二氧化硅表面的APTS修饰

二氧化硅表面的APTS修饰
二氧化硅表面的APTS修饰

纳米二氧化硅表面改性及其 补强天然胶乳研究

万方数据

万方数据

万方数据

纳米二氧化硅表面改性及其补强天然胶乳研究 作者:邱权芳, 彭政, 罗勇悦, 李永振, Qiu Quanfang, Peng Zheng, Luo Yongyue, Li Yongzhen 作者单位: 刊名: 广东化工 英文刊名:GUANGDONG CHEMICAL INDUSTRY 年,卷(期):2009,36(11) 被引用次数:0次 相似文献(10条) 1.期刊论文邱权芳.彭政.罗勇悦.李永振.Qiu Quanfang.Peng Zheng.Luo Yongyue.Li Yongzhen"胶乳共混法"制备天然橡胶/二氧化硅纳米复合材料及其性能-广东化工2009,36(4) 采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)改性纳米二氧化硅(SiO2),然后通过乳液聚合接枝上聚甲基丙烯酸甲酯(PMMA),再将其与甲基丙烯酸甲酯(MMA)改性的天然胶乳,通过胶乳共混法制备天然橡胶/二氧化硅纳米复合材料,结果显示,纳米二氧化硅表面接枝上了PMMA,二氧化硅在橡胶基体中分散良好,粒径在60~100 nm之间,得到的胶膜力学性能有很大的提高. 2.期刊论文魏福庆.李志君.殷茜.邵月君.段宏义.Wei Fuqing.Li Zhijun.Yin Qian.Shao Yuejun.Duan Hongyi纳米SiO2对天然橡胶/聚丙烯共混型热塑性弹性体的改性-合成橡胶工业2006,29(3) 在双辊电热式塑炼机上采用动态硫化法制备了天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPV).考察了纳米SiO2的加入顺序及其用量对NR/PP TPV力学性能的影响,研究了纳米SiO2填充改性TPV的耐溶剂性能和耐热变形性能,并用扫描电镜(SEM)观察了其两相结构和断面形貌.结果表明,纳米SiO2先与NR混炼均匀,再加入小料和硫黄所得的NR母炼胶与PP制备的TPV力学性能较好,且最佳的纳米SiO2加入量为3份;纳米SiO2改性的NR/PP TPV具有良好的耐溶剂性能和耐热变形性能;纳米SiO2提高了NR与PP相间结合强度. 3.期刊论文李志君.魏福庆.LI Zhijun.WEI Fuqing接枝和交联对纳米SiO2改性NR/PP共混型热塑弹性体的影响-高分子学报2006(1) 动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPE).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体"就地"熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO2 TPE的力学性能、耐溶剂性能和耐热变形性能最佳 .MAH/St/DCP"就地"接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PP TPE的综合性能得到明显的改善. 4.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu NR-g-(GMA-co-St)与nano-SiO2协同增强增韧PVC的研究-弹性体2009,19(2) 研究了甲基丙烯酸缩水甘油酯(GMA)/苯乙烯(St)多单体熔融接枝天然橡胶(NR)[NR-g-(GMA-co-St)]与nano-SiO2协同增强增韧PVC的力学性能,并通过SEM、TG-DTG表征了改性PVC的相结构及耐热分解性能.结果表明,当NR-g-(GMA-co-St)和nano-SiO2的质量分数分别为5%和3%时,相界面的结合强度明显提高,达到较好的协同增强增韧效果;与未改性PVC相比,增强增韧PVC的缺口冲击强度和断裂拉伸强度分别提高了78.9%和50.5%,并且具有较好的耐热分解性能. 5.期刊论文李志君.魏福庆NR-g-(MAH-co-St)对纳米SiO2改性NR/PP共混型热塑性弹性体的影响-弹性体 2004,14(6) 研究了马来酸酐/苯乙烯(MAH/St)多单体熔融接枝NR[NR-g-(MAH-co-St)]对纳米SiO2改性天然橡胶/聚丙烯动态硫化共混型热塑性弹性体(NR/PP TPV)力学性能的影响;采用SEM分析了TPV的断面形貌.结果表明:纳米SiO2的质量分数为0.03时,NR-g-(MAH-co-St)通过改善纳米SiO2分散的均匀性和细化交联NR分散相,使NR与PP两相的相容性得到明显改善,两相界面结合强度明显提高,NR/PP/纳米SiO2 TPV的力学性能提高. 6.会议论文鹿海华.刘岚.罗远芳.贾德民胶粉中原位生成SiO2及其在天然胶的应用研究2007 通过溶胶-凝胶法在胶粉中原位生成纳米SiO2网络,利用傅立叶变换红外(FTIR)、热重分析(TGA)等技术,证实了溶胶-凝胶反应中在胶粉表面过渡层中原位生成了约3%~5%wt的-O-Si-O-类似SiO2的网络结构;改性胶粉表现出更好的热稳定性,失重5%对应的温度提高了72.4℃.将50份改性胶粉添加到天然橡胶(NR)中,考察了反应前驱体及有机硅氧烷用量等对NR/改性胶粉复合材料性能的影响。研究发现,NR/改性胶粉复合材料仍具有较好的力学性能及动态性能。 7.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu原位接枝NR与nano-SiO2协同增韧PVC的研究-塑料2009,38(3) 研究了原位接枝NR与nano-SiO2协同增韧PVC的力学性能和耐溶剂性,通过SEM表征了增韧PVC的相结构.结果表明:当原位接枝NR和nano-SiO2的质量分数分别为5%和3%时,与未增韧PVC相比,相界面的结合强度明显提高,增韧PVC的缺口冲击强度和拉伸强度分别提高了102%和35.11%,并且具有较好的耐溶剂性能,达到较好的协同增韧增强效果. 8.会议论文李志君.魏福庆.符新NR/PP共混型热塑性弹性体的改性技术2004 动态硫化制备NR/PP/纳米SiO2共混型热塑性弹性体(TPV).通过力学性能的测定,确定了TPV的最佳加工工艺条件;研究了纳米SiO2改性和马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝、交联改性对TPV力学性能、耐溶剂性能和耐热性能的影响.结果表明:MAH/St/DCP"就地"接枝、交联改性NR/PP/纳米SiO2TPV的力学性能最好,耐溶剂性能和热稳定性最佳.纳米SiO2的最佳质量分数为0.03;MAH/St/DCP的最佳质量分数为3.75/1.875/0.375. 9.期刊论文魏福庆.刘义.王卓妮.殷茜.李志君.林秀娟.Wei Fuqing.Liu Yi.Wang Zhuoni.Yin Qian.Li Zhijun. Lin Xiujuan马来酸酐和苯乙烯接枝改性对天然橡胶/聚丙烯共混物物理机械性能的影响-合成橡胶工业 2007,30(1) 用动态硫化法制备了天然橡胶(NR)/聚丙烯(PP)热塑性弹性体(TPV).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝交联改性及纳米二氧化硅用量对NR/PP TPV物理机械性能的影响,讨论了NR/PP TPV的重复加工性能.结果表明,当MAH/St/DCP用量为3.750/1.875/0.375质量份、纳

