机械设计材料大全

机械设计材料大全
机械设计材料大全

常用数据:

金属材料熔点、热导率及比热容

常用法定计量单位及换算关系

弹簧钢(GB122—84)

合金结构钢(GB3077—82)、不锈钢棒(GB1220—84)

注:1. 表中合金结构钢HB*系YB6——71规定的硬度值,不锈钢棒HB*为GB1220-84规定的硬度值。

2. 表中1Cr13、2Cr13、3Cr13钢和Cr19和Ni19钢的数据分别适用于直径、边长、内切圆直径厚度≤75mm

和≤180mm钢棒。

球墨铸铁(GB1348—88)

注:牌号无后面字母A,表示牌号系由单铸试块测定的机械性能。牌号后面具有字母A,表示牌号系由附铸试块测定

机械性能,这些牌号适用于质量大于2000kg及壁厚在30~200mm的球软件。

灰铸铁(GB 9439—88)

注:灰铸铁的硬度,系由经验关系式计算,即,当σb ≥196Mpa 时,HB=RH(100+0.438σb )。RH 一般取o.80~1.20

冷轧钢板和钢带(GB708-88)

注:钢板宽度系列为600,650,700,710,750~1000(50进位),1250,1400,1420,1500~3000(100进位),3200~380(200进位。)

热轧圆钢和方钢尺寸(GB702-86)

注:1.本标准适用于直径为5.5~250mm 的热轧圆钢和边长为5.5~200mm 的热轧方钢。

2.各种直径优质钢的长度为2~6m;普通钢的长度当直径或边长小于25mm 时为4~10m.

3.表中带*者不推荐使用。

注:1. 角钢长度为:角钢号2~9,长度量10~14,长度4~19m 。

2.d r 3

11=

热轧槽钢(GB707-88)

W x , W y ——截面系数 标记示例: 热轧槽钢

88

70023588

707970180-----??GB A Q GB

(碳素结构钢Q235-A ,尺寸为180×70×9mm )

注:槽钢长度:槽钢号8,长度5~12m; 槽钢号10~18,长度5~19m ;槽钢号20~32,长度6~19m 。

热轧工字钢(GB706-88)

W x , W y ——截面系数 标记示例: 热轧工字钢

88

70023588

706125144400-----??GB A Q GB

(碳素结构钢Q235-A ,尺寸为144×12.5×88mm )

机械设计常用资料大全

机械设计常用资料大全》(Mechanical design common documents daqo)1.0 这么多的机械设计用资料,对你进行机械设计或者学习,有非常大的帮助,省去了你查找资料的时间。本资源对机械设计的资料进行了分类,极大地方便了你下载需要参考的资料,同时也会对你学习机械专业知识,有一个整体性的了解,可以帮助你应该加强哪部分内容的学习! 供在校大学生或机械类工程技术人员使用。 一、手册类 机械设计课程设计手册(第三版) 机械设计手册(第五版)第1卷 机械设计手册(第五版)第2卷 机械设计手册(第五版)第3卷 机械设计手册(第五版)第4卷 机械设计手册(第五版)第5卷 机械设计手册.(新版).第1卷 机械设计手册.(新版).第2卷 机械设计手册.(新版).第3卷 机械设计手册.(新版).第4卷 机械设计手册.(新版).第5卷 机械设计手册.(新版).第6卷 [精密加工技术实用手册].精密加工技术实用手册 包装机械选用手册上-印刷实务 包装机械选用手册下-印刷实务 机电一体化专业必备知识与技能手册 机械工程师手册.第二版 机械加工工艺师手册 机械设计、制造常用数据及标准规范实用手册 机械制图手册(清晰版) 机械制造工艺设计简明手册 联轴器、离合器与制动器设计选用手册 实用机床设计手册 运输机械设计选用手册.上册 运输机械设计选用手册.下册 中国机械设计大典数据库 最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册 最新实用五金手册(修订本) 最新轴承手册 二、机构类 高等机构设计 机构参考手册 机构创新设计方法学 机构设计丛书.凸轮机构设计 机构设计实用构思图册-verygood

