计算机仿真实验 用凯特摆测重力加速度

计算机仿真实验   用凯特摆测重力加速度
计算机仿真实验   用凯特摆测重力加速度

实验1 计算机仿真实验 用凯特摆测重力加速度

一、 实验目的

1. 学习凯特摆的实验设计思想和技巧。

2. 掌握一种比较精确的测量重力加速度的方法。

二、 实验内容

1. 仿真仪器调节;

2. 测量和记录;

3. 数据处理;

三、 实验原理

设一质量为m 的刚体,其重心G 到转轴O 的距离为h ,绕O 轴的转动惯量为I ,当摆幅很小时,刚体绕O 轴摆动的周期T 为:

2T =

式中g 为当地的重力加速度,I G 为复摆绕通过重心G 的轴的转动惯量,

对比单摆周期的公式2T =,可得

2G I mh l mh +=

称为复摆的等效摆长。因此只要测出周期和等效摆长便可求得重力加速度。

图?1-1 凯特摆示意图

上图是凯特摆摆杆的示意图,A 和B 是大摆锤,C 和D 是小摆锤,G 为重心,1h 是重心到刀口1的距离,2h 是重心到刀口2的距离,l 是两刀口之间的距离。

在实验中当两刀口位置确定后,通过调节A 、B 、C 、D 四摆锤的位置可使正、倒悬挂时的摆动周期1T 和2T 基本相等。由式可得

12T =

22T =

其中T 和h 为摆绕O 轴的摆动周期和O 轴到重心G 的距离。当12T T ≈时,12h h l +=即为

A B

等效摆长。由上面二式消去G I ,可得:

()22

222121214222T T T T a b g l h l π+-=+=+-

此式中,l 、T 1、T 2都是可以精确测定的量,而h 1则不易测准。由此可知,式中第一项a

可以精确求得,而第二项b 则不易精确求得。但当12T T ≈以及12h l

-的值较大时,b 项的值

相对项是非常小a 的,b 这样项的不精确对测量结果产生的影响就微乎其微了。

四、 实验仪器

本实验为仿真实验,在仿真大学物理实验软件平台上进行。实验中用到的主要仪器有:凯特摆、多用数字测试仪、光电检测探头。

五、 实验数据及处理

1. 测量数据:

72.620.05cm l =± ()120.030.05cm h =±

2. 平均值:

(

)22

222121214222T T T T a b g l h l π+-=+=+-

224.02410s cm a -=? 522.910s b -=-? 2981.8cm g =

3. 不确定度 ()121

2T T T =

+ ()u T =()222222*********T T T T T g l h l l π+-=+≈-

()()0.7%

u g u g g

τ=

=

()()2981.80.07%0.7cm s u g g u g τ==?= 4. 实验结果 ()2981.80.7cm g =±

六、 实验讨论

利用单摆、复摆也能测量重力加速度,但凯特摆设计精妙,利用物理摆的共轭点避免和

减少了某些不易测准的物理量对实验结果的影响,提高了测量重力加速度的精度。由这个实验看到,提高测量精度并不一定需要高、精、尖的贵重仪器,只要设计巧妙,也能开发出高精度、低成本的实验项目来,这种设计思想非常值得学习。

七、 思考题

1、凯特摆测重力加速度,在实验设计上有什么特点? 虽然凯特摆仍为复摆,但采用可倒摆的设计, 使得

()22

222121214222T T T T a b g l h l π+-=+=+-

此式中,l 、T 1、T 2都是可以精确测定的量,而h 1则不易测准。由此可知,式中第一项a

可以精确求得,而第二项b 则不易精确求得。但当12T T ≈以及12h l

-的值较大时,b 项的值

相对项是非常小a 的,b 这样项的不精确对测量结果产生的影响就微乎其微了,从而大大提高了g 的测量精度。

2、结合误差计算,你认为影响凯特摆测g 精度的主要因素是什么? 从数据处理发现,只要实验做到正、倒周期相近,以及12h l

-的值较大时,影响本实

验测g 精度的主要因素就在于l 的测量。

用凯特摆测量重力加速度实验报告

用凯特摆测量重力加速度 实验目的:学习凯特摆的实验设计思想和技巧,掌握一种比较精确的测量重力加速度的方法。 实验原理:1、当摆幅很小时,刚体绕O轴摆动的周期: 刚体质量m,重心G到转轴O的距离h,绕O轴的转动惯量I,复 摆绕通过重心G的转轴的转动惯量为I G 。 当G轴与O轴平行时,有I=I G+mh2 ∴ ∴复摆的等效摆长l=( I G+mh2 )/mh 2、利用复摆的共轭性:在复摆重心G旁,存在两点O和O′,可使 该摆以O为悬点的摆动周期T?与以O′为悬点的摆动周期T?相同, 可证得|OO′|=l,可精确求得l。 3、对于凯特摆,两刀口间距就是l,可通过调节A、B、C、D四摆 锤得位置使正、倒悬挂时得摆动周期T?≈T?。 ∴4π2/g=(T?2+T?2)/2l + (T?2-T?2)/2(2h?-l) = a + b 实验仪器:凯特摆、光电探头、米尺、数字测试仪。 实验内容:1、仪器调节 选定两刀口间得距离即该摆得等效摆长l,使两刀口相对摆杆基本 对称,并相互平行,用米尺测出l的值,粗略估算T值。 将摆杆悬挂到支架上水平的V形刀承上,调节底座上的螺丝,借 助于铅垂线,使摆杆能在铅垂面内自由摆动,倒挂也如此。 将光电探头放在摆杆下方,让摆针在摆动时经过光电探测器。

