Close Binary Interactions of Intermediate-Mass Black Holes Possible Ultra-Luminous X-ray So

Close Binary Interactions of Intermediate-Mass Black Holes Possible Ultra-Luminous X-ray So
Close Binary Interactions of Intermediate-Mass Black Holes Possible Ultra-Luminous X-ray So

a r X i v :a s t r o -p h /0508597v 1 28 A u g 2005

S UBMITTED TO T HE A STROPHYSICAL J OURNAL ,A UGUST 27,2005

Preprint typeset using L A T E X style emulateapj v.6/22/04

CLOSE BINARY INTERACTIONS OF INTERMEDIATE-MASS BLACK HOLES:POSSIBLE ULTRA-LUMINOUS

X-RAY SOURCES?

L.B LECHA 1,N.I VANOVA 1,V.K ALOGERA 1,K.B ELCZYNSKI 2,J.F REGEAU 1,AND F.R ASIO 1

Submitted to The Astrophysical Journal,August 27,2005

ABSTRACT

While many observed ultra-luminous X-ray sources (ULXs,L X ≥1039erg s ?1)could be extragalactic X-ray binaries (XRBs)emitting close to the Eddington limit,the highest-luminosity ULXs (L X >3×1039erg s ?1)exceed the isotropic Eddington luminosity for even high-stellar-mass accreting black hole XRBs.It has been suggested that these highest-luminosity ULXs may contain accreting intermediate-mass black hole (IMBH)binaries.We consider this hypothesis for dense,young (~108yr)stellar clusters where we assume that a 50-500M ⊙central IMBH has formed through runaway growth of a massive https://www.360docs.net/doc/e16249956.html,ing numerical simulations of the dynamics and evolution of the central black hole’s captured companions,we obtain estimates of the incidence of mass transfer phases and possible ULX activity throughout the IMBH’s evolutionary history.We ?nd that,although it is common for the central black hole to acquire binary companions,there is a very low probability that these interacting binaries will become observable ULX sources.

Subject headings:Stars:binaries:close —X-rays:binaries —Black Holes —Star Clusters

1.INTRODUCTION

Extragalactic observations with the Einstein space X-ray telescope revealed a new category of sources,currently known as ultra-luminous X-ray sources (ULXs,Fabbiano 1989).In 1990,surveys conducted with the ROSAT satel-lite were able to resolve many of these sources as dis-tinct objects not associated with emission from galactic nu-clei.Up to half of the galaxies surveyed were found to contain off-nuclear ULXs (Colbert &Mushotzky 1999;Roberts &Warwick 2002;Lira,Lawrence,&Johnson 2000;Colbert &Ptak 2002;Colbert &Miller 2004).In analogy with X-ray sources observed in our own galaxy,many ULXs could be extragalactic X-ray binaries (XRBs)with stellar-mass black hole (BH)accretors (e.g.,Rappaport,Podsiad-lowski,&Pfahl 2005).However,in many cases their lu-minosities exceed the Eddington limit for isotropic emission from an accreting stellar-mass BH.The lowest luminosity that commonly de?nes a ULX,L X ≥1039erg s ?1,corresponds to an Eddington black hole mass 8M ⊙–still within the BH mass range allowed by stellar evolution models.Based on the X-ray survey conducted by Colbert &Ptak (2002),ULXs with L X ≥1039erg s ?1are estimated to exist in ~12%of all galaxies (Ptak &Colbert 2004).Of the 87X-ray (2-10keV)sources observed,45had L X >3×1039erg s ?1.This corre-sponds to the Eddington luminosity for the highest-mass black holes that can form through single-star collapse,~25M ⊙for a metallicity of Z =0.001(Belczynski,Sadowski,&Rasio 2004).We see that as much as half of this observed ULX pop-ulation requires an alternative to the model of isotropic emis-sion from a stellar-mass XRB.

Observations increasingly support the idea that some ULX sources may harbor intermediate-mass black holes (IMBHs,Colbert &Mushotzky 1999).Until recently,no evi-dence existed for BHs in the wide mass range between

1

Northwestern University,Dept of Physics &Astronomy,Evanston,IL 60208

l-blecha@https://www.360docs.net/doc/e16249956.html,;nata,vicky,fregeau,rasio@https://www.360docs.net/doc/e16249956.html, 2Tombaugh Fellow,Department of Astronomy,New Mexico State Uni-versity,Las Cruces,NM 88003kbelczyn@https://www.360docs.net/doc/e16249956.html,

stellar-mass and supermassive BHs.Many spectral and timing observations conducted with Chandra,ASCA,and XMM-Newton have con?rmed that ULXs are not associ-ated with supernovae and are consistent with accreting bi-naries (Fabbiano &White 2003).Additionally,ULX posi-tions are strongly correlated with young,star-forming re-gions.Examples include the nine ULXs found in the An-tennae (Fabbiano,Zezas,&Murray 2001)and the highest-luminosity ULX yet observed,in M82(peak L X ~9×1040erg s ?1,corresponding to an IMBH mass ?700M ⊙if L X ?L Edd X ;Kaaret et al.2001;Matsumoto et al.2001).The young,dense clusters where ULXs are often observed are also likely sites for IMBH formation (Freitag,Gürkan,&Rasio 2005;Freitag,Rasio,&Baumgardt 2005;Gürkan,Freitag,&Rasio 2004).

Accretion disk spectra provide a further test for the pres-ence of IMBHs:higher-mass BHs are expected to have cooler accretion disks modeled as multi-color disks (Mitsuda et al.1984).Some evidence for low-temperature disks was recently found using high-resolution XMM spectra of numerous ULXs,including those in NGC 1313,NGC 4559,Ho IX,and the Antennae (Miller et al.2003,2004a,b).As Colbert &Miller (2004)note,the sources observed to have cool disks are also the ones with luminosities too high to be explained by XRBs,even if they are beamed XRBs.Nevertheless,we note that X-ray spectral interpretation is subject to a number of model assumptions and may not be unique.

Anisotropic,or beamed,disk emission is another possible explanation for apparently super-Eddington X-ray luminosi-ties.The degree to which emission is beamed can be de?ned by the beaming fraction b =?/4π,where ?is the solid an-gle of emission.ULXs containing beamed stellar-mass XRBs could be a short phase of rapid mass transfer in the lifetime of ordinary XRBs,such as thermal-timescale mass transfer (King et al.2001).As demonstrated by King et al.(2001),by introducing mild beaming,the XRB falls within the stellar-mass BH range,assuming L X <1040erg s ?1.However,about 5-10%of the total ULX population is observed to have L X ≥1040erg s ?1(Colbert &Miller 2004;Ptak &Colbert 2004;Colbert &Ptak 2002).At these luminosities,very mas-sive BHs (~25M ⊙)could fall below the Eddington limit with

2Blecha et al.

b 0.25.To have the required mass ratio q =M 2/M 1>1,where M 1is the BH mass,these BHs would require a very massive companion.More moderate-mass BHs would require more severe beaming fractions that are not easily justi?ed.Furthermore,in at least two instances observations seem to indicate isotropi

c X-ray emission.These include an isotropic nebula observe

d arond th

e ULX in Ho II (Pakull &Mironi 2001)and the discovery o

f quasi-periodic oscillations (QPOs)from the brightest ULX in M82(Strohmayer &Mushotzky 2003).

Transient behavior of a ULX source is an important test for the presence of an IMBH (Kalogera et al.2004).If the ULX is a beamed stellar-mass XRB in thermal-timescale mass trans-fer,it is expected to produce persistent emission at or above the Eddington luminosity (King et al.2001).A persistent

IMBH ULX similarly would require a sustained ˙M compa-rable to the Eddington mass transfer rate:

˙M

Edd ?2.3×10?9

M 1M ⊙

?0.4 R 5×10?4

?0.5

g s ?1

(2)

for donor mass M 2and disk radius R.C is assumed to be

5×10?4for most donors.It can also be shown that the crit-ical ˙M

for transience corresponds to a minimum black hole mass that depends on companion mass and orbital period (King et al.1996).As Kalogera et al.(2004)have shown,this minimum BH mass is high for main sequence (MS)donor stars (103M ⊙on average for a 10M ⊙donor).Red giant (RG)donors can more easily form transient systems with IMBHs.One should note that,due to the minimum mass limit,a stellar-mass BH binary is unlikely to be transient,so any tran-sient ULX observed is a strong IMBH candidate.

In our simulations,we consider IMBHs that have formed through “runaway collisions”of MS stars.This is a channel for IMBH formation in which a series of rapid mergers occur as the cluster begins core col-lapse,causing growth of a central massive object that can collapse to a black hole (Portegies Zwart et al.1999;Portegies Zwart &McMillan 2002;Gürkan,Freitag,&Rasio 2004;Freitag,Rasio,&Baumgardt 2005;Freitag,Gürkan,&Rasio 2005).It has been sug-gested that an IMBH formed though runaway growth actually prevents core collapse and causes the core to reexpand (Baumgardt,Makino,&Ebisuzaki 2004).In

the dense clusters we are considering,the timescale for IMBH formation through runaway mergers is esti-mated to be 3Myr (Portegies Zwart &McMillan 2002;

Gürkan,Freitag,&Rasio 2004).Because the core collapse time,t cc ,is expected to obey the relation t cc ~0.15t rc (0),where t rc (0)is the initial core relaxation time,this constrains t rc to be 30Myr (Gürkan,Freitag,&Rasio 2004).

Given that a plausible IMBH formation method exists,the question most pertinent to understanding ULXs is whether an IMBH,once formed,will gain close stellar companions that can sustain mass transfer at ULX X-ray luminosities.No prior studies have attempted to investigate numerically with both dynamics and binary evolution whether binary formation and mass transfer can occur with IMBHs in a dense cluster core (for an analytical exploration of tidal capture and its conse-quences,see Hopman,Portegies Zwart,&Alexander 2004).Here,we take the ?rst step in studying IMBH binary inter-actions as a ULX possibility,using detailed numerical simu-lations that combine dynamical interactions with full binary stellar evolution.In §2we outline the details of our simu-lations.The results for our standard cluster model (details below)are presented in §3.The variations of these results for other cluster models are described in §4.In §5,we discuss our results,estimating a lower limit on the incidence of IMBH mass transfer,and we outline our goals for future simulations.

2.CLUSTER SIMULATIONS WITH CENTRAL IMBH

The goal of our simulations is to examine the ability of IMBHs in young,dense stellar clusters to form and main-tain close binary systems with companion stars.We em-ploy a numerical code developed by Ivanova et al.(2005,where a detailed description of the method can be found).This adopted hybrid code incorporates:(i)a stellar popula-tion synthesis code to evolve single stars and binary systems (StarTrack ;Belczynski,Kalogera,&Bulik 2002;Belczynski et al.2005to be submitted);(ii)a semi-analytical prescrip-tion for 2-,3-,and 4-body stellar collisions,disruptions,ex-changes,and tidal captures based on previously derived cross sections;and (iii)a numerical toolkit for direct N-body in-tegration of 3-and 4-body systems (Fewbody ;Fregeau et al.2004).This combination provides us with a unique numeri-cal tool that lends itself to the study of binary interactions in cluster cores.At the young cluster ages we consider,large-scale cluster evolution has little effect,so certain simpli?ca-tions can be made.We employ a “?xed background”model,which holds the core stellar number density n c and velocity dispersion σconstant (e.g.,Hut,McMillan,&Romani 1992;Di Stefano &Rappaport 1994;Sigurdsson &Phinney 1995;Portegies Zwart et al.1997a;Portegies Zwart et al.1997b;Rasio et al.2000).The cluster density pro?le is assigned by dividing the cluster into two regions:a dense core and an outer halo.This model is qualitatively based on mass segrega-tion.Note that the core is expected to expand on a very short timescale immediately after the IMBH is formed,smoothing out the cusp and supporting the assumption of a constant den-sity core (Baumgardt,Makino,&Ebisuzaki 2004).