机械设计工程师考试大纲

机械工程师考试大纲,你看一下有没有含金量 Ⅰ.基本要求 1.熟练掌握工程制图标准和表示方法。掌握公差配合的选用和标注。 2.熟悉常用金属材料的性能、试验方法及其选用。掌握钢的热处理原理,熟悉常用金属材料的热处理方法及其选用。了解常用工程塑料、特种陶瓷、光纤和纳米材料的种类及应用。3.掌握机械产品设计的基本知识与技能,能熟练进行零、部件的设计。熟悉机械产品的设计程序和基本技术要素,能用电子计算机进行零件的辅助设计,熟悉实用设计方法,了解现代设计方法。 4.掌握制订工艺过程的基本知识与技能,能熟练制订典型零件的加工工艺过程,并能分析解决现场出现的一般工艺问题。熟悉铸造、压力加工、焊接、切(磨)削加工、特种加工、表面涂盖处理、装配等机械制造工艺的基本技术内容、方法和特点并掌握某些重点。熟悉工艺方案和工艺装备的设计知识。了解生产线设计和车间平面布置原则和知识。 5.熟悉与职业相关的安全法规、道德规范和法律知识。熟悉经济和管理的基础知识。了解管理创新的理念及应用。 6.熟悉质量管理和质量保证体系,掌握过程控制的基本工具与方法,了解有关质量检测技术。7.熟悉计算机应用的基本知识。熟悉计算机数控(CNC)系统的构成、作用和控制程序的编制。了解计算机仿真的基本概念和常用计算机软件的特点及应用。 8.了解机械制造自动化的有关知识。 Ⅱ.考试内容 一、工程制图与公差配合 1.工程制图的一般规定 (1)图框 (2)图线 (3)比例 (4)标题栏 (5)视图表示方法 (6)图面的布置 (7)剖面符号与画法 2.零、部件(系统)图样的规定画法 (1)机械系统零、部件图样的规定画法(螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺寸标注弹簧的画法) (2)机械、液压、气动系统图的示意画法(机械零、部件的简化画法和符号管路、接口和接头简化画法及符号常用液压元件简化画法及符号) 3.原理图 (1)机械系统原理图的画法 (2)液压系统原理图的画法 (3)气动系统原理图的画法 4.示意图 5.尺寸、公差、配合与形位公差标注 (1)尺寸标注 (2)公差与配合标注(基本概念公差与配合的标注方法) (3)形位公差标注 6.表面质量描述和标注 (1)表面粗糙度的评定参数

《机械设计基础》第六版重点复习资料

《机械设计基础》知识要点 绪论;基本概念:机构,机器,构件,零件,机械 第1章:1)运动副的概念及分类 2)机构自由度的概念 3)机构具有确定运动的条件 4)机构自由度的计算 第2章:1)铰链四杆机构三种基本形式及判断方法。 2)四杆机构极限位置的作图方法 3)掌握了解:极限位置、死点位置、压力角、传动角、急回特性、极位夹角。 4)按给定行程速比系数设计四杆机构。 第3章:1)凸轮机构的基本系数。 2)等速运动的位移,速度,加速度公式及线图。 3)凸轮机构的压力角概念及作图。 第4章:1)齿轮的分类(按齿向、按轴线位置)。 2)渐开线的性质。 3)基本概念:节点、节圆、模数、压力角、分度圆,根切、最少齿数、节圆和分度圆的区别。 4)直齿轮、斜齿轮基本尺寸的计算;直齿轮齿廓各点压力角的计算;m = p /π的推导过程。 5)直齿轮、斜齿轮、圆锥齿轮的正确啮合条件。 第5章:1)基本概念:中心轮、行星轮、转臂、转化轮系。 2)定轴轮系、周转轮系、混合轮系的传动比计算。 第9章:1)掌握:失效、计算载荷、对称循环变应力、脉动循环变应力、许用应力、安全系数、疲劳极限。 了解:常用材料的牌号和名称。 第10章: 1)螺纹参数d、d1、d2、P、S、ψ、α、β及相互关系。 2)掌握:螺旋副受力模型及力矩公式、自锁、摩擦角、当量摩擦角、螺纹下行自锁条件、常用螺纹类型、螺纹联接类型、普通螺纹、细牙螺纹。 3)螺纹联接的强度计算。 第11章: 1)基本概念:轮齿的主要失效形式、齿轮常用热处理方法。 2)直齿圆柱齿轮接触强度、弯曲强度的计算。 3)直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮的作用力(大小和方向)计算及受力分析。 第12章: 1)蜗杆传动基本参数:m a1、m t2、γ、β、q、P a、d1、d2、V S及蜗杆传动的正确啮合条件。 2)蜗杆传动受力分析。 第13章: 1)掌握:带传动的类型、传动原理及带传动基本参数:d1、d2、L d、a、α1、α2、F1、F2、F0 2)带传动的受力分析及应力分析:F1、F2、F0、σ1、σ2、σC、σb及影响因素。 3)弹性滑动与打滑的区别。 4)了解:带传动的设计计算。 第14章: 1)轴的分类(按载荷性质分)。 2)掌握轴的强度计算:按扭转强度计算,按弯扭合成强度计算。 第15章: 1)摩擦的三种状态:干摩擦、边界摩擦、液体摩擦。 第16章: 1)常用滚动轴承的型号。 2)向心角接触轴承的内部轴向力计算,总轴向力的计算。 滚动轴承当量动载荷的计算。滚动轴承的寿命计算。 第17章: 1)联轴器与离合器的区别 第一章平面机构的自由度和速度分析 1、自由度:构件相对于参考系的独立运动称为自由度。 2、运动副:两构件直接接触并能产生一定相对运动的连接称为运动副。构件组成运动副后,其运动受到约束,自由度减少。

