2015届高三艺术班数学一轮复习资料 第二章 第6讲 指数与指数函数]

2015届高三艺术班数学一轮复习资料 第二章 第6讲 指数与指数函数]
2015届高三艺术班数学一轮复习资料 第二章 第6讲 指数与指数函数]

第二章 函数、导数及其应用 第6讲 指数与指数函数

一、必记3个知识点

1.根式的性质

(1)(n a )n =a .(2)当n 为奇数时n a n =a ;当n 为偶数时n

a n =?

????

a (a ≥0),-a (a <0).

2.有理数指数幂 (1)幂的有关概念:

①正分数指数幂:a m n

=n

a m (a >0,m ,n ∈N *,且n >1). ②负分数指数幂:a

m n

-=

1m n

a

1n a m

(a >0,m ,n ∈N *,且n >1).

③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质:

①a r a s =a r +

s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,

r ∈Q ).

3.指数函数的图像与性质

1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.

2.指数函数y =a x (a >0,a ≠1)的图像和性质跟a 的取值有关,要特别注意区分a >1或0

1.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(a 2x +b ·a x +c ≤0)的指数方程或不等式,常借助换元法解决.

2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按01

进行分类讨论.

(1)????2350+2-2·???

?2141

2

--(0.01)0.5; (2)5

6

a

13

·b

-2

·(-3a

1

2

-

b

-1

)÷(4a

2

3

·b

-3

)

1

2

2

11113

3

2

2-

-

-解:(1)原式=1+14×????4912-????11001

2=1+14×23-110=1+16-110=1615. (2)原式=-52a 1

6-b -3÷(4a 2

3·b -3)

12

=-54a 1

6-b -3÷(a 1

3b 23-)=-54a 12-·b 3

2-.=-54·1

ab

3=-

5ab

4ab 2

. (3)原式=111133

2

21

56

6

·a b a b a b

-

-

=a

111326

---·b

115

236

+-=1a

.

指数幂运算的一般原则

(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.

(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.

(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答

.

(2)已知实数a ,b 满足等式????12a =????13b ,下列五个关系式: ①0

A .1个

B .2个

C .3个

D .4个

(1)当x =1时,y =a 1-a =0,∴函数y =a x -a 的图像过定点(1,0),结合图像可知选C. (2)函数y 1=????12x

与y 2

=???

?13x 的图像如图所示.

由???12a =???13b

得,a

(1)C (2)B

指数函数图像的画法及应用

(1)画指数函数y =a x (a >0,a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),????-1,1

a . (2)与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.

(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解.

1.(2014·北京模拟)在同一坐标系中,函数y =2x 与y =????12x

的图像之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称

C .关于原点对称

D .关于直线y =x 对称

解析:选A ∵y =????12x =2-x ,∴它与函数y =2x 的图像关于y 轴对称. 2.方程2x =2-x 的解的个数是________.

解析:方程的解可看作函数y =2x 和y =2-x 的图像交点的横坐标,分别作出这两个函数图像(如图).

由图像得只有一个交点,因此该方程只有一个解.答案:1

已知f (x )=a a 2-1(a x -a -

x )(a >0,且a ≠1).

(1)判断f (x )的奇偶性;(2)讨论f (x )的单调性.

(1)函数f (x )的定义域为R ,关于原点对称.又因为f (-x )=a a 2-1(a -

x -a x )=-f (x ),所以

f (x )为奇函数.

(2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -

x 为减函数,从而y =a x -a -

x 为增函数.

所以f (x )为增函数.当0

x 为增函数,

从而y =a x -a -

x 为减函数.所以f (x )为增函数.故当a >0且a ≠1时,f (x )在定义域内单调

递增.

所以f (x )min =f (-1)=a a 2-1(a -

1-a )=a a 2-1·1-a 2

a

=-1.

所以要使f (x )≥b 在上恒成立,则只需b ≤-1.故b 的取值范围是(-∞,-1].

利用指数函数的性质解决问题的方法

求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.