In our models,an IMBH is added to the core at 1Myr,in accordance with estimated IMBH formation times of 1-3Myr in clusters (Portegies Zwart &McMillan 2002).To form an IMBH through runaway collisions,the initial core relaxation time,t rc ,must be 25?30Myr (Gürkan,Freitag,&Rasio 2004).This time is given by:

t rc =

σ33D

ULX Sources from Accreting Binaries With IMBH?3

TABLE1

C LUSTER M ODELS

Model IMF n c[pc?3]

A Kroupa1.33×105

B Flattened1.33×105

C Kroupa1.33×104

N OTE.—The IMF in models B

is a broken power-law mass func-

tionξ(M)~Mα,withα=-1.25

for0.8

for M/M⊙>5.Models A&B

were tested with and without3BBF.

Model A is also tested with a range

of IMBH masses from50to500

M⊙.

ber of stars, m is the average stellar mass,andγ,the co-

ef?cient in the Coulomb logarithmΛ=γN,is assumed to

be0.01(cf.Gürkan,Freitag,&Rasio2004).For our stan-

dard model(parameters are described below),t rc?29Myr,

in good agreement with the constraint for runaway collisions.

We evolve the clusters to100Myr,as we consider only

young clusters like those with which ULXs are most often

associated.We can then neglect long-term contributions of

the outer halo to cluster evolution and synthesize the entire

stellar population of N=2.7×104in the core.Mass segrega-

tion within the core is incorporated through our choice of the

initial mass function(IMF)used for the stellar population in

the core.

An initial binary fraction of100%is assumed,which pro-

vides the maximum possible concentration of binaries to in-

teract with and become companions of the IMBH.Observa-

tions indicate that young clusters are expected to have very

high binary fractions(Levine,Lada,&Elston1999;Apai

2004;

Delgado-Donate et al.2004).This assumption is also consistent with the suggestion that cluster binary popula-tions are depleted over time by interactions and stellar evolu-tion(Mikkola1983;Hills1984;Bacon,Sigurdsson,&Davies 1996;Fregeau et al.2004;Ivanova et al.2005).Initial condi-tions for binary orbital parameters are assigned as outlined in §3.1of Ivanova et al.(2005),with slight modi?cations:

?The binary mass ratio q=m2/m1is assigned a uniform

distribution0

primary and secondary,respectively.

?A uniform logarithmic distribution is used for the bi-

nary period,P,ranging from0.1?107d.

?The thermal distribution is used for the binary eccen-

tricities e with probability densityρ(e)=2e.?Binary systems are rejected from the initial distribution

if one of the binary components enters Roche lobe over-

?ow(RLOF)at pericenter.

?We use the IMF of Kroupa(2002)for primary stars be-

tween0.8and100M⊙in most simulations.?Secondary stars are restricted in a mass range between

0.05and100M⊙.

Our standard cluster model(model A,see Table1)has a1-D stellar velocity dispersionσ=10km s?1and a core stellar number density n c=1.33×105pc?3.The latter corresponds to a luminosity density≥107L⊙pc?3for a cluster age≤108 yr.The total cluster mass is?5×104M⊙.We use100M⊙as our standard IMBH mass,but we explore a range of IMBH masses from50?500M⊙(see§4.1).Note that each type of simulation must be repeated many times to obtain good statis-tics.

We also consider two variations of our standard cluster model(see Table1):with models B we explore the effect of a?atter IMF,and with models C we examine results for less dense clusters.Detailed simulations of clusters that form an IMBH just before core collapse have shown that rapid mass segregation preceding IMBH formation creates a mass func-tion?atter than Kroupa’s for stars>5?10M⊙(Gürkan,Fre-itag,&Rasio2004;Freitag,Gürkan,&Rasio2005;Freitag 2005,personal communication).These results have prompted us to consider the effects of mass segregation on the forma-tion of IMBH binaries.We have also examined whether any Brownian-like motion of the IMBH would cause it to inter-act with stellar populations that have different properties than those typical of the compact cluster cores.Assuming energy equipartition exists between the IMBH and the cluster,the IMBH in a constant-density core will experience radial oscil-lations of amplitude(Bahcall&Wolf1976)

R?

R core

3 M IMBH

M2 1/3.(5) We recognize that this arti?cial treatment can affect the evo-lution of IMBH binaries,for example,by preventing eccen-tricity boosts via the Kozai mechanism(Kozai1962).For this reason we have undertaken a careful analysis of triple break-ing and its effect on our results(see§3.5).It should also be noted that in some cases with a RG companion,release of the

4Blecha et al.

F IG.1.—Probability densities of IMBH binary properties throughout the simulations:companion mass,orbital separation and eccentricity.The ther-

mal distribution,ρ(e)=2e,is shown on the eccentricity plot.Results from

167simulations of model A with a100M⊙IMBH are shown.

outer companion induces a common-envelope phase in the re-

sulting binary.

3.RESULTS FOR STANDARD MODEL

In what follows we present the results of our standard,

100M⊙IMBH cluster simulations(model A in Table1)in

the context of the formation of IMBH binaries that experi-

ence mass transfer and may become observable as ULXs.In

§3.1we discuss the characteristics of IMBH companions,in-

cluding their orbital parameters,evolutionary types,and mass transfer phases.In§3.2we present an example of a single simulation and more details on the history of the IMBH.In

§3.3we examine the X-ray luminosities produced by mass transfer and determine the time fraction over which the IMBH

could be observable as a ULX.In§3.4we comment on the statistical interpretation of our results.Finally,in§3.5we an-

alyze triple stellar systems and their possible effect on mass-transferring binaries.

3.1.Statistical Results on IMBH Companions

The distributions of three orbital parameters:companion mass,orbital separation,and eccentricity,are shown in Fig.1

for all100M⊙IMBH simulations for cluster model A.The prevalence of low-mass companions(~1M⊙)in the core is consistent with the model IMF that is dominated by such low-

mass stars.Orbital separations of the dynamically-formed

IMBH binaries range widely from~1?107R⊙.The lower

limit corresponds to the Roche lobe radius of the IMBH com-panion.On the other end,the soft boundary for binaries is

de?ned as the“escape radius”

GM IMBH

a soft=

ULX Sources from Accreting Binaries With IMBH?

5

panion for only ?3%of the total evolution time (Table 2).Fig.2shows companion masses and orbital characteristics for different evolutionary types.The IMBH companions are overwhelmingly MS stars due to the much longer lifetime of this phase and their dominance by number.About 90%of unique 100M ⊙companions are MS stars for at least part of their binary lifetime;the IMBH has an average of ~6MS companions per simulation and only one post-MS compan-ion for every two simulations [“post-MS”will henceforth re-fer to all post-main-sequence evolutionary types capable of driving mass transfer -i.e.,neutron stars (NSs)and BHs are excluded].In contrast,post-MS companions are more likely candidates for RLOF than are MS companions.The percent-age of post-MS companions that undergo mass transfer in our simulations is much higher than the percentage of mass-transferring MS companions (see Table 2).As noted above,post-MS companions are also more likely to enter transient mass transfer phases,which are more conducive to ULX for-mation.However,because the MS lifetime is about 10times longer,mass transfer phases of MS companions are typically of longer duration,and the numbers of MS and post-MS mass-transferring companions per simulation are comparable.(Ta-ble 2).

3.2.Single Run Example

The binary companion history of a single 100M ⊙IMBH simulation,using model A,is shown in Figs.3&4.This sim-ulation is atypical in that it has multiple mass transfer events,but the behavior of these events is characteristic of mass trans-fer seen in other simulations.Fig.3shows the IMBH evolu-tion over time.The black hole has a companion for ~60%of its total evolution time,which is about the average we calcu-late for all 100M ⊙simulations (Table 2).Note the often high eccentricities of non-mass-transferring companions,which is also typical of our simulations (Fig.1).In the lower window of Fig.3,one can see the hardening of several companion or-bits before they are disrupted by another interaction.The long mass transfer phase at the end of the simulation characterizes stable,MS mass transfer.The ?rst companion that undergoes RLOF (at about 107yr)is the most interesting.Mass trans-fer begins on the MS and continues through the HG until the donor becomes a He HG star.After this,the star explodes and leaves a NS orbiting the IMBH.The companion’s circu-larized orbit is kicked by the supernova to an eccentricity of about 0.6.As Fig.3shows,the NS is later forced into an even higher-e orbit by an encounter with an outer compan-ion shown in Fig.4.This causes an eventual merger with the IMBH.The outer-companion swapping that occurs with the NS-IMBH binary is frequently-observed behavior for a close,stable binary;more details on the behavior of triple systems are presented in §3.5.

3.3.X-ray Luminosities

We examine the range of X-ray luminosities produced by the various mass-transfer phases that occur in our standard model simulations.The binary evolution component of the

simulations allows us to calculate the mass transfer rate ˙M

driven by RLOF donors to the IMBH.We compare this rate

to the critical rate ˙M

crit for transient behavior (Eqn.2)to de-termine whether the IMBH XRB is persistent or transient.If persistent,the transfer rate from the donor is converted to an expected X-ray luminosity;if transient,we assume that the XRB emits at its Eddington luminosity during disk outbursts

F I

G . 3.—Evolutionary history of a single 100M ⊙IMB

H simulation.Top window:IMBH companion mass M 2;middle window:eccentricity;bot-tom window:orbital separation.Circles denote timesteps with mass transfer;each non-mass-transferring companion appears at a different mass value.It is evident that the IMBH changes muliple binary companions during a single cluster simulation.Gaps in the top and bottom plots indicate times with no IMBH companion.

F I

G .4.—IMB

H companion mass (M 2)vs.orbital separation (a)for the same simulation shown in Fig.1.Dots denote timesteps with an IMBH com-panion;open circles denote mass-transferring companions.Triangles mark inner-binary orbital parameters of triple systems and solid lines connect to the outer orbital parameters.The maximum companion orbit radii for RLOF are shown at:the end of MS (line 1),the start of the RG branch (line 2),the maximum possible stellar radius (line 3),and the maximum stellar radius for clusters younger than 108yr (line 4).Line 5marks the soft/hard binary boundary.

6Blecha et al.

TABLE2

IMBH BINARY COMPANIONS

M IMBH=100M⊙

MC Runs167

N comp 6.49

N MS 5.90

N postMS 0.47

N MT

MS

0.26

N MT

postMS

0.23

%MS MT 4.36

%postMS MT50.00

%t comp57.63

%t MS40.87

%t postMS 4.44

%t MT

MS

2.81

%t MT

postMS

0.11

N OTE.—All simulations adopt cluster model

A.MC Runs:number of distinct Monte Carlo sim-

ulations evolved to108yr. N comp :average num-

ber of companions(of any type)per run. N MS &

N postMS :average number of companions of each

type per run.Most postMS companions are captured

while on the MS and do not correspond to differ-

ent stellar companions. N MT

MS & N MT

postMS

:average

number of MS and post-MS companions that undergo mass transfer per run.%MS MT&%postMS MT: number%of MS and post-MS companions that un-dergo mass transfer.%t comp:average%of total simu-lation time spent with a companion of any type.%t MS and%t postMS:average%of time with MS and post-

MS companions.%t MT

MS &%t MT

postMS

:average%of

time spent in MS and post-MS mass transfer phases.

(Kalogera et al.2004;Ivanova&Kalogera2005).In model A clusters with a100M⊙IMBH,the total mass-transfer time fraction is about3%.Of this,about10%is spent under tran-

sient conditions,i.e.,˙M<˙M crit.However,only a very small fraction of the transient mass transfer time,comparable to the transient duty cycle,will be spent in outburst.Observations of Galactic transients imply that this duty cycle is of the or-der of a few percent(McClintock&Remillard2005).Such short duty cycles correspond to very low time fractions of the 108yr cluster age that could be associated with ULX emis-sion:<0.03%.The probability of detecting one of these transient sources in outburst is unfortunately vanishingly low. The other90%of mass transfer time in our simulations is per-sistent and a ULX will result,by de?nition,if the X-ray lu-minosity exceeds1039erg s?1.We?nd that a100M⊙IMBH becomes a persistent ULX for only~2%of total mass trans-fer time in model A clusters;this corresponds to?0.06%of the total age of the young clusters we consider here.We con-clude that either persistent or transient IMBH ULXs would be observable for only a tiny fraction(<0.1%)of the cluster lifetime.