机械设计常用材料使用表2020.8.6

名称 牌号(日标)使用范围备注 45号钢45#(S45C)机架钢板,支撑板,普通连接零 件,轴杆零件,仿形件 调质硬度在(洛氏硬度) HRC20-30之间,电镀Cr,发 黑 铬12Cr12Mo1V2 (SKD11) 热处理后用于冲压模,高强度零 件,耐磨零件,冲切刀 硬化处理HRC35-62,电镀Cr P203Cr2Mo 适用于大中型精密模具,易加 工,材质匀称度高,适合抛光模 具 购买来就具备硬度HRC30-36 NAK80(NAK80)模具钢,适合做高效落料模,冲 载模及压印模, 各种切刀 购买来就具备硬度HRC37-43 ASP60ASP60超级高合金高速钢,刀具、切断 车刀、成形刀、冷作工具 良好的热处理尺寸稳定,红 硬性高,硬化处理HRC64-68 锋钢/风钢W6Mo5Cr4V2 (SKH51) 宜于制造强力切割用,耐磨,耐 冲击各种工具刀,高级冲模,螺 丝模 硬化处理HRC60-64 ,高温下 也可具备硬度 名称 牌号(日标)使用范围备注 冷轧钢板Q195钣金折弯件,镀锌板,外罩,壳 体,防护板,喷漆支架 0.5-6mm内选用 镀锌钢板镀锌钢板用于防生锈,强度要求不高,底 板,盖板,防护板,电气安装板 表面电镀有锌层,耐蚀性、 涂漆性、装饰性 不锈钢 0Cr18Ni9 (SUS304) 防锈零件,水箱,料盒,落料滑 槽,外观件 不需要电镀,快速加工使用 零件 ,比喷漆钢板更效率 不锈铁4Cr17(SUS430)紧急代替电镀件,可热处理,有 一定的防锈性能,连接件 HRC35-55,电镀Cr 软光轴45#或40cr 支撑柱,机构连接件,连杆,手 柄杆,轴承连杆 表面有硬铬,亮白,易加 工,轴外径公差g6 硬光轴GCR15直线轴承用轴杆,高耐磨高硬 度,尺寸精度要求高的零件,可 作定位销 HRC602硬化层深度:0.8- 3mm,轴外径公差g6

机械工程材料基本知识

机械工程材料基本知识 1.1 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 1.1.1强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为c,单位为MPa 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用③ 表示。抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用c表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。 1.1.2塑性 塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号S表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用表示。 伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 1.1.3 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。硬度的测试方法很多,生产

机械设计行业GB中常用标准

GB中常用标准 螺栓和螺柱 六角头螺栓 GB/T27-1988六角头铰制孔用螺栓A级 GB/T27-1988六角头铰制孔用螺栓B级 GB/T31.1-1988六角头螺杆带孔螺栓-A级和B级GB/T31.2-1988A型六角头螺杆带孔螺栓-细杆-B级GB/T31.2-1988B型六角头螺杆带孔螺栓-细杆-B级GB/T5780-2000六角头螺栓C级 GB/T5781-2000六角头螺栓-全螺纹-C级 GB/T5782-2000六角头螺栓 GB/T5783-2000六角头螺栓-全螺纹 GB/T5784-1986六角头螺栓-细杆-B级 GB/T5785-2000 六角头螺栓-细牙 GB/T5786-2000 型六角头螺栓-细牙-全螺纹 GB/T5787-1986 六角头法兰面螺栓 其它螺栓 GB/T8-1988 方头螺栓C级 GB/T 10-1988 沉头方颈螺栓 GB/T 11-1988 沉头带榫螺栓 GB/T 37-1988 T形槽用螺栓 GB/T 798-1988 活节螺栓 GB/T 799-1988 地脚螺栓 GB/T 800-1988 沉头双榫螺栓 GB/T 794-1993 加强半圆头方颈螺栓A型 GB/T 794-1993 加强半圆头方颈螺栓B型 双头螺柱 GB/T897-1988 双头螺柱B型 GB/T 898-1988 双头螺柱B型 GB/T 899-1988 双头螺柱B型 GB/T 900-1988 双头螺柱B型 GB/T 901-1988 等长双头螺柱-B级 GB/T 953-1988 等长双头螺柱-C级

螺母 六角螺母 1型六角螺母C级(GB41-86) GB56-1988六角厚螺母 GB808-1988小六角特扁细牙螺母 GB/T6170-2000(1型六角螺母) GB/T6171-2000(1型六角螺母-细牙) GB/T6172.1-2000六角薄螺母 GB/T6173-2000六角薄螺母-细牙 GB/T6174-2000六角薄螺母-无倒角 GB/T6175-2000(2型六角螺母) GB/T6176-2000(2型六角螺母-细牙) GB/T6177.1-2000六角法兰面螺母 GB/T6177.2-2000六角法兰面螺母细牙 六角锁紧螺母 GB/T6184-2000(1型全金属六角锁紧螺母) GB/T6185.1-2000(2型全金属六角锁紧螺母) GB/T6185.2-2000(2型全金属六角锁紧螺母-细牙) GB/T6186-2000(2型全金属六角锁紧螺母-9级) 六角开槽螺母 GB6179-1986(1型六角开槽螺母-C级) GB6180-1986(2型六角开槽螺母-A级和B级) GB6181-1986六角开槽薄螺母-A和B级 GB9457-1988(1型六角开槽螺母) GB9458-1988(2型六角开槽螺母-细牙-A级和B级) GB9459-1988六角开槽薄螺母 GB6178-1986(1型六角开槽螺母-A和B级) 圆螺母 GB810-1988小圆螺母 GB817-1988带槽圆螺母 GB812-1988圆螺母 滚花高螺母

