环氧大豆油有哪些特性,让妈网带你一探究竟。 环氧大豆油,不可食用,以豆油和双氧水为主要原料为原料合成的一种化工产品,它无味、无毒、色浅透明度高,主要成分为不饱和甘油脂肪酸酯(如环氧亚油酸酯、环氧油酸酯等)混合物,属于工业用油的一种,属于化学物质,含有微量的色素、磷脂、胶质等杂质。在常温下为浅黄色大豆油味粘稠透明油状液体,沸点150℃,粘度325mpa.S,可溶于烃类、酮类、酯类、高级醇等有机溶剂,主要应用于特种油墨、油漆、涂料、合成橡胶以及液体复合稳定剂等,可与PVC树脂相容,其具有挥发性低、迁移性小的特性,同时具有优良的热稳定性和光稳定性,耐水性和耐油性也好,可赋予制品良好的机械强度、耐候性及电性能,是国际认可的用于食品包装材料的化工艺助剂。 环氧大豆油怎么样 简称ESO,它的组成为亚油酸(51%~57%)、油酸(32%~36%),棕榈酸(2.4%~2.8%),硬脂酸(4.4%~4.6%)等。浅黄色油状液体,相对密度0.989。环氧值6.6%。凝固点一8℃。沸点150 ℃(0.53kPa):折射率1.4716。黏度(25℃)325mP.a?s。闪点(开杯)280℃。溶于烷烃和大多数有机溶剂,稍微溶于水。可以与聚氯乙烯、氯化橡胶、丁腈橡胶相容。挥发性小、迁移性低、耐热性、耐光性、耐候性优良。无毒。可生物降解。 环氧大豆油作为一种聚氯乙烯稳定剂润滑剂兼辅助增塑剂,其无色无毒的特性,也让它顺利通过所有环保检测。同时,环氧大豆油还有光敏性较强、涂膜性能良好、分子链柔性好,粘度较低等特性。 1、无毒性 通过美国FDA食品添加物规则“181.27及175.300”的要求。适合用于制成食品包装袋或医疗用材料。 2、低挥发性、耐抽出性及耐移行性 B-22及B-22D分子量约1000做为PVC之可塑剂,其挥发性为DOP的1/5,耐溶剂性远优于DOP。这些特性有利于其用于制作农膜等。在PVC制品生产过程中加入环氧大豆油,不仅对PVC有良好的增塑作用,而且可以迅速吸收因热和光降解出来的氯化氢,从而阻滞PVC 的连续分解。使PVC链上的活泼氯原子得到稳定,起到稳定剂的作用。环氧大豆油与聚酯类增塑剂并用,可以减小聚酯类增塑剂的迁移。与金属热稳定剂并用有显著的协同效应,可最大限度地增大稳定效果,这时金属皂类的用量可减少到原来单独使用所需总量的三分之一。因为本品与PVC的相溶性跟DOP相当,且其增塑效率优于DOP,使用本品能减少制品中总增塑剂的用量。这不仅降低了成本,同时提高了产品的技术指标,如增强产品的耐冲击强度,透明性,印刷性,焊接性等。 3、耐候性、耐热性特优 环氧大豆油沸点为150℃,为一般我们不易达到的温度。所以将环氧大豆油应用于PVC制品中,与金属安定剂共用,具有协合作用,同时可以有效提高PVC树脂的耐候性、耐热性、透明性,还可减少金属安定剂用量从而降低成本。 环氧大豆油又在环保意识提高的今日,B-22与Ca-Zn安定剂,为无公害、无毒性之配方,可取代Cd-Ba-Zn或铅系安定剂。在难燃配方中,添加B-22,则安定性大为改善。 环氧大豆油注意事项 尽管环氧大豆油无毒,但是切记环氧大豆油不是食用油,它是工业用油,只可以用于工业用途。环氧大豆油虽然以大豆油为原料,但是其是在大豆油氧化之后的产品,是一种工业添