F IG.5.—Distribution of mass transfer time fraction for167standard model simulations with a100M⊙IMBH.

3.4.Averages vs.Medians

It should be emphasized that the mass transfer time frac-tions we present are averaged over all simulations,and that individual simulations are given equal weight,but their re-sults do vary over a wide range.The majority of our simula-tions have no IMBH mass-transfer events at all;it turns out that the median mass-transfer time fraction for each cluster model is always at or very near zero(Fig.5).At the other ex-treme,IMBHs in a few model A simulations acquire very sta-ble mass-transferring companions and spend more than half of their total evolution time in mass transfer phases.It is clear that the averages reported are affected by the presence of these rare outliers,as one can see by comparing the entire model A data set(Table2,t MT MS and t MT postMS)to the smaller set for which triple system data was obtained,which does not include the outliers(Table3,t MT).We would like to note that for the majority of our simulations the predictions for the IMBH bi-naries leading to mass transfer with X-ray luminosities in the ULX regime could be even lower than we report based on the average quantities and results.

3.5.Triple Systems

The signi?cant number of triple systems that form and are arti?cially(although physically self-consistently,i.e.,con-serving energy)disrupted in our simulations warrant a sepa-rate analysis of their possible effect on mass transfer.The NS merger event shown in the example simulation(Figs.3and4), which resulted from an eccentricity boost by a third object,in-dicates that three-body interactions can play an important role even when triples are arti?cially broken.By analyzing the ini-tial orbital characteristics of triples and their coincidence with mass-transfer phases,we develop a sense of whether our treat-ment of triples is,in fact,a reasonable approximation. Almost all of the triples are hard in the outer orbit(see Fig.4),but depending on orbital parameters,the inner binaries may not be in?uenced by the outer companion.We quantify

ULX Sources from Accreting Binaries With IMBH?7

TABLE3

T RIPLE SYSTEMS AND IMBH COMPANIONS

M IMBH=100M⊙

MC Runs109

N trip 3.46

N trip/N bin 0.50

%trip close28.90

%MT aff47.72

%MT close10.24

%t MT 1.60

%t MT

aff

21.07

%t MT

close

4.96

N OTE.—All simulations adopt cluster model A.

MC Runs:number of distinct Monte Carlo simula-

tions for which triples data were obtained(note that

Tables3and5are based on smaller sample sizes than

are other data). N trip :average number of unique

triple systems per run. N trip/N bin :average ratio

of distinct triple systems to distinct binary systems

formed.%trip close:%of triples that are“close”

(?out/a in≤3).%MT aff:%of MT companions

that are potentially affected by one or more tertiary

companions gained during their lifetime.%MT close:

same fraction for close triples.%MT t aff:percent of

total MT time potentially affected by triples.%MT

t close:same fraction for close triples.

the degree of possible companion interaction using the ratio of the outer orbit’s pericenter to the inner orbit’s apocenter (?out/a in),that is,the closest possible approach between the two bodies.The result is shown in Fig.7(upper left window) and in Table3.We assign?out/a in≤3as the critical value of this ratio,below which it is likely that the outer companion will have a nonnegligible effect on the inner binary.These “close”systems comprise less than1/3of all triples. Another diagnostic for triple systems is to calculate the per-centage of mass transfer phases potentially affected.We con-sider“affected”mass transfer as that which follows or coin-cides with triple formation.More importantly,we also cal-culate the percentage of mass transfer phases associated with close triples.While almost half of mass-transferring compan-ions are affected,only~10%are affected by close triples (Table3).If we instead consider the total mass transfer time that is similarly affected,this fraction drops to~5%.

Apart from calculating the fractions of binaries and mass transfer phases that could be affected by our treatment of triples,we also attempt to quantify the possible effects of triple breaking on the mass transfer phases.One way in which an outer companion may affect the inner binary is through the Kozai mechanism(Kozai1962)that can increase the eccen-tricity of the inner binary and lead to mass transfer.We can-not exclude a priori that by breaking the triples we miss some mass transfer events involving the IMBH.We calculate the timescale for the inner binary to reach maximum eccentricity due to the Kozai mechanism using the initial orbital parame-ters of the triples(Innanen et al.1997;Mikkola&Tanikawa 1998;Wen2003):

τkoz?0.16f M i a i 0.5(1?e2o)1.5yr,(7)

where f?0.42ln(1/e i0)/(sin2(i0)?0.4)0.5,e i0and i0are the initial inner eccentricity and inclination,e o is the outer eccen-tricity,M i is the total mass of the inner binary,M o is the outer companion mass,a i and a o are the inner and outer orbital sep-arations,masses are in M⊙,and distances are in AU.Ifτkoz is suf?ciently short,the outer companion left alone could cause the inner binary to undergo mass transfer at pericenter.How-ever,this would be possible only ifτkoz is shorter than the collision timescale,τcoll,appropriate for the triple system:τcoll?3.4×1013×P?4/3d M?2/3tot n?15v?110

× 1+913M tot+ M

8

Blecha et al.

TABLE 4

IMBH BINARY COMPANIONS

M IMBH [M ⊙]50100150200500MC Runs 29167793344 N comp 2.48 6.4910.5212.0322.66 N MS 2.07 5.909.5711.3920.98 N postMS 0.340.470.840.550.98 N MT MS 0.100.260.460.480.91 N MT postMS 0.140.230.380.210.32%MS MT 5.00 4.36 4.76 4.25 4.33%postMS MT 40.0050.0045.4538.8932.56%t comp 24.9857.6370.0476.5189.69%t MS 18.7640.8753.6960.8956.95%t postMS 3.59 4.44 4.05 1.77 2.36%t MT MS 0.21 2.810.76 1.71 2.43%t MT postMS

0.02

0.11

0.16

0.05

0.10

N OTE .—All

simulations adopt cluster model A.Abbre-viations given in Table 2.

F I

G .6.—Increase in companion acquiring rate for a typical 500M ⊙sim-ulation over a 100M ⊙simulation (cf.Fig.1)is shown;the IMB

H has a companion for almost all of its lifetime.Top window:companion mass;middle window:eccentricity;bottom window:orbital separation.

more prevalent at higher masses,this behavior is not as clearly seen for MS or post-MS companions.The evolutionary his-tory of a typical single 500M ⊙simulation is shown in Fig.6to illustrate the large fraction of its lifetime spent with a com-panion.

A clear result in Table 4is that 50M ⊙IMBHs have a very

F I

G .7.—Triple systems formed for 16simulations of 100,150,200,and

500M ⊙IMBHs.The outer orbit’s eccentricity is plotted vs.the ratio of orbital separations for each triple system.Systems for which ?out /a in is ≤3are denoted by open triangles;other triples are closed circles.

low rate of companion capture and mass transfer events.This places a lower limit on the IMBH mass likely to form a lu-minous X-ray binary.For higher IMBH masses,we empha-size as in §3.4that the average mass transfer time fractions are typically dominated by a few simulations with very long mass transfer phases.Consequently,we do not observe any

signi?cant difference in t MT MS or t MT

postMS between 100-500M ⊙IMBHs.

As in 100M ⊙IMBH clusters,X-ray luminosities for other IMBH masses produce transient or persistent ULXs for in-signi?cant fractions of the cluster lifetime,except possibly for the 500M ⊙.Clusters with 500M ⊙IMBHs do spend signi?-cantly more of their mass transfer time as ULX sources;these systems are transient for ?40%of mass transfer time and per-sistent ULXs for ?12%of mass transfer time.Even so,these ULXs would be observable for only ?0.35%of the total clus-ter lifetime.

The rate of triple system formation increases monotonically with IMBH mass (Fig.7,Table 5).Clusters with a 50M ⊙IMBH have very few triple systems,as is expected based on their low rate of IMBH binary formation.500M ⊙IMBHs have by far the highest average rate of triple formation.In fact,more tertiary systems than binary systems form in this case,in a ratio of 1.6:1as compared to 0.5:1for 100M ⊙simulations (Table 5).Our arti?cial treatment of triples limits our ability to analyze reliably clusters with an IMBH 500M ⊙.In the 100-200M ⊙range,we do not ?nd any conclusive pattern in the percent of triples with close orbits,or in the percent of mass transfer affected by triples.

4.2.Cluster Models

To determine the dependence of our results on initial clus-ter conditions,we test two variations of our standard cluster model,as outlined in Table 1.We use our standard IMBH mass of 100M ⊙for all these simulations.

ULX Sources from Accreting Binaries With IMBH?

9

TABLE 5

T RIPLE SYSTEMS AND IMBH COMPANIONS

IMBH Mass [M ⊙]50100150200500MC Runs 20109531639 N trip 0.90 3.467.989.4435.59 N trip /N bin 0.380.500.750.81 1.58%trip close 50.0028.9018.9126.4922.05%MT aff 66.6747.7262.2233.3371.43%MT close 0.0010.2413.33 6.6720.41%t MT 0.32 1.60 1.11 1.00 2.02%t MT aff

3.1321.0741.8225.1667.08%t MT close

0.00

4.96

7.57

0.00

27.14

N OTE .—

All simulations adopt cluster model A.Abbreviations

given in Table 3.

F I

G .8.—Probability density of companion mass at each timestep,shown for cluster models A (167runs),B (102runs),A+(12runs),and B+(19runs).

In model C,when a lower number density is used (n c =104pc ?3),the IMBH has a companion for only ~35%of its evo-lution time,about half the companion time fraction calculated for the higher-density model (Table 6).The IMBH spends only a fraction of a percent of total simulation time with mass-transferring companions (0.53%).We conclude that clusters with our standard core number density,n c =105pc ?3,are much more likely to contain an accreting-IMBH ULX.

IMBH companions in clusters with a ?attened IMF (model B)are slightly more massive,as expected,with most between ~1?10M ⊙(Fig.8).The IMBH has a binary companion for a shorter time fraction (40%)than in model A simulations (Table 6).A decrease is also seen in the mass transfer time fraction between the two models.This could possibly result

TABLE 6

B INARY COMPANIONS OF 100M ⊙IMBH S Model A A+B B+

C MC Runs 167121021937 N comp 6.497.75 4.35 4.32 2.16 N MS 5.90 6.92 3.15 3.05 2.03 N postMS 0.470.500.590.580.13 N MT MS 0.260.500.160.210.05 N MT postMS 0.230.250.210.210.03%MS MT 4.367.23 4.97 6.90 2.67%postMS MT 50.0050.0035.0036.3620.00%t comp 57.6361.4340.3539.8234.71%t MS 40.8748.9018.8823.1932.35%t postMS 4.44 5.56 4.69 2.100.50%t MT MS 2.81 1.430.540.170.52%t MT postMS

0.11

0.05

0.04

0.07

0.01

N OTE .—See Table 1for details of each model.Mod-els A+and B+are identical to A and B,but with 3BBF allowed.Abbreviations given in Table 2.

from having more massive stars in the core,due to the ?atter IMF,that interact with and can disrupt IMBH binaries.How-ever,we caution again that the mass transfer time fraction for our standard model is dominated by a few outliers,so that the difference seen in model B may or may not be signi?cant.The time in which the model B clusters are observable as ULX sources is very short,as in model A clusters:a transient ULX forms for about 3.5%of total mass transfer time,and persistent mass transfer at ULX luminosities occurs for about 7%of mass transfer time.These imply a possible ULX time fraction of <0.05%.Furthermore,the behavior of triple sys-tems in model B is qualitatively and quantitatively similar to that of triple systems in standard model clusters.