机械设计常用材料特性

1、45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。 应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁 应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用 应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件 6、65Mn——常用的弹簧钢 应用举例:小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制做弹簧环、气门簧、离合器簧片、刹车弹簧、冷卷螺旋弹簧,卡簧等。 7、0Cr18Ni9——最常用的不锈钢(美国钢号304,日本钢号SUS304) 特性和应用: 作为不锈耐热钢使用最广泛,如食品用设备,一般化工设备,原于能工业用设备

《机械设计》第九版-公式大全

第五章 螺纹连接和螺旋传动 受拉螺栓连接 1、受轴向力F Σ 每个螺栓所受轴向工作载荷:z F F /∑= z :螺栓数目; F :每个螺栓所受工作载荷 2、受横向力F Σ 每个螺栓预紧力:fiz F K F s ∑> f :接合面摩擦系数;i :接合面对数;s K :防滑系数; z :螺栓数目 3、受旋转力矩T 每个螺栓所受预紧力:∑=≥ n i i s r f T K F 10 s K :防滑系数; f :摩擦系数; 4、受翻转力矩M 螺栓受最大工作载荷:∑=≥ z i i L ML F 1 2max max m ax L :最远螺栓距离 受剪螺栓连接 5、受横向力F Σ(铰制孔用螺栓) 每个螺栓所受工作剪力:z F F /∑= z :螺栓数目; 6、受旋转力矩T (铰制孔用螺栓) 受力最大螺栓所受工作剪力:∑=≥ z i i r Tr F 1 2 max max m ax r :最远螺栓距离 螺栓连接强度计算 松螺栓连接:[]σπσ ≤= 4 21d F 只受预紧力的紧螺栓连接:[]σπσ≤= 4 3.1210 d F 受预紧力和轴向工作载荷的紧螺栓连接: 受轴向静载荷:[]σπσ ≤= 4 3.12 12 d F 受轴向动载荷:[]p m b b a d F C C C σπσ≤?+= 21 2 受剪力的铰制孔用螺栓连接剪力: 螺栓的剪切强度条件:[]σπτ ≤= 4 /20 d F 螺栓与孔壁挤压强度:[]p p L d F σσ≤= min 螺纹连接的许用应力 许用拉应力: []S S σσ= 许用切应力: []τ στS S =

机械设计需要哪些知识

机械设计需要哪些知识 一,机械设计所要了解的周边知识以及所要具备的观察视角。 1,熟练翻阅机械设计手册。对于标准件以及常用件的一些技术特征要了熟于心。比如要清楚各类轴承,带传动,链传动,齿轮传动,丝杠传动,蜗轮蜗杆等的使用场合,使用方式,以及相关的技术特征。对于具体应用时的选型计算则可对照设计手册的图表和公式进行具体确定。 2,知道N家常用件供应商并熟练翻阅其产品样本。现在机械设计趋向于模块化,对于机械设备制造工厂的整体技术要求更侧重于对于一些配件和部件的组装应用。比如台湾HIWIN,日本THK,德国FAG,FESTO。。。。。对于此,要做到当你在设计某个零件或部件或要完成某个动作或功能的时候必须得知道目前是否有专业的厂商在生产或提供能实现某个部位的功能要求的成熟的零配件。 3,熟悉原材料情况。比如你要知道目前市场上有卖的冷轧或热轧铁板以及各类型材的规格尺寸,有经验的工程师往往都会知道你安排给采购的单子往往到最后是会变得面目全非的。。因为在钢材市场,普遍存在变薄,变窄,变短这些情况,采购买回来的东西往往是和你坐办公室根据设计手册里选出来的相关数据存在比较大的折扣。 4,深度了解各类常用机床的结构原理和性能特点。所谓万变不离其宗,机床亦是如此。设计一台机器的过程可类比是小孩堆积木一般,一个部件一个组件进行堆积,然后把这些具备不同功能的部件或组建遵循某种规律联系起来。在这个过程中就需要你熟练掌握一些常用机构或装置的功能和特性。而我们所常见的车,铣,钻,刨,磨,镗。。。等机床上应用的结构或原理都是经过了数十上百年的考验,对于其稳定性和可应用性我们无需过多地怀疑。比如车床的刀架结构,卡盘结构,尾座的锁紧机构,主轴轴承布置,磨床主轴密封结构,刨床的连杆机构等等。。。

机械设计常用材料

机械设计常用材料 1、45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。 应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 40CR属于低淬透性合金调质钢,一般调质使用,比45#钢要好点,做要求不是很严的轴类件,也可以热处理后表面处理做齿轮,一般做轴退火后800度保温5小时淬火,用油淬,然后520度保温80分钟用水或者油快冷回火 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁

机械设计常用计算公式 集(一)