脂肪酸甲酯分析色谱柱的选择

作者 Frank David Research Institute for Chromatography President Kennedy Park 20B-8500 Kortrijk, Belgium Pat Sandra University of Gent Krijgslaan 281 S4,B-9000 Gent Belgium Allen K. Vickers Agilent Technologies, Inc.91 Blue Ravine Road Folsom, CA 95630-4714USA 摘要 食品中的脂肪酸甲酯(FAME )的分析对食品的表征过程是十分重要的,正常情况下脂肪酸甲酯的分析使用涂渍极性固定相色谱柱,例如聚乙二醇或氰丙基聚硅氧烷固定相,这种固定相可以按脂肪酸的碳数、不饱和度、顺反构象以及双键的位置对它们进行分离。 脂肪酸甲酯分析色谱柱的选择应用报告 本应用报告比较三种不同固定相对脂肪酸甲酯的分离的情况。聚乙二醇柱对不太复杂的样品可以得到很好的分离;但不能分离顺-反异构体的样品。而中等极性的氰丙基聚硅氧烷柱(DB23)对复杂的FAME 混合物可以得到很好的分离,对一些顺反异构体也可以得到分离; 要使顺反异构体分离的更好,就要使用更高极性的HP-88 氰丙基色谱柱。 前言 FAME 的分析用于食品中脂类部分含量的表征,也是食品分析中极为重要的一项内容,脂类主要包括甘油酸酯,它们是一个甘油分子和三个脂肪酸分子的酯,绝大多数食用脂肪和油主要含有的脂肪酸是从月桂酸(十二碳酸)到花生酸(二十碳酸),除直链饱和脂肪酸外,也有支链脂肪酸、单不饱和脂肪酸、双不饱和脂肪酸以及多不饱和脂肪酸。表1 是最重要的脂肪酸 及其的缩写。 食品分析

表面活性剂

表面活性剂 1·表面活性剂在浓度很低时,能显著降低溶剂(一般是水)的表(界)面张力,从而明显改变体系的表(界)面性质和状态的物质称为表面活性剂。 2·临界胶束浓度 形成表面活性剂完整胶束的最低浓度叫做表面活性剂的临界胶束浓度。 3·双亲结构 在同一个表面活性剂分子中同时具有亲油基和亲水基。 4·乳化 互不相溶的两种液体中一种液体以微小微粒分散于另一种液体中的现象叫乳化。5·分散 一种固体以微小粒子的形式均匀的散布于另一种液体中的现象叫分散。 6·浊点 浊点又叫雾点。非离子表面活性剂的特性。(含醚键或酯基的)非离子表面活性剂在水中的溶解度随温度升高而降低,当达到一定温度时溶液开始变浑浊,这一温度叫浊点。 7·等电点 等电点是两性表面活性剂的特性。两性表面活性剂也有一个等电区域,即正、负离子离解度相等时溶液的pH值范围,这就是两性表面活性剂的等电点。8·HLB值 表面活性剂为具有亲水基团和亲油基团的两亲分子,表面活性剂分子中亲水基和亲油基之间的大小和力量平衡程度的量,定义为表面活性剂的亲水亲油平衡值。 9、HLB基团数 如果HLB值是由表面活性剂分子中各种结构基团贡献的总和,则每个基团对HLB值的贡献可用数值表示,此数值称为HLB基团数 10·乙氧基化 在酸性或者碱性催化剂下,向有机分子内引入乙氧基的反应,称为乙氧基化反应11·润湿性 润湿性是固体界面由固气界面转变为固液界面的现象。 定义:润湿作用固体表面的一种流体被另一种流体所取代的过程。 12·克拉夫(特)krafft点 克拉夫特点(Krafft Point)。离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某一特定温度时,溶解度急剧陡升,把该温度称为克拉夫特点(又称临界溶解温度)。