课后作业

1.化简1

2

-(-1)0的结果为( B )

A .-9

B .7

C .-10

D .9

2.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 解析:由题意知0

1.函数y =

1-????12x 的定义域为________.答案:

,则实数a =________. 解析:当a >1时,f (x )=a x -1在上为增函数,则a 2-1=2,∴a =±3.又∵a >1,∴a = 3. 当0

做一做

1.已知f (x )=2x +2-

x ,若f (a )=3,则f (2a )等于( )

A .5

B .7

C .9

D .11 解析:选B 由f (a )=3得2a +2-

a =3,两边平方得22a +2

-2a

+2=9,即22a +2

-2a

=7,

故f (2a )s =7.

2.已知f (x )=3x -

b (2≤x ≤4,b 为常数)的图像经过点(2,1),则f (x )的值域( )

A .

B .

C .

D .上是增函数,f min (x )=f (2)=1,f max (x )=f (4)=

9.可知C 正确.

3.(2014·南昌一模)函数y =8-23-

x (x ≥0)的值域是________.

解析:∵x ≥0,∴-x ≤0,∴3-x ≤3,∴23-

x ≤23=8,∴8-23-

x ≥0,

∴函数y =8-23-

x 的值域为上的最大值比最小值大a 2

,求a 的值.

解:当a >1时,f (x )=a x 为增函数,在x ∈上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a .

∴a 2-a =a 2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =3

2.当0

在x ∈上,f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2.∴a -a 2=a

2.∴a (2a -1)=0,∴a =0(舍)或a =

12.∴a =12

. 综上可知,a =12或a =3

2

.

6.(2013·东北三校联考)函数f (x )=a x -

1(a >0,a ≠1)的图像恒过点A ,下列函数中图像不经

过点A 的是( )

A .y =1-x

B .y =|x -2|

C .y =2x -1

D .y =log 2(2x )

解析:选A 由f (x )=a x -

1(a >0,a ≠1)的图像恒过点(1,1),又0=1-1,知(1,1)不在y =1-x 的图像上.

7.函数y =????132

x 的值域是( ) A .(0,+∞) B .(0,1) C .(0,1]

D ..

8.函数f (x )=2|x -

1|的图像是( )

解析:选B f (x )=????

?

2x -1

,x ≥1,????12x -1,x <1,故选B.

9.已知a =20.2,b =0.40.2,c =0.40.6,则( )

A .a >b >c

B .a >c >b

C .c >a >b

D .b >c >a

解析:选A 由0.2<0.6,0.4<1,并结合指数函数的图像可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .

10.计算:???

?

321

3

-×???

?-760+81

4

×4

2- =________. 解析:原式=????231

3

×1+234×21

4

-???

?231

3=2.答案:2 11.设a >0且a ≠1,函数y =a 2x +2a x -1在上的最大值是14,求a 的值. 解:令t =a x (a >0且a ≠1),则原函数化为y =(t +1)2-2(t >0). ①当0

a 上为增函数. 所以f (t )max =f ????1a =????1a +12-2=14.所以????1a +12=16,所以a =-15或a =1

3. 又因为a >0,所以a =1

3

.

②当a >1时,x ∈,t =a x ∈????1a ,a ,此时f (t )在???

?1

a ,a 上是增函数. 所以f (t )max =f (a )=(a +1)2-2=14,解得a =3(a =-5舍去).综上得a =1

3

或3.

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

高中数学完整讲义指数与指数函数1指数基本运算

题型一 指数数与式的运算 【例1】 求下列各式的值: ⑴ 33(5)-;⑵ 2(3)-; ⑶ 335; ⑷ 2()()a b a b -<; ⑸ 4334(3)(3)ππ---.⑹2 3 8;⑺12 25- ;⑻5 12-?? ???;⑼34 1681- ?? ??? . 【例2】 求下列各式的值: ⑴ 44100;⑵ 55 (0.1)-;⑶ 2(4)π-;⑷ 66 ()()x y x y ->. 【例3】 用分数指数幂表示下列各式: (1)3 2x (2)43)(b a +(a +b >0) (3)32 )(n m - (4)4 )(n m -(m >n ) (5) 5 6 q p ?(p >0) (6)m m 3 典例分析 板块一.指数基本运算