Small differences can be seen when 3BBF is allowed in the cluster.3BBF enhances the rate at which massive objects can grow through collisions,since the hard formed binaries can collide with other formed binaries.As a result,companions are a bit more massive in clusters with 3BBF (Fig.8).The difference in the mass distributions is small,but a larger ef-fect is seen in the mass transfer time fraction.The time the IMBH spends with a mass-transferring companion decreases by more than half when 3BBF is included.This phenomenon is probably similar to that which causes the disparity in mass transfer time between model A &B clusters.

Due to the 100%initial binary fraction,we do not need 3BBF to form binaries.Overall,we see that our cluster mod-els are qualitatively similar with and without 3BBF,so we conclude that we can safely omit 3BBF from our simulations.

5.DISCUSSION

We have undertaken the ?rst detailed investigation of IMBH interactions in young (?100Myr),dense cluster cores,in-

10Blecha et al.

corporating binary dynamics with full binary star evolution. Speci?cally,we study the prevalence and characteristics of interacting binaries involving the central IMBH,and we ex-amine and can better understand their role as potential ULX sources.We use numerical cluster simulations that simplify some aspects of detailed dynamical evolution and allow us to focus on individual core stellar interactions while largely ignoring long-term cluster evolution.We analyze our re-sults in terms of the frequency of IMBH binaries formed and their properties,the frequency of associated mass-transferring IMBH binaries,and the associated X-ray luminosities ex-pected.With our cluster model A,we explore an IMBH mass range of50-500M⊙,and we study two variations on this model as well(Table1).Finally,we analyze the nature of triple systems formed as a possible in?uence on our results here and as a guide for designing future simulations.

Our main results are summarized as follows:?IMBHs more massive than100M⊙in model A clusters

spend the majority(>50%)of their evolution time with

a binary companion.

?Mass-transferring IMBH companions,though,are rel-

atively rare(?3%of the IMBH evolution time)com-

pared to the total time the IMBH spends with a com-

panion.

?IMBHs spend more time in mass transfer phases with

MS companions than with post-MS companions.?A much larger number fraction of post-MS companions

than MS companions undergo mass transfer.

?In model A clusters,IMBH binaries are found to be per-

sistent X-ray sources for about90%of the total mass

transfer time,but the X-ray luminosity reaches ULX

values(L X>1039erg s?1)for only~2%of the mass-

transfer time.For the rest of the mass-transfer time

(?10%),IMBH binaries are found to be transients,

which have short duty cycles.Given that the typi-

cal total mass-transfer time is?3%of IMBH evolu-

tion time,these results amount to a vanishingly small

observable-ULX time fraction(<1%)over the lifetime

of the young clusters we consider.

?Higher-mass IMBHs capture more companions

throughout their evolution,making them more likely

in a statistical sense to capture a companion that can

over?ow its Roche lobe.

?Model A clusters with a50M⊙IMBH and cluster

model C have very few mass-transferring IMBH bina-

ries.

?In model B clusters,the IMBH spends less time with

a companion(40%of total time)and less time in mass

transfer(<1%of total time)than in Model A clusters.?For all cluster models and IMBH masses explored here,

the possible ULX time fraction of the cluster lifetime

(100Myr)is found to be typically of~0.1%or even

smaller.

We note that results presented by Hopman,Portegies Zwart,&Alexander(2004)imply a higher incidence of possible ULX activity associated with MS companions to central IMBHs(typically with duration of 107yr).However,these calculations are based on analytical estimates of the possible tidal capture rates for an IMBH in a cluster of single MS stars and the subsequent isolated binary evolution once a MS companion is acquired. These binary evolution calculations are not integrated with any dynamical evolution(analytically or numerically)and, based on our results,we conclude that the assumption of isolated evolution is not realistic.Given the substantial differences in calculation methods,however,it is not possible to make direct and quantitative comparisons between the study by Hopman,Portegies Zwart,&Alexander(2004)and our study.We note that in our simulations we do allow for tidal captures(for details of implementation see Ivanova 2005),but they turn out to be a negligible contributor to the rate at which IMBHs acquire companions(exchanges into binaries is by far the dominant process).

Last,we recognize triple systems as one possibly limiting factor in our simulations.Since triples are arti?cially dis-rupted as they form,we examine the in?uence of triples in terms of their initial orbital parameters and their coincidence with mass transfer phases.We?nd that while a large num-ber of triple systems form per simulation,and while about 1/3?2/3of all100-200M⊙mass-transferring companions do coincide with triple system formation,only a small fraction of mass transfer phases are affected by triples with“close”or-bits.Furthermore,two opposing phenomena related to triple breaking may cause some uncertainties.Mass transfer may be prevented when potential Kozai evolution is arti?cially in-terrupted,or it may be arti?cially induced when release of the outer companion shrinks the inner binary.We?nd that both effects are relevant for only small,roughly equivalent frac-tions of triples,causing a negligible net impact on our mass transfer results.Therefore,we conclude that our treatment of triples in the regime of IMBH masses considered here does not in?uence our conclusions about the possibility of IMBH ULX formation.However,given the higher occurrence of triples in our500M⊙runs,the issues of multiples and cusp formation are most probably more important for more mas-sive IMBHs( 500M⊙)than those considered here.

For these more massive IMBHs,a more physical treatement of multiple systems would in principle allow the remaining uncertainties regarding triples,multiples,and the ultimate for-mation of central cusps to be resolved.However,to examine ULX formation,treatment of the stellar evolution of multi-ple systems cannot be ignored(especially when it involves massive-star companions that lose mass in winds,experience core-collapse and can themselves disrupt orbits and alter dy-namical evolution).Simulations that incorporate all of these effects are simply not possible at present.Instead,for our future explorations of the IMBH-ULX connection in dense clusters,we plan to implement simulations that would repre-sent an improvement over the ones presented here.Such fu-ture calculations could differentiate between triple systems in which the inner binary may be disturbed and those in which the outer companion may be ignored.In the latter case,the third companion would be kept in the system and its dynami-cal evolution alone could be simulated,while full stellar evo-lution and dynamics are calculated for the inner binary.

We thank Marc Freitag for valuable discussions on clus-ter dynamics and cluster properties before and after IMBH formation.This work is supported by a David and Lu-cile Packard Foundation Fellowship in Science and Engineer-

ULX Sources from Accreting Binaries With IMBH?11

ing grant,NASA ATP grant NAG5-13236and LTSA grant NAG5-13056to V.Kalogera,NASA Chandra Theory Award NAS8-03060to N.Ivanova,and NASA ATP grant NAG5-12044to F.Rasio.

REFERENCES

Apai,D.2004,Ph.D.Thesis,Univ.of Heidelberg,Germany

Bacon,D.,Sigurdsson,S.,&Davies,M.B.1996,MNRAS,281,830 Bahcall,J.N.&Wolf,R.A.1976,ApJ,209,214

Baumgardt,H.,Makino,J.,Ebisuzaki,T.2004,ApJ,613,1143 Belczynski,K.,Kalogera,V.,Bulik,T.2002,ApJ,572,407

Belczynski,K.,Sadowski,A.,Rasio,F.A.2004,ApJ,611,1068 Colbert,E.&Miller,M.C.2004,Invited review talk at the Tenth Marcel Grossmann Meeting on General Relativity,ed.M.Novello,S.Perez-Bergliaffa,&R.Ruf?ni,World Scienti?c,Singapore(astro-ph/0402677) Colbert,E.,&Mushotzky,R.1999,ApJ,519,89

Colbert,E.&Ptak,A.2002,ApJS,143,25

Delgado-Donate,E.J.,Clarke,C.J.,Bate,M.R.,Hodgkin,S.T.2004, MNRAS,351,617

Di Stefano,R.,Rappaport,S.1994,ApJ,437,733

Dubus,G.,Lasota,J.,Hameury,J.,Charles,P.1999,MNRAS,303,139 Fabbiano,G.,1989,ARA&A,27,87

Fabbiano,G.,&White,N.2003,chapter in“Compact Stellar X-ray Sources,”eds.W.H.G.Lewin&M.van der Klis(Cambridge:Cambridge University Press),in press(astro-ph/0307077)

Fabbiano,G.,Zezas,A.,Murray,S.S.2001,ApJ,554,1035

Fregeau,J.M.,Cheung,P.,Portegies Zwart,S.F.,Rasio,F.A.2004, MNRAS,352,1

Freitag,M.,Rasio,F.A.,Baumgardt,H.2005,submitted(astro-ph/0503129) Freitag,M.,Gürkan,M.A.,Rasio,F.2005,submitted(astro-ph/0503130)

Gürkan,M.A.,Freitag,M.,Rasio,F.2004,ApJ,604,632

Hills,J.G.1984,AJ,89,1811

Hopman,C.,Portegies Zwart,S.F.,Alexander,T.2004,ApJ,604,L101 Hut,P.,McMillan,S.,Romani,R.W.1992,ApJ,389,527

Innanen,K.A.,Zheng,J.Q.,Mikkola,S.,Valtonen,M.J.1997,AJ,113, 1915

Ivanova,N.,Belczynski,K.,Fregeau,J.M.,Rasio,F.A.2005,MNRAS,358, 572

Ivanova,N.&Kalogera,V.2005,sumbitted(astro-ph/0506471)

Kaaret,P.,Prestwich,A.H.,Zezas,A.,Murray,S.S.,Kim,D.W.,Kilgard, R.E.,Schlegal,E.M.,Ward,M.J.2001,MNRAS,321,L29 Kalogera,V.,Henninger,M.,Ivanova,N.,King,A.R.2004,ApJ,603,L41 King,A.R.,Kolb,U.,Burderi,L.1996,ApJ,464,L127

King,A.R.,Davies,M.B.,Ward,M.J.,Fabbiano,G.,Elvis,M.2001,ApJ, 552,L109Kozai,Y.1962,AJ,67,591

Kroupa,P.2002,Science,295,82

Lira,https://www.360docs.net/doc/e16249956.html,wrence,A.,Johnson,R.2000,MNRAS,319,17

Levine,J.L.,Lada,E.A.,Elston,R.J.1999,BAAS,21,1490

Mardling,Rosemary A.&Aarseth,Sverre J.2001,MNRAS,321,398 Matsumoto,H.,Tsuru,T.G.,Koyama,K.,Awaki,H.,Canizares,C.R., Kawai,N.,Matsushita,S.,Kawabe,R.2001,ApJ,547,L25 McClintock,J.E.&Remillard,R.A.2005,Chapter4in“Compact Stellar X-ray Sources,”eds.W.H.G.Lewin and M.van der Klis(Cambridge, Cambridge University Press),in press

Mikkola,S.1983,MNRAS,203,1107

Mikkola,S.&Tanikawa,K.1998,AJ,116,444

Miller,J.M,Fabbiano,G.,Miller,M.C.,Fabian,A.C.2003,ApJ,585,L37 Miller,J.M.,Fabian,A.C.,Miller,M.C.2004a,ApJ,607,931

Miller,J.M.,Zezas,A.,Fabbiano,G.,Schweizer,F.2004b,ApJ,609,728 Mitsuda,K.,Inoue,H.,Koyama,K.,Makishima,K.,Matsuoka,M.,Ogawara, Y.,Suzuki,K.,Tanaka,Y.,Shibazaki,N.,Hirano,T.1984,PASJ,36,741 Pakull,M.W.,Mirioni,L.2001,Astronomische Gesellschaft Meeting Abstracts,18,112

Portegies Zwart,S.F.,Hut,P.,Verbunt,F.1997,A&A,328,130 Portegies Zwart,S.F.,Hut,P.,McMillan,S.,Verbunt,F.1997b,A&A,328, 143

Portegies Zwart,S.F.,Makino,J.,McMillan,S.,Hut,P.1999,A&A,348, 117

Portegies Zwart,S.F.,McMillan,S.2002,ApJ,576,899

Ptak,A.,&Colbert,E.2004,ApJ,606,291

Rappaport,S.A.,Podsiadlowski,P.,&Pfahl,E.2005,MNRAS,356,401 Rasio,F.A.,Pfahl,E.D.,Rappaport,S.2000,ApJ,532,L47