运动学篇 一、直线运动: 基本公式:(距离、速度、加速度和时间之间的关系) 1)路程=初速度x时间+加速度x时间^2/2 2)平均速度=路程/时间; 3)末速度-初速度=2x加速度x路程; 4)加速度=(末速度-初速度)/时间 5)中间时刻速度=(初速度+末速度)/2 6)力与运动之间的联系:牛顿第二定律:F=ma,[合外力(N)=物体质量(kg)x加速度(m/s^2)] (注:重力加速度g=9.8m/s^2或g=9.8N/kg) 二、旋转运动:(旋转运动与直线运动类似,注:弧度是没有单位的) 单位对比: 圆的弧长计算公式: 弧长s=rθ=圆弧的半径x圆弧角度(角位移) 周长=C=2πr=πd,即:圆的周长=2x3.14x圆弧的半径=3.14x圆弧的直径 旋转运动中角位移、弧度(rad)和公转(r)之间的关系。

1)1r(公转)=2π(弧度)=360°(角位移) 2)1rad=360°/(2π)=57.3° 3)1°=2π/360°=0.01745rad 4)1rad=0.16r 5)1°=0.003r 6)1r/min=1x2x3.14=6.28rad/min 7)1r/min=1x360°=360°/min 三、旋转运动与直线运动的联系: 1)弧长计算公式(s=rθ):弧长=圆弧的半径x圆心角(圆弧角度或角位移) 2)角速度(角速度是角度(角位移)的时间变化率)(ω=θ/t):角速度=圆弧角度/时间 注:结合上式可推倒出角速度与圆周速度(即:s/t也称切线速度)之间的关系。S 3)圆周速度=角速度x半径,(即:v=ωr) 注:角度度ω的单位一般为rad/s,实际应用中,旋转速度的单位大多表示为r/min (每分钟多少转)。可通过下式换算: 1rad/s=1x60/(2x3.14)r/min 例如:电机的转速为100rad/s的速度运行,我们将角速度ω=100rad/s换算成r/min 单位,则为: ω=100rad/s=100x60/(2π)=955r/min 4)rad/s和r/min的联系公式: 转速n(r/min)= ω(rad/s)x60/(2π),即:转速(r/min)=角速度(rad/s) x60/(2π); 5)角速度ω与转速n之间的关系(使用时须注意单位统一):ω=2πn,(即:带单位时为角速度(rad/s)=2x3.14x转速(r/min)/60) 6)直线(切线)速度、转速和2πr(圆的周长)之间的关系(使用时需注意单位):

机械设计基础公式计算例题

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5, l p =7,h p =0。则该机构的自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件 AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+(3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 将式(3-1)(1(2(1(2三、k = 12v v 式中四、变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律 ???? ? ? ? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线等速运动位移曲线的修正

六、凸轮等加等减速运动规律(抛物线运动规律) 等加等减速运动曲线图 七、凸轮简谐运动规律(余弦加速度运动规律) 简谐运动规律简谐运动规律运动曲线图 八、压力角 凸轮机构的压力角 ? ? ? ?=?=ααcos sin n Y n X F F F F 法向力可分解为两个分力 压力角的检验 九、B 型V 带传动中,已知:主动带轮基准直径d1=180mm ,从动带轮基准直径d2=180mm ,两轮的中心距α=630mm ,主动带轮转速 1n 附:V A=138mm2; B V 带速 υV 最大应力 55.16)92.963.6(11max =+=+≈b σσσMPa 各应力分布如图所示。 十、设计一铣床电动机与主轴箱之间的V 带传动。已知电动机额定功率P=4kW ,转速nl=1440r/min ,从动轮转速n2=440r/min ,两班制工作,两轴间距离为500 mm 。 解:

机械设计课程设计-电动机的选择计算

第三章电动机的选择计算 合理的选择电动机是正确使用的先决条件。选择恰当,电动机就能安全、经济、可靠地运行;选择得不合适,轻者造成浪费,重者烧毁电动机。选择电动机的内容包括很多,例如电压、频率、功率、转速、启动转矩、防护形式、结构形式等,但是结合农村具体情况,需要选择的通常只是功率、转速、防护形式等几项比较重要的内容,因此在这里介绍一下电动机的选择方法及使用。 3.1电动机选择步骤 电动机的选择一般遵循以下三个步骤: 3.1.1 型号的选择 电动机的型号很多,通常选用异步电动机。从类型上可分为鼠笼式与绕线式异步电动机两种。常用鼠笼式的有J、J2、JO、JO2、JO3系列的小型异步电动机和JS、JSQ系列中型异步电动机。绕线式的有JR、JR O2系列小型绕线式异步电动机和JRQ系列中型绕线式异步电动机。 从电动机的防护形式上又可分为以下几种: 1.防护式。这种电动机的外壳有通风孔,能防止水滴、铁屑等物从上面或垂直方向成45o以内掉进电动机内部,但是灰尘潮气还是能侵入电动机内部,它的通风性能比较好,价格也比较便宜,在干燥、灰尘不多的地方可以采用。“J”系列电动机就属于这种防护形式。 2.封闭式。这种电动机的转子,定子绕组等都装在一个封闭的机壳内,能防止灰尘、铁屑或其它杂物侵入电动机内部,但它的密封不很严密,所以还不能在水中工作,“JO”系列电动机属于这种防护形式。在农村尘土飞扬、水花四溅的地方(如农副业加工机械和水泵)广泛地使用这种电动机。 3.密封式。这种电动机的整个机体都严密的密封起来,可以浸没在水里工作,农村的电动潜水泵就需要这种电动机。 实际上,农村用来带动水泵、机磨、脱粒机、扎花机和粉碎机等农业机械的小型电动机大多选用JO、JO2系列电动机。 在特殊场合可选用一些特殊用途的电动机。如JBS系列小型三相防爆异步电动机,JQS 系列井用潜水泵三相异步电动机以及DM2系列深井泵用三相异步电动机。 3.1.2 功率的选择 一般机械都注明应配套使用的电动机功率,更换或配套时十分方便,有的农业机械注明本机的机械功率,可把电动机功率选得比它大10%即可(指直接传动)。一些自制简易农机具,我们可以凭经验粗选一台电动机进行试验,用测得的电功率来选择电动机功率。