【例4】 用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)3 22b a ab + (4)4233)(b a + 【例5】 用分数指数幂的形式表示下列各式(其中0)a >:3a ;2a . 【例6】 用根式的形式表示下列各式(a >0) 15 a ,34 a ,35 a -,23 a - 【例7】 用分数指数幂的形式表示下列各式: 2 a a ,3 3 2a a ,a a (式中a >0) 【例8】 求值:23 8,12 100 -,314-?? ???,3 41681- ?? ??? . 【例9】 求下列各式的值: (1)12 2 (2)1 2 6449- ?? ??? (3)34 10000- (4)23 12527- ?? ???

高考数学指数指数函数

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 48476Λ个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表 示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x 是自变量,y 是x 的函数。 (2)图象:

指数函数与对数函数(讲义)

指数函数与对数函数(讲义) ? 知识点睛 1. 指数函数及对数函数的图象和性质: 2. 利用指数函数、对数函数比大小 (1)同底指数函数,利用单调性比较大小; (2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法; (3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论; (4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合. 3. 换底公式及常用变形: log log log c a c b b a =(a >0,且a ≠1;c >0,且c ≠1;b >0) 1 log log a b b a = (a >0,且a ≠1;b >0,且b ≠1) log log m n a a n b b m = (a >0,且a ≠1;b >0,且b ≠1) log a b a b =(a >0,且a ≠1;b >0) ? 精讲精练 1. 若a ,b ,c ∈R +,则3a =4b =6c ,则( )

A .b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2. 计算: (1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________; (2)设0()ln 0x e x g x x x ?=?>?≤(), ()则1 (())2g g =_____________; (3)若2(3)6()log 6f x x f x x x +

高考数学指数指数函数

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x是自变量,y 是x 的函数。 (2)图象:

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

高考数学知识点:指数函数、函数奇偶性

高考数学知识点:指数函数、函数奇偶性指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。 可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提是a 大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y 轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。(7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数

1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理奇函数的图像关于原点成中心对称图表,偶函数的图象

2015高考数学二轮复习热点题型专题九 指数函数

专题九 指数函数 【高频考点解读】 1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型. 【热点题型】 题型一 指数函数性质的考查 例1、求下列函数的定义域和值域. (1)y =????23-|x +1|;(2)y =2 x 2x +1 ;(3)y =. 【提分秘籍】 解决与指数函数的性质问题时应注意 (1)大小比较时,注意构造函数利用单调性去比较,有时需要借助于中间量如0,1判断. (2)与指数函数单调性有关的综合应用问题,要注意分类讨论思想及数形结合思想的应用. 【举一反三】 已知函数f (x )= . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.

【热点题型】 题型二指数函数的图象及应用 例2、(1)已知函数f(x)=(x-a)·(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象是() (2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.

【答案】(1)A(2)[-1,1] 【提分秘籍】 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. 2.y=a x,y=|a x|,y=a|x|(a>0且a≠1)三者之间的关系: y=a x与y=|a x|是同一函数的不同表现形式. 函数y=a|x|与y=a x不同,前者是一个偶函数,其图象关于y轴对称,当x≥0时两函数图象相同. 【举一反三】 当a≠0时,函数y=ax+b和y=b ax的图象只可能是下图中的( ) 【热点题型】 题型三分类讨论思想在指数函数中的应用 例3、设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.

人教高一数学指数函数讲义

第四节、指数函数 一、初中根式的概念; 如果一个数的平方等于a ,那么这个数叫做a 的平方根,如果一个数的立方等于a ,那么这个数叫做a 的立方根; (一)指数与指数幂的运算 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示。 . 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。 当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0)。 由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n 。 思考:n n a =a 一定成立吗? 结论:当n 是奇数时,a a n n = 当n 是偶数时,???<≥-==) 0()0(||a a a a a a n n 例1、(1)=-+125.08 33-4 1633 (2)7722)(2y x y xy x -+ +-=