Roberts,T.,&Warwick,R.2000,MNRAS,315,98

Sigurdsson,S.,Phinney,E.S.1995,ApJS,99,609

Spitzer,L.1987,Dynamical Evolution of Globular Clusters(Princeton: Princeton Univ.Press)

Strohmayer,T.,Mushotzky,R.2003,ApJ,586,L61

Wen,L.2003,ApJ,598,419

汽车用胶管基本参数

汽车用胶管基本常识 1.胶管按结构通常分为如下3类: 1.1有加强层结构的胶管 1.1.1织物加强结构胶管 1.1.2金属加强结构胶管 1.1.3按增强层结构分为 1.1.3.1夹布胶管:以涂胶织物(或胶布)作为骨架层材料制成的胶管,可在外面加钢线进行固定。 特点:夹布耐压胶管主要是由平纹交织的布料制成的胶布(其经纬密度和强度基本相等),经45°裁断、拼接,并包贴而成。制造工艺简单,对产品规格、层数范围等适应性较强,并具有 管体挺性好等优点。但效率低。 1.1.3.2编织胶管:以各种线材(纤维或金属线)作为骨架层材料,经编织而制成的胶管,称为编织胶管。 特点:编织胶管的编织层通常都按平衡角(54°44′)进行交织而成的,因此这种结构的胶管具有承压性能好、弯曲性能好、与夹布胶管相比材料利用率高。 1.1.3.3缠绕胶管: 以各种线材(纤维或金属线)作为骨架层材料,经缠绕而制成的胶管,称为缠绕胶管。 特点:其特点与编织胶管相似,其承压强度高、耐冲击及屈挠性能好。生产效率高。 1.1.3.4针织胶管: 以棉线或其它纤维作为骨架层材料,经针织而制成的胶管,称为针织胶管。 特点:由针织线沿着与轴成一定的角度交织在内管坯上,其交差点比较稀疏,一般都以单层结构组成 1.1.4常用增强层材料 汽车胶管所用的增强层材料分纤维、金属两大类。 1.1.4.1纤维又分为:天然纤维和合成纤维两类 1.1.4.1.1天然纤维:棉、麻、玻璃纤维、石棉纤维 1.1.4.1.2合成纤维:人造丝、维纶、涤纶、锦纶、芳纶、树脂。 1.1.4.2 纺织纤维的单位通常用D或tex 表示: D是纤维的一种单位,称“丹尼尔”,意思是:单位长度的纤维的重量。 Tex也是纤维的一种单位称“特克斯”与D互为倒数,意思是:单位重量的纤维的长度。 例如:1100D 的芳纶纤维是指1000米的芳纶纤维的重量是1100 克,即每米纤维的重量是1.1克; 同样的纤维用特克斯表示则为0.909 tex,即每克重量的纤维的是0.909米 2.汽车胶管常用的橡胶材料 聚合物名称 英文缩写 性能 应用范围 丙烯酸酯橡胶 ACM 有优越的耐矿物油及耐高温氧化性能,耐油性仅次于氟 胶与中高档的丁腈胶相似,在石油系、动植物油中体积 变化很小,拉伸强度,扯断伸长率,硬度的变化较通用 橡胶小。在175℃下可长期使用抗臭氧性、气密性佳; 不耐水,对水蒸气有机酸、无机酸、碱几乎不能抵抗。 用于现代汽车液压传动系统,承受150℃润滑油的冷却 管 乙烯丙烯酸酯橡胶 AEM 改善了丙烯酸酯的低温性能工作温度可以达到‐40℃ ~175℃其它性能同丙烯酸酯橡胶 氯化丁基橡胶 CIIR 氯化聚乙烯橡胶 CM 环氧氯丙烷橡胶 CO 氯丁橡胶 CR 氯丁胶的强伸性与天然胶相似,属自补强性橡胶,有良 好的耐老化性能,优异的耐燃性,耐油性低于丁腈优于 其它通用橡胶,有导电性,耐水性佳,有良好的粘合性;低温性,贮存稳定性差 氯磺化聚乙烯橡胶 CSM 抗臭氧性优异,耐热性可达150℃,耐化学药品,耐候性,低温特点物理性能,耐燃性好,宜在干燥环境中贮

【销售话术】逼单成交

销售逼单成交话术及技巧 在日常的销售过程中,在我们做好所有流程的情况下,还是会因为临门一脚踢的不准不到位丧失准客户准订单,如何逼单?如何提高成交率?具体的原因林林总总,但是总是离不开主要的几点,现就将主要几种技巧和话术分享如下: 一:成交法: 话术一:“我要考虑一下”成交法 当客户要考虑一下的时候,我们该怎么说呢? 话术:张哥,很明显,如果你对我们的产品不感兴趣不会花时间考虑我们的产品,可不可以让我了解一下你到底考虑的是什么呢?是不是因为价格问题呢? 话术二:“杀价顾客成交法” 当顾客习惯对你的产品进行杀价时,我们这样对应: 话术:一般顾客选择一样产品时,会注意三件事:1产品的品质 2.最低的价格3.优良的售后服务;但现实中从没有一家公司能同时提供,就好比奔驰汽车不可能卖比亚迪的价格,所以想要同时兼具这三点为什么不多投资一点呢? 话术三:“活动邀约话术法” 话术:张哥,我们这正好有一台您要的配置,刚才试驾您也很满意,今天是活动最后一天,价格比平时低又有抽奖,您今天不订购,改天来车也没有了,活动也没有了,得不偿失! 话术四:“特促车型限量提供” 话术:张哥,我们现在刚刚推出了一款限量版的车型,配置比以前的丰富,价格优惠幅度还比别的车型大,但这个只有这么两台,先定先得,机会不容错过! 话术五:“订单公示法” 话术:张哥,今天您的优惠幅度是最大的,我今天上午刚订了两台和您一样的车型,优惠幅度都没有您的大,订单都在这,你看~我费了这么大的劲给您申请下来这么低的价格,赶紧下定吧! 话术六:绝对成交心法,自我暗示法:我可以在任何时间销售任何产品! 二、情景演示: 情景一:能不能便宜一点? 成功销售话术:当消费者关心价格的时候,销售人员应当因势利导,让客户关注商品的使用价值。把客户关心贵不贵改变为,值不值! 话术模板:销售顾问:张哥,买东西不能只考虑便宜问题。您以前有没有用过同类的商品?那种便宜的商品可能用段时间就开始出现质量问题,比方说自行车,那种便宜的自行车骑两三个月就开始到处生锈,链条经常掉,脚踏也经常掉,骑起来很费力,除了铃铛不响,上下哪里都响。但是要是买一辆好的自行车比如捷安特,你骑两年都不用让你操任何心,骑起来又轻松。其实我们的东西和自行车一样,都是一等价钱一等货。买东西我觉得耐用性和安全性才是最重要的,您说呢?销售人员:您如果觉得这款配置的价格不合适,我给您介绍另一款性价比更好的……

营销话术

营销话术 “我不想再听了,你给我滚!”客户不屑地说。 “客户先生,你不要生气,我走就是啦!”业务员甲回答。 “客户先生,我知道你在生气,这样我改天再来拜访你!”乙 回答。 “客户先生,我是不是做错了什么事让你不高兴?对不起!那这定单要不要现在签一下,我就会马上离开?”丙回答。 “客户先生,您说要我滚?我从小到大没有滚过,你能不能示范一次给我看?”丁回答。 如果是你,你会怎么回答?你会给客户脸色看吗?你会当场痛哭,还是跟他争吵?但不管怎样,你总要想好该如何回应这句话吧! 办完六期实战训练营之后,决定将推销最精华的部分---推销话术写出来,就着手完成了这本推销训练教材---《推销话术》,让新进人员有话术可运用,加速成为专业推销人才。 从事寿险推销工作整整二十一年,推销已不再是“见人说人话,见鬼说鬼话”的乱扯,也不是“师父带徒弟,边走边瞧”,推销是有逻辑的,推销训练是有架构的,对于一位刚从事推销工作的新人而言,它提供在实务中建立话术的参考。“推销话术”这本书就是将推销模式与实务话术结合起来,新进人员可以

就书中的原理与话术同时理解与运用,资深人员可以运用话术原理配合自己的实务,另编一套标准的话术,就可以不用依靠脑力激荡---临场发挥,推销工作会变得更省力。 一个初学者总是忙于顾及自己的专业知识和话术,一个老手却是全力在满足客户的需要,而只有当一个人对于自己商品与话术纯熟之后,他才有心力去照顾到客户的需要,推销话术是要写下来并要背诵出来的,必须达到直觉反应,才不会受到现场或自己心情的影响,讲出不该讲的话而丧失了商机。感谢推销业的好友们不断地鼓励与支持,因为你们的肯定,使我觉得“推销”我的推销话术变成一件很有意义的工作,也 祝福你们在挫折中有成长,在成果中享受成就,工作之余又能享受你的人生。 话术 一、话术是推销原理的实践 从事推销工作21年,看到许多年轻人在推销工作上浮浮沉沉,他们试图在推销上有所突破,于是参加很多国内外,内容精彩、全新观念的大型讲座。可是却仍不知如何利用这些好的资讯去解决推销难题的困扰,反而变成业务员一个沉重的负担,往往还来不及将理论变成实践,就成为“阵亡将士”,从此远离推销的行列。于是开始思索如何缩短理论与实践之间的差距,最后找到一个最直接的方法:就是背话术。

书画销售过程中如何促成交易的话术与技巧交易话术供参考

书画销售过程中如何促成交易的话术与技巧(供参考) 一、是否包销售: 从经济的发展规律分析,商品价值体现在使用价值和货币价值,这两个价值的形成要通过一个流通渠道得以实现,因此,任何商品流通的结果取决于商品本身的使用价值与货币价值的综合价值,这些价值生成的决定权在商品本身的创造者,因此任何创造者以外的经营者和经营单位都不可能实现对商品综合价值的把控,这也就是市场上只有万能的流通渠道而不会出现万能的商品现象,所以市场流通中所谓的包销承诺都是不可取或者不可信的。 二、缴费的不做: 市场经营已经到了细分化专业对口性直接服务的经济时代!我们娱乐到娱乐场所消费、我们健身到健身场所消费、我们购物到大型超市或者专卖店去消费、坐车购票等等等等,现在已经达到了身上无钱寸步难行的境地了,您说是不是?纵观市场经济体系还有哪些不是通过消费而实现我们的需求呢?因此,首先您要肯定我们收费的必要性,其次您主要判定我们的服务是否有价值或者说您只要判定我们收取您的费用和为您提供的服务价值是否等值或超值即可,您说对不对? 三、其他网站免费: “免费”一词是经营者与消费者之间展开的一系列营销活动的敲门砖。古人云“天下没有免费的午餐” 就是这个道理。经营者最终的目的是盈利,经营者会通过各种的方法和手段从消费者身上获得利益最大化,这是事实。“免费”服务是经营者的付出,经营者不会简单到不盈利而免费付出服务,这不符合经营本质,因此,在“免费”的任何服务项目下,消费者不会得到自身的利益的价值实现,“免费” 服务表面给消费者实现的价值获益感觉是一种错觉。例如:马路边我们无偿得到了一个企业“免费”赠送的礼品,表面看消费客户得到了实惠——物品,但从经营者角度剖析我们就会明白:经营者花钱操作的行为和付出的“免费”礼品,其本质是通过这个方式获得企业自己的利益并通过“免费”客户的参与或试用,试验其服务或产品的市场价值性,在这样一个经营目的的指导下,任何“免费”的服务或试用都是没有把消费者当做客户或者上帝来看的。因此“免费”的任何方式都不会给消费者带来利益,并且一些隐性的危害也是消费者不容易发觉的。例如:“免费”小吃品本身的营养性和安全性,互联网的欺诈性和名誉损害等,都是消费者不容易察觉和控制的问题。 四、价格太高: 价格是商品价值的外在表现,客户最直接的感觉重点总是体现在是在商品的外在体现——价格上。这个现象很正常。我们用一个简单的观点分析一下:假如我们出门在外,如果经济条件允许的情况下,我们选择星级宾馆而抛弃招待所,为什么呢?此时我们是否看到的只是价格高低吗?不是的,是考虑到了我们自身的需求和可以满足需求的实现条件。再例如:假如我们需要到某处签约一个可以实现我们利益的项目,选择的工具可以是徒步、自行车、宝马汽车,那么我们使用什么样的工具更利于我们签约利益的实现?这是显而易见的,其中的商业内涵同样也是适合于我们书画艺术家这个领域的,您的席位越高、接受服务的年限越长、您一次性拿出可以实现自己利益的大手笔,在您得到产品服务利益的同时,您的经营内涵的信息也是您很大的一笔财富,就像人们都知道品牌的服装与其他服装看似都是衣服,但其众多的内涵价值也是不容忽视的,当然,最最重要的还是价格表象下的价值问题,值与