二氧化硅的处理方法研究2

二氧化硅处理方法的研究 第一章前言 1、选题的目的、意义 由于二氧化硅内部的聚硅氧和外表面存在的活硅醇基及其吸附水,使其呈亲水性,在有机相中难湿润和分散,与有机基体之间结合力差,易造成界缺陷,使复合材料性能降低[1-3],而二氧化硅可用于橡胶制品、塑料制品、粘合剂、涂料等领域,要想改善这种缺陷,我们需要通过对二氧化硅进一步处理,使原来亲水疏油的表面变成亲油疏水的表面,这种表面功能的改变在实际应用中有重要价值。据此我们利用一些表面改性方法如沉淀法二氧化硅表面改性、十二醇二氧化硅表面改性、气相法二氧化硅表面改性、两亲性聚合物改性二氧化硅等来使亲水性的二氧化硅通过表面处理改性为疏水的二氧化硅,以提高产品的亲油性、分散性和相容性,并能使二氧化硅在某些乳液中既能长期稳定分散,又能保证它与基料在成膜后能有良好的界面结合。 第二章、二氧化硅处理方法的研究现状 目前我们对二氧化硅处理方法的研究主要分为:纳米级二氧化硅的改性处理和非纳米级的二氧化硅的改性处理。 2.1非纳米级二氧化硅的研究 2.1.1二氧化硅的概念:SiO2又称硅石。在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的淡黄色。密度2.2 ~2.66。熔点1670℃(麟石英);1710℃(方石英)。沸点2230℃,相对介电常数为3.9。不溶于水微溶于酸,呈颗粒状态时能和熔融碱类起作用。用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、硅铁、型砂、单质硅等。 2.1.2非纳米级二氧化硅表面改性 由于在二氧化硅表面存在有羟基,相邻羟基彼此以氢键结合,孤立羟基的氢原子正电性强,易与负电性原子吸附,与含羟基化合物发生脱水缩合反应,与亚硫酰氯或碳酰氯反应,与环氧化台物发生酯化反应。表面羟基的存在使表面具有化学吸附活性,遇水分子时形成氢键吸附。二氧化硅表面是亲水性的,无论气相法或沉淀法都是如此,差异仅是程度不同这导致了在与橡胶配合时相容性差,在配合胶料内对硫化促进剂吸附而迟延硫化。此外,白炭黑比表面积大、粒径小,在与