让摆杆作小角度摆动,待稳定后,按下reset钮,则测试仪开始自 动记录一个周期的时间。 2、测量摆动周期T?和T? 调整四个摆锤的位置,使T?和T?逐渐靠近,差值小于,测量正、 倒摆动10个周期的时间10T?和10T?各测5次取平均值。 3、计算重力加速度g及其标准误差σg 。 将摆杆从刀承上取下,平放在刀口上,使其平衡,平衡点即重心G。 测出|GO|即h?,代入公式计算g。 推导误差传递公式计算σg 。 实验数据处理:1、l的值 l=?(l?+l?+l?)= σ=,u A =σ/=, ∴ΔA =t P ?u A =*= u B=ΔB /C=3= ∴u L == T e == 2、T?和T?的值 T?= σ=*10ˉ?s,u A =σ/=*10ˉ?s ∴ΔA =t P ?u A =*=*10ˉ?s u B=ΔB /C=3=*10ˉ?s ∴u T1 ==*10ˉ?s T?= σ=*10ˉ?s,u A =σ/=*10ˉ?s ∴ΔA =t P ?u A =*=*10ˉ?s u B=ΔB /C=3=*10ˉ?s

大学物理重力加速度的测定实验报告范文.doc

大学物理重力加速度的测定实验报告范 文 一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃

杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0 (1) nsinα=mω2x (2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g. ∴ g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法五、用圆锥摆测量 所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t 摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得: g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值.

重力加速度测量设计性试验

重力加速度测量(设计性实验) 【实验目的】 (1)推导单摆测量重力加速度的公式。 (2)掌握单摆测量重力加速度实验的实验设计方法及验证方法。 (3)掌握间接测量量不确定度的计算方法。 (4)了解单摆测量重力加速度实验的主要误差来源。 (5)估算实验仪器的选取参数并设计实验数据记录表格。 【设计实验】 设计性实验的设计过程主要有以下几步: (1)根据待测的物理量确定出实验方法(理论依据),推导出测量的数学公式;判定方法误差给测量结果带来的影响。 (2)根据实验方法及误差设计要求,分析误差来源,确定所需要采用的测量仪器(包括量程、精度等)以及测量环境应达到的要求(如空气、电磁、振动、温度、海拔高度等)。 (3)确定实验步骤、需要测量的物理量、测量的重复次数等。 (4)设计实验数据表格及要计算的物理量。 (5)实验验证。要用测得的实验数据,采用误差理论来验证实验结果。若不符合测量要求,则需对上述步骤中的有关参数做出适当调整并重做实验,据测得的实验数据进行实验验证,以此类推直到符合要求为止。 设计实验的原则应在满足设计要求的前提下,尽可能选用简单、精度低的仪器,并能降低对测量环境的要求,尽量减少实验测量次数。 【设计要求】 (1)测定本地区的重力加速度,要求重力加速度的相对不确度小于0.5%,即 g 0.5u g ≤%。确 定所需仪器的量程和精度,以及测量参数(摆长和摆动次数)。 (2)本实验是测量重力加速度的设计性实验,但考虑到设计难度、仪器资源的限制等因素,规定其实验方法采用单摆法。 (3)可用仪器有:钢卷尺(1 mm/2 m ,表示最小分度值为1 mm ,量程为2 m ,下同)、钢直尺(1 mm/1 m )、游标卡尺(0.02 mm/20 cm )、普通直尺(1 mm/20 cm )、电子秒表(0.01 s )、单摆实验仪(含摆线、摆球等)。 【实验内容】 (1)原理分析。写出单摆法测量公式完整的推导过程及近似要求,并画出原理图(查阅相关书籍及网站)。 (2)误差分析。分析实验过程中的主要误差来源并估算。 (3)不确定度的推导与计算。 (4)估算实验参数(摆长和摆动次数)。 (5)设计实验步骤与数据表格。 (6)实验与验证。 【设计提示】

测量重力加速度实验Acceleration due to gravity

Acceleration due to gravity 1. Aim: To measure ‘g’, the acceleration due to gravity using a simple pendulum. 2. Theory: A simple pendulum consists of a particle of mass m, attached to a frictionless pivot P by a cable of length L and negligible mass. When the particle is pulled away from its equilibrium position by an angle θand released, it swings back and forth as Figure 1 shows. By attaching a pen to the bottom of the swinging particle and moving a strip of paper beneath it at a steady rate, we can record the position of the particle as time passes. The graphical record reveals a pattern that is similar (but not identical) to the sinusoidal pattern for simple harmonic motion. Figure 1 A simple pendulum swinging back and forth about the pivot P. If the angle θis small, the swinging is approximately simple harmonic motion. Gravity causes the back-and-forth rotation about the axis at P. The rotation speeds up as the particle approaches the lowest point and slows down on the upward part of the swing. Eventually the angular speed is reduced to zero, and the particle swings back. If the angle of oscillation is large, the pendulum does not exhibit simple harmonic motion. The motion of a simple pendulum is nearly simple harmonic. The periodic time T is related to the length L of the pendulum and the local acceleration due to gravity g. 2 T=or 2 2 4 T L g π ?? = ? ?? If we measure the periodic time T for different lengths L, and plot T2 versus L,