逼单话术

1、竞争:刘总,您看,现在你的竞争对手XXX已经做了很长时间了,您现在要是还不 做的话所有网络上的客户都跑到他家去了。 2、促销:刘总,这个月我们公司周年庆典,公司老总为答谢新客户,特做出百度推广 由原来的5600降低到3600。另外还可以赠送咱们一个2100元的网站,只需要交纳网站的空间域名费以及一个制作成本费600元的一个优惠活动,而且全省只限200家企业,您看刘总我先给您预定个名额吧。 3、假定客户已同意签约,将客户的思想引导至不是做与不做,而是如何去做的轨道上。 4、帮助客户挑选,适时为他做相应决定。 5、建议成交 a)既然一切都定下来了,那我们就签个协议吧 b)您是不是在付款方式上还有疑问? c)您是不是还有什么疑问,还要向人咨询吗? d)我们先签个协议吧,我也开始准备下面的工作,好早日让你们上网,早日受益。 e)如果现在签协议的话,您觉得我们还有哪些工作要做? f)您希望您们的网站什么时候上百度?如果您们要求很快的话,我们就得赶快做了, 譬如签协议、准备资料等。 1、经理,你现在不做的话。不就等于拱手相让给你同行了么?谁家的XX你不也认识吗? 人家都做了。你还担心什么? 2、经理,一个企业的发展好与坏主要是销售渠道。我们为您提供一个很好的新兴销售渠道。 而且现在已经很成熟了,上面有很多您的同行都在挣钱。您可以尝试一下。非常方便,便捷。而且对于价格方面很可观! 3、经理,身为一个负责领导。我想你最关心的就是你的潜在客户吧?试问你是如何寻找你 的潜在客户呢?效果如何呢?让客户自己去想一些让他去做比较,我想效果也是很不错的! 4、经理,现在的社会是新兴的社会。是电子时代的社会。网络的时代。你要与时俱进,跟 上时代步伐。国家也提倡中小型企业发展最快最迅速的就是让电子商务带动企业发展。 所以你该慎重考虑了。 1、您要是没什么问题,咱们就合作吧! **经理,这是我们的协议,您看一下。 没有什么问题的话,我就把协议给您拿上,咱们尽快合作,您也尽快受益。 2、假设成交法:不要问客户买不买,可直接问:XX总您是付现金还是打款。 订单缔结法:可直接说:XX总您是选择5600的还是10600的。 不确定缔结法:可先把产品或者促销活动介绍给客户,当客户认可了但还犹豫的时候,可说:我们这个活动现在做的非常火,不知道现在还有没有,名额如果还有的话今天您一定得抓住机会定了啊。 客户都是很精明的,有的客户对一些销售技巧都比较熟悉看,所以谈单时候一定要真诚! 3、您跟这些家推广的有很大区别吗?没有太大区别,他们能挣钱,您怎么不能? 4、你考虑什么?担心效果还是差价格这块? 5、您要是真有想法就尝试一下,否则到什么时候都不知道互联网中的第一产品百度怎么帮

统一销售话术

店面销售统一话术 一、谈单10大要素 1;激情,亲和力,声音。 2;包装品牌 3;专业知识 4;快速展示卖 5;互动 6;对比 7;煽情 8;健康理念 9;肢体语言 10;逼单 1只过来看看,先交订金站住折扣。 2主动要求开单。 寻找卖点方法 1;挖掘卖点,从技术含量挖掘,卖科技产品最高端的技术。 2;原材料的取得不易, 3;从工艺工匠的不同 4;设计的艺术,文学,理念性, 5;从理念性挖掘《健康》文学中找到《知识》 6;塑造卖点 7;名人效益 降价的7个理由 1;订期货降3个或5个点 2;想方设法套出顾客底限《申请过期活动》红星居然每个月都有活动或十月份总裁签售,3;降价,一定要顾客说出低价, 4;内部价员工折扣、 5;这是设计师带过来的单子 6;样品 7;高端顾客煽情 逼单 1;先铺垫=即切入 顾;多少钱购,你今天来的真是机会,我们现在有很大的优惠, 2报价格要分开《一套多少,》折后多少 2;;降价;每次都要有一个合理的理由,《现和期货的折扣》《顾客的语气》 3;降价弧度不要太大,每个价格的理由充分 4;谈价格先紧后松,只要顾客的脚没有出门,价格就咬死,客人脚刚踏出去,就把他拉回来, 5;谈价格一定要学会对比 《拿国外人和国内人的生活方式对比》 给年轻人讲,拿年轻人的生活方式去讲 6;谈价格,强势的顾客用弱势去讲,弱势的顾客引导去讲 7;谈价格学会取中间数 8;利益引诱法《送礼品》当你价格相差不多时送礼品,送东西。 9;谈单一定要灵活,顾客急脾气,一定不要去磨,对内向的坐着磨。 1顾客:换轮世家什么品牌,之前没听过

导购:华伦世家至1992年成立以来我们的设计师一直在摸索什么是品牌,品牌和名牌的区别,名牌是到处做广告,就像可口可乐,知名度很好,但是那是老百姓都可以拥有的,我们一直在做品牌,品牌是什么,长久以来,人们一遍遍探寻着品牌的定义。什么是奢华奢华总是超现实的,真正的奢华只为少数人定制,被更少数人所拥有。奢华既是物质的,也是精神的。品牌不是炫耀,是满足自己内心的欲望。 2、顾客:产品是属于什么风格 导购::赛特名典是法式新古典家具,整体属于法式后奢华风格,是目前最主流的家具风格。摈弃了传统大法式的大规格和过于繁琐的外观,并将不同风格中的优秀元素汇集融合,精致而不失情调。是集小法师的框架,现代的时尚元素和美式的线条为一体的。真正参悟了法式家具浪漫雅致,大气兼容并蓄的创新精神,同时又结合现代时尚元素和简明的线条,体现了后奢华的风格特色。满足品味人士既崇尚经典又追求创新的审美情趣,可谓是古风新律。这种多角度的立体化的设计思想,使家具从不同的角度都可以领略到细腻的设计美感,具有丰富的内容。赛特名典要传达的不是轻飘飘的缤纷和绚丽,更是沉着与内敛之美,所有追求高品质生活的的成功人士都能与华伦世家家居低调独到的特质相契合。 ,我们所传递的是一种高贵个性的生活方式. 3、顾客:你们是实木雕刻吗怎么可以如此立体极致 导购:首先我们的雕花的绝对100%的实木手工雕刻,这也是我们家具最具艺术特性的地方,再者我们主材是俄罗斯的桦木,它的特性就的利于雕刻加工,他的密度,稳定性是众多木材中独有的。所以对我们的雕刻工艺有很大的帮助。最后我们公司都是高薪聘请的10年以上的雕刻大师,他们有着多年的雕刻技艺和自己的家具艺术的理解,所以我们每件产品都是独一无二的艺术品。 4、顾客:你们这是什么颜色 导购:我们是现代时尚元素的黑炭钢琴烤漆和黄酸枝烤漆以及银箔色,根据不同的小系列,我们做了以上不同的几种颜色。每一种都有它独特的贵气和艺术气息。这种颜色沉稳大气,高雅怀旧,艺术性很强。放在家里可以体现出主人的浪漫生活情趣和高雅的审美,更能体现家居的艺术特性。 5、顾客:你们家的油漆是怎么做的 导购:我们用的钢琴烤漆工艺,它的工序非常复杂,首先,需要在木板上涂以腻子,作为喷漆的底层;将腻子找平后待腻子干透,进行抛光打磨光滑;然后反复喷涂3-5 次底漆,每次喷涂后,都要用水砂纸和磨布抛光;最后,再喷涂1-3次亮光型的面漆,然后使用高温烘烤,使漆层固化。与传统普通的高亮喷漆相比,钢琴漆有两大本质的不同点— 第一,钢琴漆有很厚的底漆层,实际上,真正钢琴漆的表层,如果用力敲碎,是会像搪瓷一样碎裂的,而不是像普通的漆层一样剥落的;第二,钢琴漆是烤漆工艺,而不是喷漆工艺,经过了一次高温固化过程。由于这种差别,所以,与普通的喷漆相比,钢琴漆在亮度、致密性特别是稳定性上要远远高得多,如果不发生机械性的损坏,钢琴漆表层经过多年后依然光亮如新,而普通的亮度喷漆早已氧化渗透不复旧观了。也正因为如此复杂的工序,我们华伦世家家具一直秉承生产最优质的产品,为广大消费群体服务。 为了我们可以看到家具表面清晰而优美的纹路。我们采用各种名贵的木皮文理拼花技术,使得纹理呈现渐变的色彩效果,具有立体感和层次感,从不同的角度木材表面都给我们不同的机理效果,将颜色做活了。所以我们的深色家具不沉闷,不压抑,更别有一番温馨,浪漫,和谐,自然的灵动之美。 6、布艺沙发卫生难清理,不如皮沙发好打理。你们这沙发可以拆洗吗 导购:我们的布艺沙发其实比较容易打理,因为我们的布艺都是经过防尘防污处理过,织层较密,灰尘不易渗透。平时可以用吸尘器清理浮尘,干净的毛巾占清水擦拭污渍,定期清洁的时候用专用的泡沫清洗剂也很方便的。

电话销售优秀话术分享逼单

一)逼单是整个业务过程中最重要的一个环节。 如果逼单失败你的整个业务就会失败,其实整个业务过程就是一个“逼”的过程,逼要掌握技巧,不要太操之过急,也不要慢条斯理,应该张弛有度,步步为营,也要晓之以理,动之以情。我们来探讨以下如何逼单? 1、去思考一个问题,客户为什么一直没有跟你签单?什么原因?很多同事提出客户总是在拖,我认为不是客户在拖,而是你在拖,你不去改变。总是在等着客户改变,可能吗?做业务从来不强调客观理由。客户不签单肯定有你没做到位的地方,想一想?这是一个心态问题! 2、认清客户,了解客户目前的情况,有什么原因在阻碍你?你一定要坚信,每个客户早晚一定会跟你合作,这只是一个时间问题。我们要做的工作就是把时间提前,再提前。原因:意识不强烈,没有计划,销量不好,只是代理,建设新厂房或是搬迁,正在改制,品种单一,客户有限,太忙,价格太贵,对你或是CE不了解、不信任、没有电脑,没人管理等等各种理由,我不怕,我要遇佛拜佛,遇鬼杀鬼。 3、只要思想不滑坡,方法总比困难多。不要慌,不要乱,头脑清醒,思路清晰。视死如归,正义凛然。有问题我们要去分析、解决,有问题是正常的,好哇!我就是喜欢挑战,很有意思吗,生活充满了乐趣,就像一场游戏。 4、抓住客户心理,想客户所想,急客户所急,你要知道他究竟在想些什么,他担心什么?他还有什么顾虑。 5、一切尽在掌握中,你就是导演。你的思想一定要积极,譬如太忙?为什么?就是因为有些事情可以用网络去作,可你却偏偏跑腿,发个伊妹儿不就行了吗!你怎么去引导客户将劣势变为优势,将不利因素变为有利因素。 6、为客户解决问题,帮助客户做一些事情,为客户认真负责,为客户办实事、办好事,让客户感受CE 的服务,温暖。 7、征服客户,发扬蚂蝗吸血的叮与吸的精神,这种精神不仅体现在工作时间里,还有业余时间里,一定要有耐心,锲而不舍,百折不挠,用你的执著感动客户,让上帝流泪,“哭泣”,说:唉,小伙子我真服了你了。你这中精神值得我们的业务人员去学习。过来跟我干吧!我高薪聘请。 8、能解决的就解决,不能的就避重就轻,将问题淡化,避开。这就要求你头脑一定要灵活。 9、假设成交法,是我们做单常用的方法之一。先让他来参加一下我们的会员服务,先帮助他拍拍照片,等。签单是顺利成章的事情。或者在签单以前先填写一下表格,当谈的差不多的时候,要说:我们办一下手续吧,不要说太刺的词语。 10、逼单就是“半推半就”,就是强迫成交法,以气吞山河之势,一鼓作气将客户搞定。让客户感觉的有一