纳米二氧化硅

1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO 是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎 2 粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计涉及到所有应用SiO 2 划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成 [1],从而使我国成为继美、英、日、德功开发出纳米材料家庭的重要一员——纳米SiO 2 国之后,国际上第五个能批量生产此产品的国家。纳米SiO 的批量生产为其研究开发提 2 供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO 的生 2 产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5] 纳米二氧化硅是纳米材料中的重要一员,为无定型白色粉末,是一种无毒、无味、无污染的非金属材料。微结构呈絮状和网状的准颗粒结构,为球形。这种特殊结构使它具有独特的性质: 纳米二氧化硅对波长490 nm以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。 纳米二氧化硅的小尺寸效应和宏观量子隧道效应使其产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。 纳米二氧化硅在高温下仍具有强度、韧度和稳定性高的特点,将其分散在材料中,

纳米二氧化硅的表面改性研究

第4期王云芳等:纳米二氧化硅的表面改性研究383SizeofSi02grain(nm) 图1水溶胶中Si05颗粒的大小分布 Fig.1 SizedistributionofSi02graininhydrosol可以看出,所制得的二氧化硅水溶胶中,二氧化硅成纳米状态分布,粒径为50—127rim,其电子显微镜照片如图2所示。另外,从二氧化硅水溶胶的红外光谱(图3(a))可以看出,2900cmd为SiOH的吸收峰;3433emd为吸附的水峰;1216em’1为Si—O—Si的不对称伸缩峰;958cmd为SiOH的伸缩峰;471cmd为O—Si?O的畸变吸收峰,说明纳米二氧化硅表面还有大量羟基,因此它可以和许多有机官能团发生作用。 2.2表面羟基值的测定【l列 采用离心干燥分离、醇洗,反复5次使溶胶中的二氧化硅分离,1000C真空干燥48h,得到纳米二氧化硅粉体,其红外光谱如图3(a)所示。称取该粉体29放入100mL的锥形瓶中,加入0.05mol/L的NaOH溶液80mL,密封搅拌24h。离心分离二氧化硅颗粒后的溶液体积为C毫升(一80mL),从分离的C毫升溶液中量取10mL,用A毫升0.05moL/L的HCl溶液滴定至中性,剩余溶液(C一10mL)用同样的方法滴定至中性所用HCl溶液为B毫升,根据下式可计算出单位重量二氧化硅颗粒表面的羟基含量(x)u引。 茗:盟笔华≈7.8mmol/g 茗2——广2Lg 上式中,A一中和分离溶液10mL所消耗0.05moL/LHCl溶液的体积数;B一滴定剩余溶液(约70mL)至中性所用0.05mol/LHCI溶液的体积数;w一纳米二氧化硅粉体的克重数。 2.3纳米二氧化硅的表面改性及分析 配制2.0wt%纳米二氧化硅水溶胶100mL,并用冰醋酸调节溶液的pH=3.5—4.5,随后加入 图2改性前纳米Si02粒子的TEM图片 Fig.2TEMphotographsofnano—silica particlesbeforemodification 400¥0012001600200024002800320036004000 Wavcntunber“gnrl 图3si02(a),cr,rMS(b)和 GPTMS改性Si02(c)的红外光谱 Fig.3FTIRgpl圮-q:raof(a)silica,(b)CPa'MS and(c)CPTMS—modifiedsilica 2mL偶联剂GPTMS(未水解前的红外光谱如图3(b)所示),磁力搅拌,常温反应2.5h后得到纳米二氧化硅改性溶胶(改性后纳米颗粒溶液的透射电子显微镜显微分析如图4所示)经离心干燥后醇洗(重复五次),常温干燥24h,然后在200℃真空干燥48h得到改性纳米SiO:粉体,其红外图谱如图3(c),从图谱可以看出:纳米二氧化硅接枝GPTMS后,二氧化硅的物理吸附水(3433cm。)和表面的硅醇羟基Si.OH(958em~,3744emd)明显减少,还有明显的亚甲基(2944em4)的吸收峰,但二氧化硅的特征吸收峰(1100cm~,797—805em~,471cm4)无明显变化,只是Si.O.Si键的伸缩振动吸收峰(1100—1216em。1)变宽增强。分析表明,在二氧化硅颗粒表面接枝硅烷偶联剂并未改变二氧化硅的物质组成和结构,只是SiO:表面羟基与硅烷偶联剂水解产生的童SiOH基团缩合,硅烷偶