(完整版)重力加速度的测定实验报告

重力加速度的测定 一,实验目的 1,学习秒表、米尺的正确使用 2,理解单摆法和落球法测量重力加速度的原理。 3,研究单摆振动的周期与摆长、摆角的关系。 4,学习系统误差的修正及在实验中减小不确定度的方法。 二,实验器材 单摆装置,停表(精度为0.01s),钢卷尺(精度为1mm),游标卡尺(精度为0.02mm) 三,实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 f =F sinθf θ T=F cosθ F= mg L 单摆原理图

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 L x = θsin f=θsin F =-L x mg - =-m L g x 由f=ma ,可知a=- L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a = m f =-ω2 x 可得ω=l g ,即02 22=+x dt x d ω,解得)cos(0?ω+=t A x ,0A 为振幅,?为初相。 应有[])2cos())((cos )cos(000?πω?ω?ω++=++=+=t A T t A t A x 于是得单摆运动周期为:T =ωπ 2=2πg L 即 T 2=g 2 4πL 或 g=4π22 T L 又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为 22 21 4T d L g +=π 四,实验步骤 1,数据采集 (1)测量摆长L 用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长 d l L 2 1+= (2)测量摆动周期 用手把摆球拉至偏离平衡位置约? 5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。 (3)将所测数据列于下表中,并计算出摆长、周期及重力加速度。

计算机仿真实验用凯特摆测重力加速度

实验1 计算机仿真实验 用凯特摆测重力加速度 一、 实验目的 1. 学习凯特摆的实验设计思想和技巧。 2. 掌握一种比较精确的测量重力加速度的方法。 二、 实验内容 1. 仿真仪器调节; 2. 测量和记录; 3. 数据处理; 三、 实验原理 设一质量为m 的刚体,其重心G 到转轴O 的距离为h ,绕O 轴的转动惯量为I ,当摆幅很小时,刚体绕O 轴摆动的周期T 为: 式中g 为当地的重力加速度,I G 为复摆绕通过重心G 的轴的转动惯量, 对比单摆周期的公式 2T =,可得 称为复摆的等效摆长。因此只要测出周期和等效摆长便可求得重力加速度。 图1-1 凯特摆示意图 上图是凯特摆摆杆的示意图,A 和B 是大摆锤,C 和D 是小摆锤,G 为重心,1h 是重心到刀口1的距离,2h 是重心到刀口2的距离,l 是两刀口之间的距离。 在实验中当两刀口位置确定后,通过调节A 、B 、C 、D 四摆锤的位置可使正、倒悬挂时的摆动周期1T 和2T 基本相等。由式可得 其中T 和h 为摆绕O 轴的摆动周期和O 轴到重心G 的距离。当12T T ≈时,12h h l +=即为等效摆长。由上面二式消去G I ,可得: 此式中,l 、T 1、T 2都是可以精确测定的量,而h 1则不易测准。由此可知,式中第一项a 可以精确求得,而第二项b 则不易精确求得。但当12T T ≈以及12h l -的值较大时,b 项的值 相对项是非常小a 的,b 这样项的不精确对测量结果产生的影响就微乎其微了。 四、 实验仪器 本实验为仿真实验,在仿真大学物理实验软件平台上进行。实验中用到的主要仪器有:凯特摆、多用数字测试仪、光电检测探头。 五、 实验数据及处理 A B

气垫导轨测重力加速度 大学物理实验

气垫导轨测重力加速度 【试验目的】: 1.研究测重力加速度的方法; 2.测量本地区的重力加速度。 【实验原理】: 当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨上可以静止,或以一定的速度作匀速直线运动。在滑块上装一与滑块运动方向严格平行、宽度为的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电门的速度成反比,测出挡光板的宽度L和遮光时间t,则滑块通过光电门的平均速度为: V=L/t (1-1) 若挡板很小,则在挡光范围内滑块的速度变化也很小,故可以把平均速度看成是滑块经过光电门的瞬时速度。挡板越小,则平均速度越准确地反映该位置上滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速度的测量值与挡板的大小无关。 若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块通过相距S的2个光电门的始末速度和V1和V2则滑块的加速度: 2as=v12–v22 (1-2) 将式(1-1)代入(1-2)中 得: 2as=L2(1/t22-1/t12) (1-3) 其原理如图1. 气垫导轨与水平面的夹角为α 则 a=g*ginα. (1-4) 【待测物理量】: V〈物体运动速度〉、a〈物体运动加速度〉、g〈本地区的加速度〉、α〈气垫导轨与水平面的夹角〉、Δt〈物体在两光电门之间的运动时间〉. 【实验仪器及其使用介绍】: 气垫导轨、数字毫秒计、滑块、游标卡尺、垫块。 一、气垫导轨 气垫导轨是一种现代化的力学实验仪器。实物如下图所示:

实验2 重力加速度的测量

实验3 重力加速度的测量(单摆法) 单摆实验有着悠久历史,当年伽利略在观察比萨教堂中的吊灯摆动时发现,摆长一定的摆,其摆动周期不因摆角而变化,因此可用它来计时,后来惠更斯利用了伽利略的这个观察结果,发明了摆钟。 本实验是用经典的单摆公式测量重力加速度g ,对影响测量精度的因素进行分析,学习如何改进测量方法,以进一步提高测量精度。 【目的要求】 1、用单摆测定动力加速度; 2、学习使用计时仪器(停表、光电计时器); 3、学习在直角坐标纸上正确作图及处理数据; 4、学习用最小二乘法作直线拟合。 【仪器用具】 单摆装置,带卡口的米尺,游标卡尺,电子停表,光电计时器。 【实验原理】 把一个金属小球拴在一根细长的线上,如图1所示。如果细线的质量比小球的质量小很多,而球的直径又比细线的长度小很多,则此装置可看做是一根不计质量的细线系住一个质点,这就是单摆。略去空气的阻力和浮力以及线的伸长不计,在摆角很小时,可以认为单摆 作简谐振动,其振动周期T 为 g l T π 2= ,224T l g π= (1) 式中l 是单摆的摆长,就是从悬点O 到小球 球心的距离,g 是重力加速度。因而,单摆周期 T 只与摆长l 和重力加速度g 有关。如果我们测量 出单摆的l 和T ,就可以计算出重力加速度g 。 【实验内容】 1、固定摆长,测定g 。 (1)测定摆长(摆长l 取100cm 左右)。 图1 ①先用带刀口的米尺测量悬点O 到小球最低点A 的距离1l (见图1),如下所列: 再估计1l 的极限不确定l e 1,计算出标准不确定度31 1l l e =σ。 ②先用游标卡尺多次测量小球沿摆长方向的直径d (见图4-1),如下所列:

用凯特摆测量重力加速度

实验题目:用凯特摆测量重力加速度 姓名:***学号:20*********专业班级:****** 实验目的:学习凯特摆的实验设计思想和技巧,掌握一种比较精确地测量重力加速度的方法。 实验仪器:凯特摆、光电探头、米尺、VAFN多用数字测试仪。 凯特摆实验原理: 图1复摆示意图 图1是复摆示意图,设一质量为m的刚 体,其重心G到转轴O的距离为h,绕 O轴的转动惯量为I,当摆幅很小时,刚 体绕O轴摆动的周期T为: (1) 式中g为当地的重力加速度. 设复摆绕通过重心G的轴的转动惯量为 I G ,当G轴与O轴平行时,有I=I G +mh2 (2) 代入式(1)得: (3) 对比单摆周期的公式,可得(4) 上式中称为复摆的等效摆长。因此只要测出周期和等效摆长便可求得重力加速度。 上图是凯特摆摆杆的示意图。对凯特摆而言,两刀口间的距离就是该摆的等效摆长l。在实验中当两刀口位置确定后,通过调节A、B、C、D四摆锤的位置可使正、倒悬挂时的摆动周 期T 1 和T 2 基本相等。由公式(3)可得(5)

(6) 其中T 1 和h 1 为摆绕O轴的摆动周期和O轴到重心G的距离。当T 1 ≈T 2 时,h 1 +h 2 =即为等效摆长。由式(5)和(6)消去I 、G ,可得: (7) 此式中,、T 1 、T 2 都是可以精确测定的量,而h 1 则不易测准。由此可知,a项可以精确求得,而b项则不易精确求得。但当T 1 =T 2 以及 |2h 1 - | 的值较大时,b项的值相对a 项是非常小的,这样b项的不精确对测量结果产生的影响就微乎其微了。 实验内容: 1.正确调节仪器,测量凯特摆的等效摆长,并利用(1)式,粗略估算摆动周期T值,以作为调节T 1 ,T 2 的参考。2.调节四个摆锤的位置,使T 1 与T 2 逐渐靠近,当| T 1 -T 2 |≦0.001S时,测量T 1 和T 2 的值。3. 测量,h 1 的值。4.根据上述测量值计算重力加速度g及不确定度u g 。 数据处理:

单摆测重力加速度实验报告

一、实验目的 1.学会秒表、米尺的正确使用。 2.理解单摆法测定重力加速的原理。 3.研究单摆振动的周期与摆长、摆角的关系。 4.学习系统误差的修正及在实验中减小不确定度的方法。 二、实验仪器 单摆装置,停表(精度为0.01s ),钢卷尺(精度为0.05cm ),游标卡尺(精度为0.02mm )。 三、实验原理 单摆的振动周期决定于重力加速度g 和摆长L ,只需要量出摆长L 并测定摆动周期,就能够得到g 。 如图:当θ<5?时,圆弧可近似的看成直线,f 也可 近似的看成沿着这条直线,则有sin θ=x L ,f=Fsin θ= -mg x L =-m g L x 由牛顿第二定律得:a=f m 则有 a=-g L x 令ω=g L x 最终得单摆的运动方程为 X=A cos(ωt +2π+φ) 其中T=2π ω =2π√ g =4π2 L T 考虑到摆 球是有大小的,故g =4π2 L+ d 2T 摆长L 用米尺测量,摆球直径d 用游 标卡尺测量,周期T 用停表测量。 四、实验步骤 1.测量摆长L 。用米尺测量摆线支点与摆球顶点的距离l 。用游标卡尺测量小球的直径d ,则摆长L=l+d 2 。 2.测量摆动周期T 。用手把摆球拉直偏离平衡位置5度左右,让其在

一个垂直面内自由摆动,小球越过平衡位置瞬间开始计时,连续默数 。 100次全振动时间t,T=t 100 3.为了减小误差,重复测量5次将数据记录于下表中。 五、数据记录与处理

六、结果与讨论 兰州的重力加速度g=9.973±0.005m/s2,结果有偏差,原因有以下几点; 1、测量单摆周期时的反应时间。 2、在测量摆线长度时对最后一位数字的估读。 3、环境方面,温度、湿度、空气阻力的变化都会影响实验结果。 4、悬线质量的影响。 5、摆角角度的影响。 七、试验问题 1、直接测量单摆往返一次的时间会受到人的反应时间的影响,通过多次测量求平均值的方法可以减小误差。 2、1 11.4 3、受空气阻力影响摆幅越来越小,但其周期不变;用木球代替铜球时,因木球密度较小,受空气阻力的影响会变大。

重力加速度测量的十种方法

重力加速度测量的十种方法 方法一、用弹簧秤和已知质量的钩码测量 将已知质量为m的钩码挂在弹簧秤下,平衡后,读数为G.利用公式 G=mg得g=G/m. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、用单摆测量(见高中物理学生实验) 方法四、用圆锥摆测量.所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆球n转所用的时间t,则摆球角速度ω=2πn/t 摆球作匀速圆周运动的向心力F=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值. 方法五、用斜槽测量,所用仪器为:斜槽、米尺、秒表、小钢球. 按图2所示装置好仪器,使小钢球从距斜槽底H处滚下,钢球从水平槽底末端以速度v作平抛运动,落在水平槽末端距其垂足为H′的水平地面上,垂足与落地点的水平距离为S,用秒表测出经H′所用的时间t,用米尺测出S,则钢球作平抛运动的初速度v=S/t.不考虑摩擦,则小球在斜槽上运动时,由机械能守恒定律得:mgH=mv2/2.所以g=v2/2H=S2/2Ht2,将所测代入即可求得g值. 方法六、用打点计时器测量.所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 将仪器按图3装置好,使重锤作自由落体运动.选择理想纸带,找出起始点0,数出时间为t的P点,用米尺测出OP的距离为h,其中t=0.02 秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

利用多普勒效应测定重力加速度

Ⅱ-16-C 利用多普勒效应测重力加速度 梅丹兵 21610115 交通学院 E-amil:meidanbing@https://www.360docs.net/doc/ee5255821.html, 摘要:通常情况下物体都是在运动的,因此由于波源的运动或者观察者的运动而导致的多普 勒效应在生活中就随处可见,而其带给人们的应用也是广泛的。本文着重探讨了多 普勒效应在测定重力加速度上面的应用。 关键词:多普勒效应;频率;重力加速度;自由落体 Abstract: Typically, the object is in motion, because of the movement of the sound source and observer, there can be coming into being Doppler effect. We can find Doppler effect easily from our daily life ,and it bring us lots of applications So ,there we are discussing how to use Doppler effect to set out the acceleration of gravity. Key words: Doppler effect; frequency; the acceleration of gravity; free falling body. Ⅰ 引言 在日常生活中我们发现,当高速行驶的火车鸣笛而来时,人们听到的汽笛音调变高;而当火车离去时,人们听到的音调变低。造成这一现象的原因就是声波的多普勒效应。多普勒效应的形成就是因为波源和观察者之间有相对运动,使观察者感到频率变化。由于多普勒效应的存在,同一事件,站在不同的角度或不同的前提条件下看待就会有不同的答案,这就给了我们研究问题的启示。利用多普勒效应,我们可以解决很多看似复杂的问题,现就重力问题就行探究。 Ⅱ 理论知识 Ⅱ.ⅰ多普勒效应 由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应. 多普勒效应的形成可分为两个方面: 一、波源相对介质不动,观察者运动 此时我们得到的观察者接收的频率v '与波源发出的频率v 之间的关系式为: v v u u 0υ±=' 二、观察者相对介质不动,波源运动 此时我们得到的观察者接收的频率v '与波源发出的频率v 之间的关系式为:

大学物理实验报告单摆测重力加速度

——利用单摆测重力加速度 班级: 姓名: 学号: 西安交通大学模拟仿真实验实验报告 实验日期:2014年6月1日 老师签字:_____ 同组者:无 审批日期:_____ 实验名称:利用单摆测量重力加速度仿真实验 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。单摆带动是满足下列公式: 进而可以推出: 式中L 为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g 为重力加速度。如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。 西安交通大学物理仿真实验报告