环氧大豆油的生产工艺及发展前景

环氧大豆油的生产工艺及发展前景 姓名:邓欣韬班级:1203 学号:12140122 摘要:环氧大豆油是以可再生植物资源大豆油为主要原料制备的化工产品,是一种广泛应用于聚氯乙烯树脂(PVC)的绿色环保的增塑剂兼稳定剂,具有优异的光、热稳定性,且相容性好、迁移性小、挥发性低,几乎适用于所有的软、硬PVC 制品中,尤其是食品、药品的包装材料以及儿童玩具等环保产品。环氧大豆油是传统的主增塑剂邻苯二甲酸盐类增塑剂的理想替代品之一。同时,它在其它塑料、涂料、粘合剂等方面的应用也越来越广泛。环氧大豆油的合成工艺分为溶剂法和无溶剂法。溶剂法存在溶剂回收困难、生产周期长、产品质量差、成本高、环境污染大等缺点,发展速度缓慢。目前工业上采用无溶剂法生产环氧大豆油,并以浓硫酸作为催化剂,产品存在环氧值低于 6.0%,产品颜色深,生产不稳定等缺点,达不到高品质产品的要求。本论文通过正交试验,优选配方和工艺,得到高环氧值的环氧大豆油。国产环氧大豆油的色泽较深,无法与进口产品竞争。环氧大豆油颜色来源于原料大豆油中的色素。本论文系统研究了环氧大豆油的脱色工艺,讨论了脱色机理、脱色介质、生产工序等对产物颜色的影响,使环氧大豆油色泽(Pt-Co 比色)低于 150 号,达到无色透明。论文还研究了环氧大豆油生产工艺优化及产业化,将生产工艺与装备有机结合起来,使环氧大豆油的生产规模由2000吨/年扩大至5000 吨/年,对反应过程、分离工艺(如水洗、蒸馏、过滤等)进行优化,缩短了生产周期,提高产品质量,降低了能耗和生产成本。关键词:环氧大豆油;工艺优化;脱色;产业化 1.1 前言 增塑剂是指增加塑料的可塑剂,改善聚合物在成型加工时的流动性,并使制品具有柔韧性的有机物质。它通常是一些高沸点、难以挥发的粘稠液体或低熔点的固体,一般不与塑料发生化学反应,被增塑材料的基本化学性质不会改变[1]。制品中添加增塑剂,可以削弱聚合物分子间的范德华力,从而增加聚合物分子链的移动性,降低聚合物分子链的结晶性,亦即增加了聚合物的可塑性,表现为聚合物的熔融粘度下降,制品的弹性模量和玻璃化转变温度下降,而伸长率、挠曲性和柔韧性则提高,流动性增加。增塑剂是现代塑料工业最大的助剂品种,种类繁多,作为商品生产的增塑剂有 500 多种,包括邻苯二甲酸酯、脂肪族二元

有机常用缩写

有机化学合成常见缩写 % %de 非对映体过量百分比(不对称合成术语) %ee 对映体过量百分比(不对称合成术语) A A/MMA 丙烯腈/甲基丙烯酸甲酯共聚物 AA 丙烯酸 AAS 丙烯酸酯-丙烯酸酯-苯乙烯共聚物 ABFN 偶氮(二)甲酰胺 ABN 偶氮(二)异丁腈 ABPS 壬基苯氧基丙烷磺酸钠 Ac 乙酰基 acac 乙酰丙酮基 AIBN 2,2'-二偶氮异丁腈 aq. 水溶液 B BAA 正丁醛苯胺缩合物 BAC 碱式氯化铝 BACN 新型阻燃剂 BAD 双水杨酸双酚A酯 BAL 2,3-巯(基)丙醇 9-BBN 9-硼二环[3.3.1]壬烷 BBP 邻苯二甲酸丁苄酯 BBS N-叔丁基-乙-苯并噻唑次磺酰胺 BC 叶酸 BCD β-环糊精 BCG 苯顺二醇 BCNU 氯化亚硝脲 BD 丁二烯 BE 丙烯酸乳胶外墙涂料 BEE 苯偶姻乙醚 BFRM 硼纤维增强塑料 BG 丁二醇 BGE 反应性稀释剂 BHA 特丁基-4羟基茴香醚 BHT 二丁基羟基甲苯 BINAP (2R,3S)-2.2'-二苯膦-1.1'-联萘,亦简称为联二萘磷,BINAP是日本名古屋大学的Noyori(2001年诺贝尔奖)发展的一类不对称合成催化剂 BL 丁内酯 BLE 丙酮-二苯胺高温缩合物 BLP 粉末涂料流平剂 BMA 甲基丙烯酸丁酯

BMC 团状模塑料 BMU 氨基树脂皮革鞣剂 BN 氮化硼 Bn 苄基 BNE 新型环氧树脂 BNS β-萘磺酸甲醛低缩合物 BOA 己二酸辛苄酯 BOC 叔丁氧羰基(常用于氨基酸氨基的保护)BOP 邻苯二甲酰丁辛酯 BOPP 双轴向聚丙烯 BP 苯甲醇 BPA 双酚A BPBG 邻苯二甲酸丁(乙醇酸乙酯)酯 BPF 双酚F BPMC 2-仲丁基苯基-N-甲基氨基酸酯 BPO 过氧化苯甲酰 BPP 过氧化特戊酸特丁酯 BPPD 过氧化二碳酸二苯氧化酯 BPS 4,4’-硫代双(6-特丁基-3-甲基苯酚)BPTP 聚对苯二甲酸丁二醇酯 Bpy 2,2'-联吡啶 BR 丁二烯橡胶 BRN 青红光硫化黑 BROC 二溴(代)甲酚环氧丙基醚 BS 丁二烯-苯乙烯共聚物 BS-1S 新型密封胶 BSH 苯磺酰肼 BSU N,N’-双(三甲基硅烷)脲 BT 聚丁烯-1热塑性塑料 BTA 苯并三唑 BTX 苯-甲苯-二甲苯混合物 Bu 正丁基 BX 渗透剂 BXA 己二酸二丁基二甘酯 BZ 二正丁基二硫代氨基甲酸锌 Bz 苯甲酰基 C c- 环- CA 醋酸纤维素 CAB 醋酸-丁酸纤维素 CAM 甲基碳酰胺 CAN 硝酸铈铵 CAN 醋酸-硝酸纤维素 CAP 醋酸-丙酸纤维素