纳米二氧化硅修饰-改性文献总结

一、单分散纳米二氧化硅微球的制备及羧基化改性赵存挺,冯新星,吴芳,陈建勇2009年第 11期(40)卷 采用改进工艺条件的St ber法制备纳米SiO2微球 用KH-550硅烷偶联剂和丁二酸酐对纳米二氧化硅表面羧基化改性。结果表明,纳米二氧化硅表面成功接枝了羧基官能团。 2.1主要试剂 正硅酸乙酯(TEOS,AR);无水乙醇(AR);氨水,含量为25%~28%;去离子水;硅烷偶联剂KH-550, 纯度≥95%;丁二酸酐(AR)。 2.2二氧化硅微球的制备 将一定量无水乙醇、去离子水和氨水混合磁力搅拌约20min成均匀溶液。将4ml正硅酸乙酯分散在20ml无水乙醇中,磁力搅拌约30min混合成均匀溶液。然后将上面两种溶液混合在100ml单口烧瓶中,在一定温度下恒温磁力搅拌5h即生成二氧化硅微球溶胶。小球经多次醇洗离心分离后,即得SiO2小球样品。 2.3二氧化硅微球表面羧基化改性 将等摩尔的KH-550和丁二酸酐均匀分散在一定量的DMF中,一定温度下磁力搅拌3h后,往该

体系中加入经过超声分散的约20ml二氧化硅的DMF悬浊液,同时加入2ml去离子水。 在相同温度下继续磁力搅拌5h后,用超高速离心机分离出纳米二氧化硅,多次醇洗离心分离后,即得到羧基化改性后的纳米二氧化硅。改性的纳米SiO2标为样品S1,未改性的标为S0。 SiO2表面羧基的引入不仅提高了纳米粒子与基体的界面相容性,更重要的是羧基宽广的反应范围和易于离子化的特性赋予了纳米粒子很高的反应活性,使之可以广泛地应用于纳米粒子自组装[5]、高分子材料改性剂、水处理剂、催化剂和蛋白质载体、微胶囊包埋等领域[6] 二、二氯二甲基硅烷改性纳米二氧化硅工艺研究唐洪波李萌马冰洁精细石油化工 第24卷第6期2007年11月 以纳米二氧化硅为原料,乙醇为溶剂,二甲基二氯硅烷为改性剂,水为改性助剂,较佳工艺条件为:二甲基二氯硅烷用量15%,预处理温度120℃,预处理时间50min,回流温度130℃,回流时间50min,水用量4%。 称取纳米二氧化硅29置于三口瓶中,搅拌,加热至一定温度,并恒温。另称取一定量乙醇置于三口瓶中,配制成纳米二氧化硅质量分数为4.8%的乳液,继续搅拌分散10min后,一次性加人全部改性剂二甲基二氯硅烷,同时缓慢滴加一定量的改性助剂,当改性助剂加完后,升温至回流温度。反应结束后,将悬浮液用乙醇离心洗涤3一4次,经干燥至恒重即得产物。 3、氟烷基改性的二氧化硅纳米球的制备与应用研究郭庆中,周书祥,伍双全,喻湘华有机硅 材料, 2009, 23(4): 238~241 以浓氨水为催化剂、正硅酸乙酯(TEOS)为原料,通过种子生长法制得二氧化硅纳米球;进一步以十三氟辛基三乙氧基硅烷(F-8261)对二氧化硅纳米球的表面进行改性,得到氟烷基改性二氧化硅纳米球。利用IR、UV、TEM等手段对氟烷基改性纳米球进行了表征。有机基多为甲基或长碳链烷基,究其本质是亲油性的 1·5 mL TEOS、1·7 mL浓氨水(25% ~28% )、1mL去离子水和50 mL乙醇加入到250 mL的圆底烧瓶中,在40℃下缓慢搅拌3 h;然后再加入1mLTEOS,继续搅拌水解3 h;离心,水洗至pH=7,