促成话术话术

各位伙伴: 以下是集合了众多行业精英销售人员的智慧,并根据中心课程的特点,成交、整理收单有关话术技巧精要(39条)。希望能给家人们一些启示与作用。祝大家勇创佳绩! 成交、收单话术集锦 一、首先把中心课程价值带给顾客,通过咨询,通过黄金问句收单;通过礼品建立信赖感,如送光碟、送书等;激励自我,以真诚为本,先了解客户的需求,不了解需求不说价值,不了解价值不说价格。 团队合作,成立专门的收单小组,以开发客户伙伴的核心为主,组成收单组合。 差异化的服务,不定期给客户发问候,或管理名言分享短信,塑造培训的价值。 二、对于客户做好、做足前期的了解,掌握客户尽可能多的信念,最主要的是关键人物的信息(董事长、总经理);信心+智慧+努力;塑造中心,让客户认为,认定中心就是他学习的榜样。 三、针对有些客户谈到最后他就是不买单,但是我们可能感觉得出客户是有需求,针对这类客户可以用“门”,用缔结法有时可以起到反败为胜的效果。 使用:当我们把产品优点、好处、能为客户带来的利益都讲清楚了,我们能用的方法都用过了,客户就是不成交,这时我们可以起身收拾资料,向客户告别,客户紧张的心理全部解除,心情自然会放松,当你走到门边,手握门把时,突然转身对客户说:某某先生(老板),你可不可以帮我一个忙? 客户:什么忙? 顾问:你可不可以告诉我你今天不买的原因,当我下一次遇到同样的客户时,我才知道该怎么做。 这时客户一般都会告诉你,他为什么不买的原因,当你找到这个真实的抗拒点后,再给予合理的解除,这时很可能会缔结成交。 针对有些犹豫不决的客户,他没告诉你不买,也没告诉你要买,这类客户有时可以采用“强迫式成交法”—— 某某先生(老板),先前我已把我们课程的好处,能为你带来的利益已经讲得很清楚了,某某先生(老板),您也知道学习对企业来说是必须的,而能够掌握企业在经济大环境下的状态和应对策略十分重要,根据刚才对您及您的企业了解,我们建议您派两个人参加注意:这时就不要讲话,谁先讲话谁先死! 四、内训收单法(即产品组合) 当与客户谈完“棉袄”战略后,客户对课程感兴趣,但最大的兴趣来自内训。客户本来很多都需求内训,我们塑造内训价值,挖掘内训方面,和客户谈好,可以建议客户两项产品一起采购。我们买一送一。但价格一定要报的高一些。 和客户说清楚,这种优惠需要申请,只有针对会员才会有这样的优惠!

逼单话术

逼单话术 在家长说回去考虑的情况下如何逼单? 1 家长您好!您考虑是从哪些方面去考虑呢?学习是否有效果? 我很自信的给你保证我们雄厚的师资力量专业的教研组团队孩子在我们这边学了后绝对会有进步的!这边不仅能帮助孩子激发学习的兴趣建立一套属于他自己的学习方法查漏补缺把握重难点以及考点各个击破所以放心的把孩子交到我们这里吧!同时还会给孩子做心理疏导感恩教育励志教育亲子教育等等服务让孩子不仅成绩好还能是个很有教养和内涵的孩子!所以没有其他什么好顾虑的了我帮他把报名表填好排最适合他的老师暑假就可以开始快乐学习了 2家长您好!您是觉得学费对于您来说偏贵了点么?咱们来看看性价比的问题吧虽然表面上看价格有点高其实一点都不高为什么呢?因为第一我们的学习效果可以得到保障这边可以给您承诺孩子学习50个小时以上至少可以提高20分是至少哦!我们的师资力量也是雄厚的大部分从成都派来的老师责任心与高度专业的教研团队可以保证孩子的学习效果同时还会有感恩教育亲子教育励志教育来激发孩子的潜能以及人生目标我相信他在戴氏的收获绝对高过于其他地方!第二我们的教学环境那么棒的学习环境以及多媒体教室硬件和软件都是一流的所以综合这两方面来看我们的价值远远超过您所交的价格了!相比起其他的那些家教等我们的师资我们的专业我们的流程我们的系统是他们不可能达到的!所以您这个费用是非常值得的! (针对如何在周日前收完家长应交的费用的话术) 交了定金的情况下如何逼单? 1您好,是这样的我们这边总部有规定,是必须交清所有的学费才能排课以及上课,先交定金只能预定老师没办法马上给孩子排课以及上课如果下周来交齐的话 只能下下周才能上课现在孩子的时间都很紧如果下周来交清学费的话可能会耽误孩子的宝贵的学习时间的。 2 办卡催单--您好,是这样的我们这边总部有规定,办卡是限量发的如果下周来的话一万成绩,的卡若发完了只有办两万的了所以我建议您呢还是最好这周办好些!而且孩子也能尽快的提升学习有更多的学习时间。 3您好,是这样的我们这边总部有规定每周财务老师要扎帐只有在一周内完成所有费用才能享受卡上的优惠政策,如果下周来交齐的话只能下下周才能上课现在孩子的时间都很紧如果下周来交清学费的话可能会耽误孩子的宝贵的学习时间的。 罗丽 2012-5-11

汽车异型胶管的新工艺及配方

1 汽车用异型胶管新工艺及特点 原胶管生产设备工艺复杂、工序多。人为因素影响大。精确度不高。而新生产线生产工艺全部由微机控制,胶管内、外胶挤出机的工艺参数全部自控,减少人为因素影响,产品质量均一。外胶挤出采用负压挤出,提高了内、外胶的粘合力。内管挤出后,由激光测径仪测径。增强层采用针织结构,自动按要求裁断,硫化采用抽真空工艺。生产工艺如下:混炼胶制备→物理性能测试→热炼→内管挤出→冷却→织物编制→外胶挤出→冷却→打印标识→裁断→硫化→清洗→切头→检验→包装人库 由于采用同步联动生产,冷喂料挤出,比原工艺减少了混炼胶热炼、内管停放、穿棒、涂胶浆、脱棒等繁杂的手工操作。因而。与原工艺相比,有如下优点: (1)胶管质量高。由微机控制挤出机各部位温度、冷却温度,精确度高,胶管内、外胶厚度均匀性稳定,内外层胶粘合性好。 (2)生产联动化,效率高。由原来10人减少为3人,挤出速度提高到(6~10)m/min。 (3)自动化程度高,操作简单。由原来的手工经验操作,变为微机控制。 (4)生产安全。一个局部出现故障,自动停车。 2 汽车用异型胶管的种类 该汽车用异型胶管主要为发动机系统用胶管。 由于发动机设计结构紧凑,空间小,需要将不同胶管根据不同车型来设计为不同弯度。不同直径。不同长度,以避开其他固定件的弯管。发动机系统主要弯管有燃料油胶管、散热器胶管、加热器胶管、油冷却胶管、空气滤清器胶管等。直径由8 mm至50 mm。 3 汽车用异型胶管的材料选择及配方设计 由于汽车用异型胶管对性能要求的多样性。用于制造胶管的橡胶品种越来越多,并要求不断用新材料以满足高性能的要求。在选择材料时。不仅需要考虑满足使用性能的技术条件,还要考虑它的加工性能及成本。安装在发动机或散热器附近的汽车用异型胶管,在汽车发动之后,胶管温度上升,在高温条件下。使胶管的耐油、耐热性下降,并促进胶管的老化,降低使用寿命。现代汽车对胶管提出了新的要求,这主要是发动机温度的提高,高芳烃无铅燃

保险十大经典成交话术

十大经典成交话术 话术一:"我要考虑一下"成交法 当顾客说他要考虑一下时,我们该怎么说? 销售员话术: ××先生(小姐),很明显的,你不会花时间考虑这个产品,除非你对我们的产品真的感兴趣,对吗? 我的意思是:你告诉我要考虑一下,该不会是只为了躲开我,是吗? 因此我可以假设你真的会考虑一下这个事情,对吗?可不可以让我了解一下,你要考虑一下的到底是什么呢?是产品品质,还是售后服务,还是我刚才到底漏讲了什么?××先生(小姐),老实说会不会因为钱的问题呢? 话术二: "鲍威尔"成交法 当顾客喜欢某个产品,但习惯拖延做出购买决定时,我们怎么办? 推销员话术: 美国国务卿鲍威尔说过,他说拖延一项决定比不做决定或做错误的决定,让美国损失更大。 现在我们讨论的不就是一项决定吗? 假如你说"是",那会如何? 假如你说"不是",没有任何事情会改变,明天将会跟今天一样。 假如你今天说"是",这是你即将得到的好处:1、……2、……3、…… 显然说好比说不好更有好处,你说是吗?

话术三:"不景气"成交法 当顾客谈到最近的市场不景气,可能导致他们不会做出购买决策时,你怎么办? 销售员: ××先生(小姐),多年前我学到一个人生的真理,成功者购买时别人都在抛售,当别人都在买进时他们却卖出。 最近很多人都谈到市场不景气,而在我们公司,我们决定不让不景气来困扰我们,你知道为什么吗? 因为现在拥有财富的人,大部份都是在不景气的时候建立了他们事业的基础。他们看到的是长期的机会,而不是短期的挑战。所以他们做出购买决策而成功了。当然他们也必须要做这样的决定。 ××先生(小姐),你现在也有相同的机会做出相同的决定,你愿意吗? 话术四:"不在预算内"成交法 当顾客(决策人)以他们公司没有足够预算为借口,准备拖延成交或压价,你怎么办? 推销员: ××经理,我完全理解你所说的,一个管理完善的公司都必须仔细地编制预算。 预算是引导一个公司达成目标的工具,但工具通常本身需要具备有弹性,你说是吗? 假如今天我们讨论的这项产品能帮你的公司拥有长期的竞争力或带来直接利润的话,作为一个公司的决策者,××经理,在这种情况下,你是愿意让预算来控制你呢,还是由您自己来主控预算? 话术五:"杀价顾客"成交法 当顾客习惯于对你的优质产品进行杀价时,你怎么办?