三、实验内容 1. 用误差均分原理设计单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤. (3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△ 米≈0.05cm;卡尺精度△ 卡 ≈0.002cm;千分尺精度△ 千 ≈0.001cm; 秒表精度△ 秒 ≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s 左右,所以实验人员开,停秒表总的反应时间近似为△ 人 ≈0.2s. 2. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否 达到设计要求. 3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关 系,试分析各项误差的大小. 四、实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)

实验一 自由落体重力加速度的测定

实验一自由落体重力加速度的测定 一、实验目的 1. 通过测定重力加速度,加深对匀加速运动规律的理解: 2. 学习用光电法计时; 3. 学习用落体法测定重力加速度. 二、仪器组成 YJ-LG-3自由落体重力加速度测定仪、YJ-LG-3自由落体重力加速度测定仪专用毫秒计、钢球、卷尺等 三、仪器结构 1. YJ-LG-3自由落体重力加速度测定仪专用毫秒 计面板如图l所示 2. 自由落体测定仪如图2所示 四、实验原理 在重力作用下,物体的下落运动是匀加速直线运 动.可用下列方程来描述: 式中s是在时间t内物体下落的距离.g是重力加速度.如果物体下落的初速度为0,即Vo=0时, 可见若能测得物体在最初t秒内通过的距离S,就可以 估算出g的值,在实验中要严格保证初速度为零有一定 的困难.,故常采用下列方法:实验时,让物体从静止开 始自由下落.如图3所示,设它到达A点的速度为V0. 从A点开始,经过时间t1到达B点,令A、B两点的距 离为S1., 则 若保持上述的初始条件不变,则从A点起,经过时

间t2后.物体到达C点.令A、C两点的距离为S2.则 由式3和式4得: 以上两式相减,得: 那么就有 这里不再出现初速度值,式中的各值均可用自由落体测定仪测量得到. 五、实验步骤 1.调节自由落体仪垂直.将重锤装置安装好,调整底座上的调节螺旋,使重锤悬线与落体仪两立柱平行. 2.将第一光电门放在立柱A处.如离顶端20cm处,调第二光电门于B处.如两光电门相距90cm处,将实验装置上的激光器、接收器与YJ-LG-3自由落体重力加速度测定仪专用毫秒计连接,打开电源,可看见激光器发出红光. 3.调节上、下两个激光器。使激光束平行地对准重锤线后,取下重锤装置. 4.保持上、下两个激光器位置不变,调节上、下两个接收器分别与对应的激光器对准(使激光束垂直射入接收器入射孔),直至用手指通过上、下两光电门时,专用毫秒计能正常计时. 5.按动YJ-LG-3自由落体重力加速度测定仪专用毫秒计功能键(使用方法见附录),选择计时精度为0.0001s,(测完一组数据后,按动复位键归零). 6.用手指托住钢球至落球定位孔,迅速松开手指,记录钢球自由下落通过上、下两光电门的时间t1。 7.用卷尺置于两光电门之间,测出两激光束之间的距离S1。 8. 重复以上步骤,测量八组数据,求平均值. 9.重复以上步骤,改变两光电门距离,用卷尺置于两光电门之间,测出两激光束之间的距离S2,测量八组t2数据,求平均值. 10.将实验数据填入下表.并按式(8)计算重力加速度g.求其误差.

用凯特摆测量重力加速度 (7)

实验题目:用凯特摆测量重力加速度 实验目的:学习凯特摆的实验设计思想和技巧,掌握一种比较精确的测量重力加速度的方法。 实验原理:设一质量为m 的刚体,其重心G 到转轴O 的距离为h ,绕O 轴的转动惯量为I ,当摆幅很小时, 刚体绕O 轴摆动的周期T 为: mgh I T π2= (1) 式中g 为当地的重力加速度. 设复摆绕通过重心G 的轴的转动惯量为I G ,当G 轴与O 轴平行时,有 I=I G +mh 2 (2) 代入式(1)得:mgh mh I T G 2 2+=π (3) 对比单摆周期的公式g l T π2= 可得 mh mh I l G 2 +=(4),称为复摆的等效摆长。因此只要测出周期和等效摆长便可求得重力加速度。 左图是凯特摆摆杆的示意图。对凯特摆而言,两刀口间的距离就是该摆的等效摆长 l 。在实验中当两刀口位置确定后,通过调节A 、B 、C 、D 四摆锤的位置可使正、倒悬挂 时的摆动周期T 1和T 2基本相等。由公式(3)可得 1 2112mgh mh I T G +=π (5) 22222mgh mh I T G +=π (6) 其中T 1和h 1为摆绕O 轴的摆动周期和O 轴到重心G 的距离。当T 1≈T 2时,h 1+h 2=l 即为等效摆长。由式(5)和(6)消去I G ,可得: () 22222121214222T T T T a b g l h l π+-=+=+- (7)