2.分数指数幂 正数的分数指数幂的意义 规定: )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(11 *>∈>==-n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>. 无理指数幂:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂. 对于根式的运算,简单的问题可以根据根式的意义直接计算,一般要将根式化为分数指数幂,利用分数指数幂的运算性质来进行计算。 例2、化简(1)=÷?----32 11321 32)(a b b a b a b a (2)=?÷?363342b ab a

高考数学:指数函数

指数函数 一、选择题(共17小题;共85分) 1. 已知 a =(?12)?1 ,b =2?12 ,c =(12)?1 2 ,d =2?1,则此四数中最大的是 ( ) A. a B. b C. c D. d 2. 已知 a = √5?1 2 ,函数 f (x )=a x ,若实数 m ,n 满足 f (m )>f (n ) ,则 m ,n 的关系为 ( ) A. m +n <0 B. m +n >0 C. m >n D. m c >b B. a >b >c C. c >a >b D. c >b >a 6. 函数 y =(12) 2x?x 2 的值域为 ( ) A. [1 2,+∞) B. (?∞,1 2] C. (0,1 2] D. (0,2] 7. 若函数 y =a x ?(b +1)(a >0,a ≠1) 的图象在第一、三、四象限,则有 ( ) A. a >1 且 b <1 B. a >1 且 b >0 C. 00 D. 0y 1>y 2 B. y 2>y 1>y 3 C. y 1>y 2>y 3 D. y 1>y 3>y 2 9. 若 x >y >1,0y b B. x a b y 10. 函数 f (x )=a x?1+4(a >0,且 a ≠1)的图象过一个定点,则这个定点坐标是 ( ) A. (5,1) B. (1,5) C. (1,4) D. (4,1) 11. 下列各式比较大小正确的是 ( ) A. 1.72.5>1.73 B. 0.6?1>0.62 C. 0.8?0.1>1.250.2 D. 1.70.3<0.93.1 12. 已知实数 a ,b 满足等式 2017a =2018b ,下列五个关系式:① 00,且 a ≠1)的图象经过点 P (2,1 ),则 f (?1) 等于 ( )

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

高三数学复习教案:指数与指数函数教案

第二章 指数函数与对数函数及函数的应用 一、知识网络 二、课标要求和最新考纲要求 1、指数函数 (1)通过具体实例(如细胞的分裂,考古中所用的14 C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 2、对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3、知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。 4、函数与方程

(1)了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。 (2)理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数. 5、函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 (3)能利用给定的函数模型解决简单的实际问题。 三、命题走向 函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势. 考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想. 指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。 预测2010年对本节的考查是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考查函数的性质。同时它们与其它知识点交汇命题,则难度会加大。

指数以及指数函数的整理讲义经典-(含答案)

指数与指数函数 一、指数 (一)n 次方根: 1的3次方根是( ) A .2 B .-2 C .±2 D .以上都不对 2、若4 a -2+(a -4)0有意义,则实数a 的取值范围是( ) A .a ≥2 B .a ≥2且a ≠4 C .a ≠2 D .a ≠4 (二)、 n 为奇数,a a n n = n 为偶数,?? ?<-≥==0 ,0 ,a a a a a a n n 1.下列各式正确的是( ) =-3 =a =2 D .a 0=1 2、.(a -b )2+5 (a -b )5的值是( ) A .0 B .2(a -b ) C .0或2(a -b ) D .a -b 3、若xy ≠0,那么等式 4x 2y 2=-2xy y 成立的条件是( ) A .x >0,y >0 B .x >0,y <0 C .x <0,y >0 D .x <0,y <0 4、求下列式子 (1).33 4433)32()23()8(---+- (2)223223--+ (三)、分数指数幂 1、求值 4 3 52 13 2811621258- --?? ? ????? ??;;; 243 的结果为 A 、5 B 、5 C 、-5 D 、-5 3、把下列根式写成分数指数幂的形式: (1)32ab (2)()42 a - (3) 3432x x x (四)、实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 1.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( )