胶管详细规格

CONTENTS目录 Technical Specification 技术参数 (2) 1.Straight Hose 直管 (3) For connection between the turbocharger and the engine. 用于连接涡轮增压器和发动机。 2.Straight Hose Reducer 变径直管 (6) Used to connect piping of different lining, different dimensions. 用于连接不同内衬层,不同口径的管道。 3.Standard Elbow Hose(45℃, 90℃, 135℃) 标准弯管(45℃, 90℃, 135℃) (8) Can be produced in many sizes and various colors. 尺寸和颜色可以定制。 4.Elbow Hose Reducer 变径弯管 (14) For connection piping of different diameters. 用于连接不同口径的管道。 5.Hump Hose 波纹管 (16) For superior connections between engine-mounted charge air system componets. 用于连接发动机进气系统元件。 6.Hump Hose Ruducer 变径波纹管 (18) Used to connect piping of different dimensions. 用于连接不同口径的管道。 7.T-Piece Hose T型管 (19) Can be connected to a third component . 可以连接分支管。 8.Vaccum Hose 真空管 (20) For heavy duty pressure connections in hostile engine environments. 用于重载车恶劣的发动机环境中的管路连接。 9.Custom Bend Hose 异型管 (21) Custom bend silicone rubber hoses can be made according to customers' designs. 可以根据客户的要求定做。 10.Performance Silicone Hose 特种硅胶管 (22) Performance silicone hoses which used on modified cars possess the excellent performance of high temperature and high pressure resistance, max temperature can reach to +300℃ and max pressure can reach to 3.0MPa. 极好的耐高温高压特性,高温可达+300℃,高压可达3.0Mpa,主要用于改装车上,以提高汽车的整体性能。

促成话术的技巧

促成话术的技巧标准化管理部编码-[99968T-6889628-J68568-1689N]

促成不是只有一个步骤,而是一连串动作的连续,不是一个交易,而是一系列交易的总和。——林裕盛(台湾寿险大师) 促成没有丝毫的侥幸,惟有推销员的勤奋的努力。促成代表了收获,付出代表了播种,只有付出,才能杰出。) 促成话术的技巧 1、促成讲话时语气要坚定,态度要坚决。 2、促成时要大胆心细,不可犹豫。 3、促成讲话时语言要精练,动作要敏捷。 4、促成时要快速积极,以快取胜。 5、成时要察言观色,把握成交信号。 6、促成时要少说为佳,倾听为主。 1、顾客:你也不要来了,这不有您的名片吗上面有你的电话和手机,等我考虑好我打电话通知你,我不买则已,买肯定找你买,要省得你跑前跑后,浪费你的宝贵时间。推销员:谢谢你!你真会替我考虑,你一定不要介意,推销保险是我的工作职责,能为你送去一份保障是我的幸福,你看通过我的多次来访和介绍,你也深切地感受保险的好处和意义,你也的确想为您的家人购买一份合适的保险,同时你也认可了我这个推销员,从我们保险专业的人士来讲,作保险越早做越合适,为什么这样讲呢一是风险无处不在,天有不测风云,人有旦夕祸福,保险可以等,风险可以等吗一旦风险降临在你我的头上,到那时后悔就来不及了。二是你既然已经决定购买保险为什么还要等呢?要知道买保险它也是一种投资,同时也为了你的家庭建立一份未来的风险保障,它是一种变项的储蓄,是在帮助你聚财、理财、生财,有人说:“科学理财,财源滚滚,你不理财,财不理你。”你从我这办理了一份保险,就是让财气伴随着你,幸福围绕着你,风险避开你,厄运让开你,爱心呵护着你,你今天给我一个机会,明天我回报你一个惊喜,此时此刻你还有什么可犹豫的呢? 2 、顾客:你让我考虑一下,等一等再说吧!推销员:你讲的很有道理,向保险这样的长期投资你就应该通盘考虑全面分析才对,但是正因为是长期投资才应该购买人寿保险,为什么这样讲呢?你看一看西方国家的保险它己广泛深入人心,人人都有保险,人人都有保障,况且我国实行改革开放,向发达国家并轨,西方国家的昨天,就是我们国家的明天,你不妨回顾一下你周围的人,都购买了我们中国人寿保险公司的保险,还有你的孩子在学校也不都参加了保险了吗?由此可见保险已成了生活的必需品,尤其向你这样有超前意识,明智的人就更应该购买人寿保险,为你的将来做一个

销售逼单成交话术及技巧

销售逼单成交话术及技巧 首次报价重要吗。。。 在日常的销售过程中,在我们做好所有流程的情况下,还是会因为临门一脚踢的不准不到位丧失准客户准订单,如何逼单如何提高成交率具体的原因林林总总,但是总是离不开主要的几点,现就将主要几种技巧和话术分享如下: 一:成交法: ★一、从众成交法: 客户在购买产品时,往往不愿意冒险尝试,凡是没经过试用的新产品,客户一般都持有怀疑态度,不敢轻易选用。面对于大家认可的产品,他们则容易信任和喜欢。针对这些,销售人员要可向客户举出很多案例来,表明自己的产品已经受到很多客户的欢迎,借此消除客户的疑虑。★二、讲故事法: 如果客户想买你的产品,又担心你的产品某方面有问题,那么销售人员可以讲一讲前一家公司购买产品的事情,强调每一个客户的满意度,让顾客消除疑虑。 ★三、同行刺激法: 带着激动的表情告诉客户同行有哪些客户已经购买了,现在资源本身就已经很少了,这已经是最后的机会了。 ★四、解决问题法: 销售人员要按照客户关心的事项按主次排序,然后根据客户的实际情况把产品的特点和价值与客户的关心点密切结合起来,把客户与自己达成交易所带来的实际利益展示在客户面前,促使客户下决心达成协议。 ★五、二选一法: 站在企业的行业情况、经营区域和其客户的角度考虑选择好快线种类。该行业有哪些热门词,其业务开展的区域,其潜在客户在找他时习惯使用什么词给客户提供两种解决问题的方案,无论客户选择哪一种,都是销售人员想要达成的一种结果。运用这种办法,可把客户从“要不要” 的问题引导到回答“A or B”上来。 六、惜失成交法: 人们对越是得不到.买不到的东西,越想得到.买到它。一旦客户意识到购买这种产品是很难得的良机,他们就会立即采取行动。销售人员可以利用客户“怕买不到”的心理,采用限数量.限时间.限服务.限价格等做法,来促使顾客即使做出购买决定。 七、步步紧逼法:

销售技巧和话术之解决客户抗拒的十大借口

销售技巧和话术之解决客户抗拒的十大借口 话术一:"我要考虑一下"成交法 当顾客说他要考虑一下时,我们该怎么说?销售员话术: ××先生(小姐),你告诉我要考虑一下,该不会是只为了躲开我吧?(玩笑语气)可不可以让我了解一下,你要考虑一下的到底是什么呢?是产品品质,还是售后服务,还是我刚才到底漏讲了什么?××先生(小姐),老实说会不会因为钱的问题呢? 话术二: "鲍威尔"成交法 当顾客喜欢某个产品,但习惯拖延做出购买决定时,我们怎么办?推销员话术:美国国务卿鲍威尔说过,他说拖延一项决定比不做决定或做错误的决定,让美国损失更大。现在我们讨论的不就是一项决定吗?假如你说"是",那会如何?假如你说"不是",没有任何事情会改变,明天将会跟今天一样。假如你今天说"是",这是你即将得到的好处:1、……2、……3、…… 显然说好比说不好更有好处,你说是吗?

话术三:"不景气"成交法 当顾客谈到最近的市场不景气,可能导致他们不会做出购买决策时,你怎么办?销售员:××先生(小姐),多年前我学到一个人生的真理,成功者购买时别人都在抛售,当别人都在买进时他们却卖出。最近很多人都谈到市场不景气,而在我们公司,我们决定不让不景气来困扰我们,你知道为什么吗?因为现在拥有财富的人,大部份都是在不景气的时候建立了他们事业的基础。他们看到的是长期的机会,而不是短期的挑战。所以他们做出购买决策而成功了。当然他们也必须要做这样的决定。××先生(小姐),你现在也有相同的机会做出相同的决定,你愿意吗? 话术四:"不在预算内"成交法 当顾客(决策人)以他们公司没有足够预算为借口,准备拖延成交或压价,你怎么办?推销员:××经理,我完全理解你所说的,一个管理完善的公司都必须仔细地编制预算。预算是引导一个公司达成目标的工具,但工具通常本身需要具备有弹性,你说是吗?假如今天我们讨论的这项产品能帮你的公司拥有长期的竞争力或带来 直接利润的话,作为一个公司的决策者,××经理,在这种情况下,你是愿意让预算来控制你呢,还是由您自己来主控预算? 话术五:"杀价顾客"成交法

保险推销话术大全:促成话术

保险推销话术大全:促成话术促成不是只有一个步骤,而是一连串动作的连续,不是一个交易,而是一系列交易的总和。 ————林裕盛(台湾寿险大师) 促成没有丝毫的侥幸,惟有推销员的勤奋的努力。 ————-季伍利(一个小人物) 促成代表了收获,付出代表了播种,只有付出,才能杰出。 ————季伍利(一个小人物) 促成话术的技巧 1、促成讲话时语气要坚定,态度要坚决。3、促成时要大胆心细,不可犹豫。 2、促成讲话时语言要精练,动作要敏捷。4、促成时要快速积极,以快取胜。 3、成时要察言观色,把握成交信号。5、促成时要少说为佳,倾听为主。 1、顾客:你也不要来了,这不有您的名片吗?上面有你的电话和手机,等我考虑好我打电话通知你,我不买则已,买肯定找你买,要省得你跑前跑后,浪费你的宝贵时间。推销员:谢谢你!你真会替我考虑,你一定不要介意,推销保险是我的工作职责,能为你送去一份保障是我的幸福,你看通过我的多次来访和介绍,你也深切地感受保险的好处和意义,你也的确想为您的家人购买一份合适的保险,同时你也认可了我这个推销员,从我们保险专业的人士来讲,作保险越早做越合适,为什么这样讲呢?一是风险无处不在,天有不测风云,人有旦夕祸福,保险可以等,风险可以等吗?一旦风险降临在你我的头上,到那时后悔就来不及了。二是你既然已经决定购买保险为什么还要等呢?要知道买保险它也是一种投资,同时也为了你的家庭建立一份未来的风险保障,它是一种变项的储蓄,是在帮助你聚财、理财、生财,有人说:“科学理财,财源滚滚,你不理财,财不理你。”你从我这办理了一份保险,就是让财气伴随着你,

幸福围绕着你,风险避开你,厄运让开你,爱心呵护着你,你今天给我一个机会,明天我回报你一个惊喜,此时此刻你还有什么可犹豫的呢? 2、顾客:你让我考虑一下,等一等再说吧! 推销员:你讲的很有道理,向保险这样的长期投资你就应该通盘考虑全面分析才对,但是正因为是长期投资才应该购买人寿保险,为什么这样讲呢?你看一看西方国家的保险它己广泛深入人心,人人都有保险,人人都有保障,况且我国实行改革开放,向发达国家并轨,西方国家的昨天,就是我们国家的明天,你不妨回顾一下你周围的人,都购买了我们中国人寿保险公司的保险,还有你的孩子在学校也不都参加了保险了吗?由此可见保险已成了生活的必需品,尤其向你这样有超前意识,明智的人就更应该购买人寿保险,为你的将来做一个未来的打算,你看你也了解了我们的公司,知道了符合你需要的人寿保险,同时也认可了我这个推销员,何不做当机立断做出决断呢?现在我就给你来个现场办公,马上给予办理。 3、顾客:现在我没有钱,等到我有钱,我再去找你不就行了吗? 推销员:你现在没有钱不要紧,正巧我身上带的有钱,我现在先给你办,等我三天办好以后给你送保单的时候你带给我钱不就行了吗。 顾客:不不!谢谢你了,我现在的确没有钱,等我有钱一定找你办理。 推销员:你看是不是这样行不行?你量力而行办保险先分二步走。第一步:你先办理一份交费少的保险,每月仅仅需要交纳60多元的重大疾病保险和人身意外伤害保险,这样你就建立一个基本的风险保障,以应对不测。第二步:等到你将来经济条件好转了,你再追加保障大的险种不就行了吗? 顾客:你讲的都对,而我现在的确连每月60多元都交不起,怎能办保险呢? 推销员:你可真会开玩笑,你每月的手机费,香烟费也不止60元,你难道说宁可花钱购买香烟抽却不能为你的健康的身体花一点钱,况且抽烟有害,不利于健康,而你购买我们的保险却是利国利民又利已的好事,难道说你不乐意购买吗?更何况你

相关文档
最新文档