此式中,l 、T 1、T 2都是可以精确测定的量,而h 1则不易测准。由此可知,a 项可以精确求得,而b 项则不易精确求得。但当T 1=T 2以及 |2h 1-l | 的值较大时,b 项的值相对a 项是非常小的,这样b 项的不精确对测量结果产生的影响就微乎其微了。 实验仪器:凯特摆、光电探头、米尺、数字测试仪。 实验内容:1、仪器调节 选定两刀口间得距离即该摆得等效摆长l ,使两刀口相对摆杆基本对称,并相互平行,用 米尺测出l 的值,粗略估算T 值。 将摆杆悬挂到支架上水平的V 形刀承上,调节底座上的螺丝,借助于铅垂线,使摆杆能在 铅垂面内自由摆动,倒挂也如此。 将光电探头放在摆杆下方,让摆针在摆动时经过光电探测器。 让摆杆作小角度摆动,待稳定后,按下reset 钮,则测试仪开始自动记录一个周期的时间。 2、测量摆动周期T ?和T ? 调整四个摆锤的位置,使T ?和T ?逐渐靠近,差值小于0.001s ,测量正、倒摆动10个周 期的时间10T ?和10T ?各测5次取平均值。 3、计算重力加速度g 及其标准误差σg 。 将摆杆从刀承上取下,平放在刀口上,使其平衡,平衡点即重心G 。测出|GO|即h ?,代 入公式计算g 。 推导误差传递公式计算σg 。 实验数据: 10T 1/s 17.3358 17.3374 17.3371 17.3372 17.3339 10T 2/s 17.3384 17.3394 17.3359 17.3335 17.3319 h 1/cm 29.70 29.60 29.65 l/cm 74.50 74.52 74.50 数据处理:以下均取P=0.950 T 1:平均值117.335817.337417.337117.337217.3339T =s 1.733628s 510 ++++=? A 类不确定度51111()()0.0000665(51) i i A T T u T s =-==?-∑ B 类不确定度10.0001T /0.0000333 B B u C s s =?==() 222210.950()()()(2.780.000066)(1.960.000033)0.000195,0.950A P B U T t u k u s s P +=?+?==

用三种方法测量重力加速度

用三种方法测量重力加速度 朱津纬1 (1.复旦大学物理学系,上海市200433) 摘要:本实验通过手机phyphox软件,用三种方法测量了重力加速度。分别将落币法、复摆法和弹簧法所得的重力加速度结果与实际值比较,误差不超过4%。 1 引言 随着科技的发展,如今智能手机功能越来越丰富。许多应用软件全面地利用手机中传感器,可以用来实施物理实验[1,2]。其中,“phyphox”是集合了很多实验项目的应用软件。本实验将利用它来测量重力加速度。 重力加速度可通过多种方法进行测得。如单摆法[3],多管落球法[4],和利用自由落体的方法[5]等。在本实验中,重力加速度利用落币法、复摆法和弹簧法三种方法被测量,并与标准值比较。 2 实验原理 首先,分别介绍三种方法的理论原理。 2.1 落币法 该实验将利用“phyphox”中的“声控秒表”项目,测量硬币从不同高度?自由落体所 需的时间t。通过对t?√?数据线性拟合,得到重力加速度g=2 斜率2 。 如图1所示,硬币自由落体下落的高度为?。用水笔敲击直尺发出敲击声,设该时刻为t0。经过微小时间差Δt(与高度无关,假设为常量),硬币开始下落,设该时刻为t1。一段时间后,硬币落到地上,并发出与地面的碰撞声,设该时刻为t2。“声控秒表”测量了两次声响的时间差t=t2?t0。 由自由落体公式可知 ?=1 2g(t2?t1)2=1 2 g(t?Δt)2,(2.1) 即 t=√2 g √?+Δt。(2.2) 因此t?√?呈线性关系,斜率为√2 g 。 2.2 复摆法 图1 落币法实验示意图

该实验将利用“phyphox ”中的“单摆”项目,测量不同摆长L 复摆的摆动周期T 。通过 对T 2? L 2+bL+ b 23 (L+b 2) 数据线性拟合,得到重力加速度g = 4π 2 斜率 。 如图2所示,长度为L 的细线与宽度为b 的手机组成复摆,以杆子为轴前后摆动。设复摆的转动惯量为I ,手机(过中心水平轴)的转动惯量为I c = mb 212 。则由平行轴定理得 I =I c +m(L +b 2)2。 (2.3) 由复摆摆动周期公式得 T =2π√ I mg(L+b 2 ) =2π√ L 2+bL+ b 23 g(L+b 2 ) 。 (2.4) 因此T 2? L 2+bL+ b 23 (L+b 2) 呈线性关系,斜率为4π2g 。 2.3 弹簧法 该实验将利用“phyphox ”中的“弹簧”项目,测量悬挂不同质量重物弹簧的(平衡时的)下端位置x 和振动周期T 。通过对x ?T 2数据线性拟合,得到重力加速度g =斜率。之后,将考虑空气阻力,得到修正结果。 如图3所示,弹簧悬挂重物。设弹簧不悬挂重物时的平衡位置为x 0(是常量)、弹簧的弹性系数为k 、塑料袋重物的总质量为m 。 由受力平衡,得 mg =k (x ?x 0)。 (2.5) 再由弹簧的周期公式 T =2π√m k , (2.6) 消去m ,得 x =g (T 2π)2+x 0。 (2.7) 图3 弹簧法实验示意图 图2 复摆法实验示意图