大豆油检测报告

GB 1535-2003 大豆油 1 范围 本标准规定了大豆油的术语和定义、分类、技术质量要求、检验方法及规则、标签、包装、贮存和运输等要求。 本标准适用于以大豆为原料加工的大豆油。 大豆原油的质量指标适用于大豆原油的贸易。 2 规范性引用文件 下列标准中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,使用本标准的各方应研究是否可以使用下列标准的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 2716 食用植物油卫生标准 GB 2760 食品添加剂使用卫生标准 GB 7718 食品标签通用标准 GB/T5490 粮食、油料及植物油脂检验一般规则 GB/T5524 植物油脂检验扦样、分样法 GB/T5525 植物油脂检验透明度、色泽、气味、滋味鉴定方法 GB/T5526 植物油脂检验比重测定法 GB/T5527 植物油脂检验折光指数测定法 GB/T5528 植物油脂水分及挥发物含量测定法 GB/T5529 植物油脂检验杂质测定法 GB/T5530 动植物油脂酸值和酸度测定 GB/T5531 植物油脂检验加热试验 GB/T5532 植物油脂碘值测定 GB/T5533 植物油脂检验含皂量测定法 GB/T5534 动植物油脂皂化值的测定法 GB/T5535 植物油脂检验不皂化物测定法 GB/T5538 油脂过氧化值测定 GB/T5539 植物油脂检验油脂定性试验 GB/T5009.37 食用植物油卫生标准的分析方法 GB/T15687 油脂试样制备 GB/T17374 食用植物油销售包装 GB/T17376 动植物油脂脂肪酸甲酯制备 GB/T17377 动植物油脂脂肪酸甲酯的气相色谱分析 GB/T17756 色拉油通用技术条件附录A 附录B CODEX-STAN 210-1999 指定的植物油法规标准

气相色谱-质谱联用法分析羊脂油的脂肪酸成分

气相色谱-质谱联用法分析羊脂油的脂肪酸成分 摘要目的采用气相色谱-质谱联用(GC-MS)对羊脂油的脂肪酸成分进行分析,为其质量标准的制订提供实验依据。方法将羊脂油样品甲酯化后,用GC-MS对其脂肪酸类成分进行分析,面积归一化法测定各成分的相对含量。结果羊脂油中含16种脂肪酸成分,包括不饱和脂肪酸9种,占54.48%,主要为油酸(34.45%)、反式9-十八碳烯酸(10.16%),还有少量的亚油酸(1.37%);饱和脂肪酸有7种,占40.13%,主要为棕榈酸(21.59%)、硬脂酸(13.49%),肉豆蔻酸(2.15%)。结论该结果确定了羊脂油的成分组成,有助于对其进行进一步的研究。 【关键词】羊脂油脂肪酸气相色谱-质谱联用 羊脂油来源于牛科动物山羊Capra hircus Linnaeus或绵羊Ovis aries Linnaeus的脂肪油,甘、温,具有补虚、润燥、祛风、解毒的功效,主要治疗虚劳羸瘦、久痢、口干便秘、肌肤皲裂等症[1]。用本品炮制药材能够达到“增效”的目的,如羊脂油炙淫羊藿,可以增强淫羊藿的温肾助阳作用[2]。 羊脂油作为常用炮制辅料,尚未制订其药用质量标准,仅在食品标准中对其外观形状等制订了一些理化指标限度要求。为了规范羊脂油的使用,本研究首次采用气相色谱-质谱联用(GC-MS)技术对其脂肪酸类成分进行分析,以期对其质量标准研究提供实验数据 1 仪器与材料 Trace GC-MS气质联用色谱仪,FID检测器。 色谱条件:HP-5(0.25 μ m × 30 m, 0.25 mm)毛细管柱;程序升温,初始温度100 ℃,保持5 min,以8 ℃/min升至180 ℃,再以28 ℃/min升至230 ℃;进样口温度250 ℃;载气N2;检测器温度250 ℃;分流比为20∶1;进样量0.1 μl。 质谱条件:离子源为EI;电子能量70 eV;离子源温度200℃;接口温度250℃;溶剂切割4 min;扫描质量范围m/z 35~688;扫描周期0.6 s/dec,用NIST标准质谱库检索。 羊脂油购自北京清真食品公司,经本文作者鉴定为牛科动物绵羊Ovis aries linnaeus的脂肪油。 2 方法与结果 2.1 样品制备取羊脂油样品200 g切成小块,于120℃炼制,待出油量不再增加,去渣取油,备用。 2.2 供试品溶液制备取0.4 g 羊油样品,置于50 ml锥形瓶,加入15 ml 0.5 mol/L的KOH-MeOH溶液,于60 ℃水浴20~30 min,至黄色油珠完全消失为止,冷却后,再加10 ml 14 %的三氟化硼乙醚溶液,水浴5 min,取出冷却后,加入10 ml正己烷和10 ml氯化钠饱和溶液,振摇,取上层溶液备用。 2.3 样品测定对羊脂油样品的总离子流色谱图通过NIST标准质谱库进行检索,并结合相关资料进行人工解析,确认了18种成分,归一化法计算出各峰面积的相对百分含量。见表1。表1 羊脂油的脂肪酸类成分组成 3 讨论