机械设计常用的典型零件

1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。

在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

机械设计基础公式汇总

机械设计基础公式汇总 机械设计基础公式大家了解吗?以下是XX为大家整理好的机械设计基础公式汇总,一起来学习吧. 零件:独立的制造单元 构件:独立的运动单元体 机构:用来传递运动和力的、有一个构件为机架的、用 构件间能够相对运动的连接方式组成的构件系统 机器:是执行机械运动的装置,用来变换或传递能量、 物料、信息 机械:机器和机构的总称 机构运动简图:用简单的线条和符号来代表构件和运动 副,并按一定比例确定各运动副的相对位置,这种表示机构 中各构件间相对运动关系的简单图形称为机构运动简图运动副:由两个构件直接接触而组成的可动的连接 运动副元素:把两构件上能够参加接触而构成的运动副 表面 运动副的自由度和约束数的关系f=6-s 运动链:构件通过运动副的连接而构成的可相对运动系 统 高副:两构件通过点线接触而构成的运动副 低副:两构件通过面接触而构成的运动副 平面运动副的最大约束数为2,最小约束数为1;引入

一个约束的运动副为高副,引入两个约束的运动副为平面低副 平面自由度计算公式:F=3n-2PL-PH 机构可动的条件:机构的自由度大于零 机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目 虚约束:对机构不起限制作用的约束 局部自由度:与输出机构运动无关的自由度 复合铰链:两个以上构件同时在一处用转动副相连接 速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是 三心定理:三个彼此作平面运动的构件的三个瞬心必位于同一直线上 机构的瞬心数:N=K(K-1)/2 机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动 曲柄:作整周定轴回转的构件; 连杆:作平面运动的构件;

常用机械设计软件大全

常用机械设计软件大全2011-10-24 14:15 机械设计软件众多,决定了在机械工程师或者机械专业学生学习机械设计软件时对于软件的选择会存在疑惑。本文整理了最常见的机械设计软件,并做一个简短的介绍,如有疑问,请在此留言或者Email:admin@https://www.360docs.net/doc/e35897858.html,。本文的读者对象是机械行业入门者,欢迎资深设计人员完善建议。本文介绍的常用机械设计软件包括:AutoCAD、Catia、CAXA、Inventor、Pro/Engineer(Proe)、Siemens NX(UG)、SolidWorks等。 AutoCAD是AutoDesk公司的软件,机械设计的入门软件。一般在学习机械制图或者机械设计的过程中就会学习,算得上是机械设计的必修软件,其平面(二维)设计功能强大,众多的平面设计软件对AutoCAD是唯马首是瞻。Autodesk公司同时出品一款三维设计软件Inventor,其功能尚可,与AutoCAD结合较好。 Catia是法国达索(Dassault)公司开发的三维设计软件,其曲面造型功能强大,因此在汽车、飞机、轮船行业占有相当优势。但模具方面不是Catia的强项。Dassault公司同时还出品一款知名的三维设计软件:SolidWorks。 Caxa(电子图版)是目前二维和三维设计软件中,有一定市场占有率的国产设计软件。由北京数码大方科技有限公司出品,专注于机械制图,上手快,适合中国人绘图习惯。 Inventor是AutoDesk公司出品的三维设计软件,界面简单,入门容易,有AutoCAD基础的话学习Inventor较方便。 Pro/Engineer(Proe)由美国PTC公司出品。Pro/E全参数化设计,造型思路严谨,其相关功能模块强大,能相对解决更多零件、产品设计问题。缺点是相对操作复杂,学习门槛较高,初学者学习教困难。主要用于消费电子行业及其模具,珠三角应用广泛。 Siemens NX(UG)现由西门子公司出品,造型思路灵活,CAE集成性好,加工能力强。主要用于汽车、航空航天及相关模具设计、分析、制造;如航空发动机、柴油机、大型水泵、精密光学机械等。其缺点是如果造型不熟练的话,操作容易混乱,不适合新手。 SolidWorks和Catia同属法国达索(Dassault)公司,起优点是上手容易,适合新手学习三维机械设计,同时软件的价格比较便宜。缺点是功能相对简单,处理大量零件装配等能力较弱,软件采用的是UG的3D内核:Parasolid,UG也是用这个内核。 上述介绍的软件主要用于机械设计,综合来看,AutoCAD可以认为是机械设计的入门必备软件;SolidWorks、Inventor适合初学者;Proe、UG、Catia功能均很强大,但各有特色,使用领域也有所差异。此外,还有3Dmax、Ansys、Cimatron、MasterCAM、Maya、Microstation、Rhino、SolidEdge等具有设计功能的软件,但在机械设计软件市场的占有率相对较低,软件本身的侧重也有所不同,有兴趣的朋友可以进一步关注。 不论什么软件,都只是工具,虽然软件本身各有特色,但要做好机械设计,关键在于设计基本功的锻炼与积累,用好上述任何一种设计软件,都能做出优秀的设计。因此选择软件的时候不必太关注软件本身而忽略自身设计素养的提高。在扎实的设计基础上用好一个设计软件,最后需要的就是勤用勤练习