高考数学-指数与指数函数讲义.doc

指数与指数函数 一?填空题 1. 已知f(x)=(a2-1)x是减函数,则a的取值范围是________. 2. (-1.8)0+(1.5)-2× 2 3 3 3 8 ?? ? ?? -(0.01)-0.5+ 3 2 9=________. 3. 指数函数y=? ? ?? ?b a x的图象如图所示,则二次函数y=ax2+bx的顶点横坐 标的取值范围是________. 4. 已知0≤x≤2,则y= 1 2 4325 x x - -?+的最大值为________. 5. 已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则g(x)=a x+b的图象是________. 6. (2011·新沂一中模拟)已知f(x)= ()1 1,0 2 ,0 x a x a x a x ? -++< ? ? ?≥ ? 是(-∞,+∞)上的减函数,那么实数a的取值范围是________. 7. 若函数f(x)?g(x)分别是R上的奇函数?偶函数,且满足f(x)-g(x)=e x,则有________. ①f(2) ??, 则f(2 010)=________.

二?解答题 10. 计算 ÷ 3a -73a 13; (2)2 3338-??- ??? +120.002--10(5-2)-1+(2-3)0; (3)已知1 1224m m -+=,求33221122m m m m -- -+的值. 11. 函数f (x )= 2-x x -1 的定义域为集合A ,关于x 的不等式22ax <2a +x (a ∈R )的解集为B , 求使A ∩B =A 的实数a 的取值范围. 12. (2011·丹阳中学期中)设函数f (x )=ka x -a -x (a >0且a ≠1)是奇函数. (1)求k 的值; (2)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集; (3)若f (1)=32 ,且g (x )=a 2x +a -2x -2mf (x )在[1,+∞)上的最小值为-2,求m 的值

高一数学讲义-指数运算与指数函数

指数运算和指数函数 要求层次重点难点幂的运算 C ①根式的概念 ②有理指数幂 ③实数指数幂 ④幂的运算 ①分数指数幂的概 念和运算性质 ②无理指数幂的理 解 ③实数指数幂的意 义 指数函数的概念 B 在理解实数指数幂 的意义的前提下理 解指数函数 在理解实数指数幂 的意义的前提下理 解指数函数 指数函数的图象和 性质 C ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ③掌握指数函数作 为初等函数与二次 函数、对数函数结 合的综合应用问题 板块一:指数,指数幂的运算 (一)知识内容 1.整数指数 ⑴正整数指数幂:n a a a a =???,是n个a连乘的缩写(N n + ∈),n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,这样的幂叫做正整数指数幂. ⑵整数指数幂:规定:01(0) a a =≠, 1 (0,) n n a a n a - + =≠∈N. 高考要求 第4讲 指数运算与指数函数 知识精讲

2.分数指数 ⑴ n 次方根:如果存在实数x ,使得n x a =(R,1,N )a n n +∈>∈,那么x 叫做a 的n 次方根. ⑵ 求a 的n 次方根,叫做a 开n 次方,称做开方运算. ① 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时, a 的n 表示. ② 当n 是偶数时,正数的n 次方根有两个,它们互为相反数.正数a 的正、负n 0)a >. ⑶正数a 的正n 次方根叫做a 的n 次算术根. 负数没有偶次方根.0的任何次方根都是0 0. n 叫做根指数,a 3.根式恒等式: n a =;当n a =;当n ||a a a ?=?-? 0a a <≥. 4.分数指数幂的运算法则 ⑴正分数指数幂可定义为:1(0)n a a > 0,,,)m m n m a a n m n +==>∈N 且 为既约分数 ⑵负分数指数幂可定义为:1(0,,,)m n m n m a a n m n a - += >∈N 且 为既约分数 5.整数指数幂推广到有理指数幂的运算性质: ⑴(0,,Q)r s r s a a a a r s +=>∈ ⑵()(0,,Q)r s rs a a a r s =>∈ ⑶()(0,0,Q)r r r ab a b a b r =>>∈ 6.n 次方根的定义及性质:n 为奇数时 a =,n 为偶数时 a =. 7. m n a = m n a - =(0a >,,*m n N ∈,且1n >) 零的正分数指数幂为0,0的负分数指数幂没有意义. 8.指数的运算性质:r s r s a a a +=,()r r r ab a b =(其中,0a b >,,r s ∈R ) 9.无理数指数幂 ⑴ 无理指数幂(0,a a αα>是无理数)是一个确定的实数. ⑵ 有理数指数幂的运算性质同样适用于无理数指数幂. 10.一般地,当0a >,α为任意实数值时,实数指数幂a α都有意义. 对任意实数α,β,上述有理指数幂的运算法则仍然成立.