Ce4改性阳离子交换树脂催化环氧化反应的研究-NSFC

离子交换与吸附, 2015, 31(4): 359 ~ 369 ION EXCHANGE AND ADSORPTION 文章编号:1001-5493(2015)04-0359-11 doi:10.16026/https://www.360docs.net/doc/eb4972907.html,ki.iea.2015040359 Ce4+改性阳离子交换树脂催化环氧化反应的研究* 周洁任庆功潘晶晶胡春阳贡肖李为民** 常州大学石油化工学院,常州 213164 摘要:以732#强酸性阳离子交换树脂为载体,采用离子交换法合成了Ce4+改性离子交换树脂催 化剂,考察了Ce4+浓度、吸附温度和pH值等因素对树脂改性的影响,并测试了催化剂的重复 使用性能。结果表明,当Ce4+浓度为0.1mol/L左右,常温25℃、pH值接近中性时,Ce4+改性 阳离子交换树脂的催化活性最佳,且重复使用6次仍保持较高的催化活性。试验利用红外光谱 (FT-IR)、热重分析 (TG) 和能谱仪 (EDS) 等对改性树脂的结构进行分析表征,结果表明,改 性后的树脂中氢元素大部分被Ce4+离子所替代,其酸性和稳定性均有所提高。将Ce4+改性732# 阳离子交换树脂作为催化剂应用于生物柴油环氧化反应中,产物环氧值较高。 关键词:改性;离子交换树脂;环氧化;催化活性;结构表征 中图分类号:TQ 645 文献标识码:A 1 前言 植物油脂的环氧化反应是在催化剂作用下,利用过氧羧酸将植物油分子中的碳碳双键氧化,使其双键断裂与一个氧原子结合转化为环氧键,从而降低植物油分子的饱和度,提高植物油的氧化安定性[1]。目前,在环氧化工艺领域,无溶剂法生产仍然是以浓硫酸、磷酸等液体酸为催化剂,反应稳定性差,易腐蚀设备,后处理繁琐[2-4]。随着人们对植物油脂环氧化工艺研究的深入,开发绿色环保、价格低廉、催化活性高的固体强酸催化剂,尤其是以强酸型阳离子交换树脂和负载型超强酸为催化剂的无溶剂法催化工艺[5-7]逐渐被人们所重视。 强酸型阳离子交换树脂常带有-SO3H、-CH2SO3H等官能团,极易在溶液中离解出H+而显示出强酸性。树脂本体所含的-SO3-等负电基团能吸附溶液中的其他阳离子,可使树脂中的H+与溶液中的阳离子发生互换。离子交换树脂具有较好的膨胀性和疏水性,低温下较好的反应活性和选择性,以及反应条件温和、易分离、无副产物及可循环使用等优点[8-9],是一种理想的新型绿色催化剂。文献记载[10-13],阳离子交换树脂直接用于环氧脂肪酸甲酯的制备,催化活性较低。Park等[14]使用离子交换树脂为催化剂,在蓖麻油、过氧乙酸与甲 * 收稿日期:2015年4月17日 基金项目:国家自然科学基金 (11304026); 江苏省科技支撑计划 (BE2012822). 作者简介:周洁(1989~), 女, 河南省人, 硕士研究生. ** 通讯联系人: E-mail: liweimin@https://www.360docs.net/doc/eb4972907.html,

相关文档
最新文档