机械设计需要哪些知识

机械设计需要哪些知识?这是最全的一 篇文章 本人从事机械行业十年来,干过小工,也干过总工。造过锯床,3轴数控铣床,3D打印机,多线切割机,锯片磨齿机......也曾扯虎皮,造大旗,占山为王。 置场地,买机器,修机器,改机器,做夹具,做模具,搞生产,搞装配,接油 管又接电线...... 昙花一现后如今又是种地,攒钱,继续谋划扯虎皮,造大旗......近来得空, 拼凑一文,附庸风雅,抛砖引玉,与众共飨。 一,机械设计所要了解的周边知识以及所要具备的 观察视角。 1,熟练翻阅机械设计手册。对于标准件以及常用件的一些技术特征要了熟于心。

比如要清楚各类轴承,带传动,链传动,齿轮传动,丝杠传动,蜗轮蜗杆等的 使用场合,使用方式,以及相关的技术特征。对于具体应用时的选型计算则可 对照设计手册的图表和公式进行具体确定。 2,知道N家常用件供应商并熟练翻阅其产品样本。现在机械设计趋向于模块化,对于机械设备制造工厂的整体技术要求更侧重于对于一些配件和部件的组装应用。比如台湾HIWIN,日本THK,德国FAG,FESTO......对于此,要做到当你 在设计某个零件或部件或要完成某个动作或功能的时候必须得知道目前是否有 专业的厂商在生产或提供能实现某个部位的功能要求的成熟的零配件。 3,熟悉原材料情况。比如你要知道目前市场上有卖的冷轧或热轧铁板以及各 类型材的规格尺寸,有经验的工程师往往都会知道你安排给采购的单子往往到 最后是会变得面目全非的。。因为在钢材市场,普遍存在变薄,变窄,变短这 些情况,采购买回来的东西往往是和你坐办公室根据设计手册里选出来的相关 数据存在比较大的折扣。 4,深度了解各类常用机床的结构原理和性能特点。所谓万变不离其宗,机床亦是如此。设计一台机器的过程可类比是小孩堆积木一般,一个部件一个组件进 行堆积,然后把这些具备不同功能的部件或组建遵循某种规律联系起来。 在这个过程中就需要你熟练掌握一些常用机构或装置的功能和特性。而我们所 常见的车,铣,钻,刨,磨,镗等机床上应用的结构或原理都是经过了数十上 百年的考验,对于其稳定性和可应用性我们无需过多地怀疑。比如车床的刀架 结构,卡盘结构,尾座的锁紧机构,主轴轴承布置,磨床主轴密封结构,刨床 的连杆机构等等。 其实说这么多,想表述的就两字,对于这些稳定的常用的结构我们要学会在设 计新机床时“借鉴”或者说是“参照”。从另一方面来说了解各类常用机床的 结构原理和性能特点是出一张零件图纸的前提基础。举个例子来说就是当你完 成一张图纸时最起码你自己要知道这张图纸上的这个零件的大体加工过程。 这个所谓的大体了解楼主个人认为是好比要加工一条常见的轴类零件,当你了 解车床,铣床,磨床的一些特性后就不会在图纸上出现没有了螺纹退刀槽,砂 轮越程槽等情况,同时也不会对轴类零件的长度方向尺寸随意标注个IT6,IT7 的公差要求。 5,具备一定的机床装配能力。很多人会问,这完全是装配工的活了,我做为一个设计人员过多地了解这方面知识干什么?当然,会这么问的往往都是些刚入 行的新手。 当你永远不去了解这方面的知识时就永远理解不了针对一条长轴进行过渡或过 盈装配时因为你那图纸上的左轴承位和右轴承位相距太大而轴承却只能从左到 右或从右到左装配时,那两轴承位之间那么长一段装配距离所带来的痛苦。

机械设计制造常用技术要求

机械制造常用技术要求汇总 一、一般技术要求 1.零件须去除氧化皮。 2.零件加工表面上,不应有划痕、擦伤等损伤零件表面的缺陷。 3.去除毛刺飞边。 4.去除毛刺,抛光。 二、公差要求 1.未注线性尺寸公差应符合GB/T1804-2000的要求。 2.未注长度尺寸允许偏差±0.5mm。 3.铸件尺寸公差与机械加工余量按GB/T6414-1999的要求。 4.未注公差原则按GB/T4249-2009的要求。 5.未注角度公差按GB/T1804-2000的要求。 6.其它未注要求请参照样品为准; 7.未注形位公差应符合GB/T1184-1996的要求。 三、切削加工件要求 1.零件应按工序检查、验收,在前道工序检查合格后,方可转入下道工序。 2.加工后的零件不允许有毛刺、飞边。 3.精加工后的零件摆放时不得直接放在地面上,应采取必要的支撑、保护措施。加工面不允许有锈蛀和影响性能、寿命或外观的磕碰、划