大学物理仿真实验凯特摆测量重力加速度

福建工程学院 实验报告 专业:通信工程 班级:1002 座号:3100205219 姓名:郑智勇 日期:2011-10-20

凯特摆测量重力加速度 实验目的: 1. 学习凯特摆的实验设计思想和技巧。 2. 掌握一种比较精确的测量重力加速度的方法。 3. 利用凯特摆测量重力加速度的方法 实验内容: 一.实验原理 图一是复摆的示意图,设一质量为m 的刚体,其重心G 到转轴O的距离为h ,绕O 轴的转动惯量为I ,当摆幅很小时,刚体绕O 轴摆动的周期T 为 mgh I T π2= (1) 式中g 为当地的重力加速度。 设复摆绕通过重心G 的轴的转动惯量为I G ,当G 轴与O 轴平行时,有 2 mh I I G += (2) 代入式(1)得 mgh mh I T G 2 2+=π (3) 对比单摆周期的公式g l T π2=,可得 mh mh I l G 2 += (4) l 称为复摆的等效摆长。因此只要测出周期和等效摆长便可求得重力加速度。 复摆的周期我们能测得非常精确,但利用mh mh I l G 2 +=来确定l 是很困难的。因为重心G 的位置不易测定,因而重心G 到悬点O 的距离h 也是难以精确测定的。同时由于复摆不可能做成理想的、规则的形状,其密度也难绝对均匀,想精确计算I G 也是不可能的。我们利用复摆上两点的共轭性可以精确求得l 。在复摆重心G 的两旁,总可找到两点

O和O’,使得该摆以O悬点的摆动周期T1与以O’为悬点的摆动周期T2相同,那么可以证明' OO就是我们要求的等效摆长l。 图一复摆示意图图二凯特摆摆杆示意图图二是凯特摆摆杆的示意图,对凯特摆而言,两刀口间的距离就是该摆的等效摆长l。在实验中当两刀口位置确定后,通过调节A、B、C、D四摆锤的位置可使正、倒悬挂时的摆动周期T1和T2基本相等,即T1≈T2。由公式(3)可得 1 2 1 1 2 m gh m h I T G + =π (5) 2 2 2 2 2 m gh m h I T G + =π (6)其中T1和h1为摆绕O轴的摆动周期和O轴倒重心G的距离。当T1≈T2时,h1+h2=l即为等效摆长。由式(5)和(6)消去I G,可得 ()b a l h T T l T T g + = - - + + = 1 2 2 2 1 2 2 2 1 2 2 2 2 4π (7)式中,l、T1、T2都是可以精确测定的量,而h1则不易测准。由此可知,a项可以精确求得,而b项不易精确求得。但当T1=T2以及l h- 1 2的值较大时,b项的值相对a项是非常小的,这样b项的不精确对测量结果产生的影响就微乎其微了。 二.实验内容 1.实验仪器 本实验装置包括凯特摆、光电探头和多用数字测试仪。 实验中将光电探头放在摆杆下方,调整它的位置和高度,让摆针在摆动时经过光电探测器。电信号由B插口输入到数字测试仪中,数字测试仪的功能选择旋钮放在“振动计数”档,时标旋钮放在“0.1ms”档,计停开关置于“停止”,然后接通电源。

测量重力加速度实验报告

一、复摆法测重力加速度 一.实验目的 1. 了解复摆的物理特性,用复摆测定重力加速度, 2. 学会用作图法研究问题及处理数据。 二.实验原理 复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动体系。如图1,刚体绕固定轴O在竖直平面内作左右摆动,G是该物体的质心,与轴O的距离为h,θ为其摆动角度。若规定右转角为正,此时刚体所受力矩与角位移方向相反,则有 θ =, (1) M- sin mgh 又据转动定律,该复摆又有

θ I M = , (2) (I 为该物体转动惯量) 由(1)和(2)可得θωθ sin 2-= , (3) 其中I mgh = 2 ω。若θ很小时(θ在5°以内)近似有 θωθ 2-= , (4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为 mgh I T π =2 , (5)

设G I 为转轴过质心且与O 轴平行时的转动惯量,那么根据平行轴定律可知 2mh I I G += , (6) 代入上式得 mgh mh I T G 2 2+=π , (7) 设(6)式中的2mk I G =,代入(7)式,得 gh h k mgh mh mk T 2 22222+=+=π π, (11) k 为复摆对G (质心)轴的回转半径,h 为质心到转轴的距离。对(11)式平方则有 2 2222 44h g k g h T ππ+=, (12) 设22,h x h T y ==,则(12)式改写成 x g k g y 2 2244ππ+=, (13) (13)式为直线方程,实验中(实验前摆锤A 和B 已经取下) 测出n 组 (x,y)值,用作图法求直线的截距A 和斜率B ,由于g B k g A 2 224,4ππ==,所以

相关文档
最新文档