高中数学指数与指数函数练习题及答案

高中数学指数与指数函数练习题及答案 2019级数学单元同步试题 (指数与指数函数) 姓名____学号____ 一、选择题(12*5分) 1.()4()4等于() (A)a16 (B)a8 (C)a4 (D)a2 2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是() (A)(B)(C)a (D)1 3.下列函数式中,满足f(x+1)= f(x)的是( ) (A) (x+1) (B)x+ (C)2x (D)2-x 4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b 中恒成立的有() (A)1个(B)2个(C)3个(D)4个 5.函数y= 的值域是() (A)(- )(B)(- 0)(0,+ ) (C)(-1,+ )(D)(- ,-1)(0,+ ) 6.下列函数中,值域为R+的是() (A)y=5 (B)y=( )1-x (C)y= (D)y=

7.下列关系中正确的是() (A)()()()(B)()()() (C)()()()(D)()()() 8.若函数y=32x-1的反函数的图像经过P点,则P点坐标是() (A)(2,5)(B)(1,3)(C)(5,2)(D)(3,1)9.函数f(x)=3x+5,则f-1(x)的定义域是() (A)(0,+)(B)(5,+) (C)(6,+)(D)(-,+) 10.已知函数f(x)=ax+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是()(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3 11.已知01,b-1,则函数y=ax+b的图像必定不经过()(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 12.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为() (A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n 答题卡 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 二、填空题(4*4分)

完整word版,人教高一数学指数函数讲义

第四节、指数函数 、初中根式的概念; 如果一个数的平方等于a,那么这个数叫做a的平方根,如果一个数的立方等于a,那么这个数叫做a的立方根; (一)指数与指数幕的运算 1.根式的概念 一般地,如果x" a,那么x叫做a的n次方根,其中n >1,且n € N . 当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时,a的n次方根用符号n a表示。 .式子R'a叫做根式,这里n叫做根指数,a叫做被开方数。 当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a 的正的n次方根用符号n a表示,负的n次方根用符号一:a表示?正的n次方根与负的n 次方根可以合并成土:a ( a>0)。 由此可得:负数没有偶次方根;0的任何次方根都是0,记作n0 0 思考:x a n=a 一定成立吗? 结当n是奇数时,n a n a 当n是偶数时,n a n| a | a (a 0) a (a 0) (2) . x2 2xy .(x y)7=

2 ?分数指数幕 正数的分数指数幕的意义 规定: m a n Va m (a 0, m, n N *, n 1) -1 1 * a n r 尸帛 (a °, m,n N ,n 1) a 7 va 0的正分数指数幕等于0, 0的负分数指数幕没有意义 指出:规定了分数指数幕的意义后,指数的概念就从整数指数推广到了有理 数指数,那么整数指数幕的运算性质也同样可以推广到有理数指数幕. 3 ?有理指数幕的运算性质 (1) r r a ?a s a (a 0,r,s Q) ; (2) r s (a ) rs a (a 0,r,s Q) ; (3) r (ab) r s a a (a 0,b 0,r 无理指数幕:-般地,无理数指数幕a (a 0,是无理数)是一个确定的 实数?有理数指数幕的运算性质同样适用于无理数指数幕. 对于根式的运算,简单的问题可以根据根式的意义直接计算, 一般要将根式化为 分数指数幕,利用分数指数幕的运算性质来进行计算。 2 例2、化简(1)丰匚(旦 a 2?V b 2 (2) 2?3a a ?2 , x 0 x (, a R ), 若 f[ f ( 1)] 1,则 a=( 2 x ,x 0 例 3 、已知函数 f ( x )

高一数学指数函数知识点及练习题含答案

指 数函数 2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质

2.1指数函数练习 1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 3433)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( )

相关文档
最新文档