伤等缺陷。. 4.滚压精加工的表面,滚压后不得有脱皮现象。 5.最终工序热处理后的零件,表面不应有氧化皮。经过精加工的配合面、齿面不应有退火、发蓝、变色的现象。 6.加工的螺纹表面不允许有黑皮、磕碰、乱扣和毛刺等缺陷。 7.零件去除氧化皮。 8.零件加工表面上,不应有划痕、擦伤等损伤零件表面的缺陷。 四、材料要求 1.材料:Q235-A,除有特殊说明。 五、模具要求 1.未注拔模斜度2°-3°; 六、涂装要求 1.所有需要进行涂装的钢铁制件表面在涂漆前,必须将铁锈、氧化皮、油脂、灰尘、泥土、盐和污物等除去。 2.除锈前,先用有机溶剂、碱液、乳化剂、蒸汽等除去钢铁制件表面的油脂、污垢。 3.经喷丸或手工除锈的待涂表面与涂底漆的时间间隔不得多于6h。 4.铆接件相互接触的表面,在连接前必须涂厚度为30~40μm防锈漆。搭接边缘应用油漆、腻子或粘接剂封闭。由于加工或焊接损坏的底漆,要重新涂装。 5.表面涂装按照相应的标准要求。 七、热处理要求

机械工程材料基础知识

机械工程材料基础知识 1.1 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 1.1.1 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs 表示。抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。 1.1.2 塑性 塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用 表示。 伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 1.1.3 硬度

机械设计考试题库带答案

机械设计模拟题 一、填空题(每小题2分,共20分) 1、机械零件的设计方法有理论设计经验设计模型试验设计。 2、机器的基本组成要素是机械零件。 3、机械零件常用的材料有金属材料高分子材料陶瓷材料复合材料。 4、按工作原理的不同联接可分为形锁合连接摩擦锁合链接材料锁合连接。 5、联接按其可拆性可分为可拆连接和不可拆连接。 6、可拆联接是指不需破坏链接中的任一零件就可拆开的连接。 7、根据牙型螺纹可分为普通螺纹、管螺纹、梯形螺纹、矩形螺纹、锯齿形螺纹。 8、螺纹大径是指与螺纹牙顶相切的假想圆柱的直径,在标准中被定为公称直径。 9、螺纹小径是指螺纹最小直径,即与螺纹牙底相切的假想的圆柱直径。 10、螺纹的螺距是指螺纹相邻两牙的中径线上对应两点间的轴向距离。 11、导程是指同一条螺纹线上的相邻两牙在中径线上对应两点间的轴线距离。 12、螺纹联接的基本类型有螺栓连接双头螺栓连接螺钉连接紧定螺钉连接。 13、控制预紧力的方法通常是借助测力矩扳手或定力矩扳手,利用控制拧紧力矩的方法来控制预紧力的大小。 14、螺纹预紧力过大会导致整个链接的结构尺寸增大,也会使连接件在装配或偶然过载时被拉断。 15、螺纹防松的方法,按其工作原理可分为摩擦防松、机械防松、破坏螺旋运动关系防松。 16、对于重要的螺纹联接,一般采用机械防松。 17、受横向载荷的螺栓组联接中,单个螺栓的预紧力F?为。

18、键联接的主要类型有平键连接半圆键连接楔键连接切向键连接。 19、键的高度和宽度是由轴的直径决定的。 20、销按用途的不同可分为定位销连接销安全销。 21、无键联接是指轴与毂的连接不用键或花键连接。 22、联轴器所连两轴的相对位移有轴向位移径向位移角位移综合位移。 23、按离合器的不同工作原理,离合器可分为牙嵌式和摩擦式。 24、按承受载荷的不同,轴可分为转轴心轴传动轴。 25、转轴是指工作中既承受弯矩又受扭矩的轴。 26、心轴是指只受弯矩不承受扭矩的轴。 27、传动轴是指只受扭矩不受弯矩的轴。 28、轴上零件都必须进行轴向和周向定位。 29、轴上常用的周向定位零件有键花键销紧定螺钉。 30、轴上零件的轴向定位常用轴肩套筒轴端挡圈轴端端盖圆螺母。 31、根据轴承中摩擦性质的不同,可把轴承分为滑动摩擦轴承和滚动摩擦轴承。 32、滑动轴承按其承受载荷方向的不同,可分为径向轴承和止推轴承。 33、滑动轴承的失效形式有磨粒磨损、刮伤、咬粘、疲劳剥落、腐蚀。 34、向心轴承是主要承受径向载荷的轴承。 35、推力轴承是指只能承受轴向载荷的轴承。 36、向心推力轴承是指能同时承受轴向和径向载荷的轴承。 37、轴承的基本额定寿命是指一组相同的轴承在相同条件下进行运转时,90%不发生点蚀破坏前的转数或工作小时数。

相关文档
最新文档