纳米二氧化硅表面改性条件优化

纳米二氧化硅表面改性条件优化 【摘要】引入微波有机合成技术对纳米SiO2进行表面改性,考察了偶联剂、微波功率和辐照时间、浓硫酸用量等对纳米SiO2表面处理的影响,并通过红外光谱和热失重测试考察了粉体表面化学结构及改性情况。实验得出的纳米SiO2表面处理的最佳工艺条件为:偶联剂的用量为6%(质量百分含量),微波功率为320W,硫酸用量为1.25%(质量百分含量),微波辐射反应时间为15min。 【关键词】纳米二氧化硅;表面处理;微波 对于用熔融共混法制备的纳米复合材料而言,无机粒子能在聚合物中作纳米级的原生粒子分散是决定材料性能改善的最重要因素之一。粒子在塑料中分散粒径大小及分散均匀性对填充改性塑料的性能及其均匀性影响很大。因此解决自身团聚很强的纳米粒子在材料中的分散性问题,成为制备性能优良复合材料的关键点,也是难点之所在。 纳米SiO2为无定形白色粉末,是一种无毒、无味、无污染的无机非金属材料,其呈现出絮状和网状的准颗粒结构。由于纳米SiO2表面能大,易于团聚,通常以二次聚集体的形式存在,限制了其超细效应的充分发挥,在有机相中难以浸润和分散。 目前,对纳米SiO2的改性方法有多种,通常采用的是硅烷偶联剂法。硅烷偶联剂由于具有双反应功能团[1],能使填料与聚合物的结合界面以化学键相连,从而提高填料的补强性能[2~4]。 微波是一种波长从1mm到1m左右的超高频电磁波,具有物理、化学、生物学效应。在电磁场中,体系介质产生极化取向,相邻分子间由于分子热运动产生强烈的相互作用,极性分子产生“变极”效应,由此产生了类似摩擦作用,使极性分子瞬间获得能量,以热量形式表现出来,介质整体温度同时随之升高。微波还存在一种不是由温度引起的非热效应,微波作用下的有机反应,改变了反应动力学,降低了反应活化能。以上特性使得微波加热有机反应具有传统加热法所无法具备的优点,反应速度快,效率高。 本文作者采用微波法对纳米SiO2进行表面改性,考察了偶联剂用量、微波功率、硫酸用量对改性效果的影响,探讨了最佳表面改性条件,并对改性后的纳米SiO2进行了表征。 1 实验部分 1.1 主要试剂与仪器 纳米二氧化硅:粒径<100nm,购自海川化工有限公司,硅烷偶联剂SCA-1603:分析纯,哈尔滨化工研究所实验厂产品;浓硫酸:分析纯,购自莱

纳米二氧化硅

纳米二氧化硅 简介: 为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。一、XZ-G01二氧化硅产品的主要技术指标,含量:99.99 % 水分≤0.01 二、XZ-G01二氧化硅用途1、涂料及饱和树脂的增稠剂和触变剂;2、平光剂:家具漆有向亚光方向发展的趋势,列沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣帐篷等平光剂亦可使用此类产品。3、聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂。三.XZ-G01二氧化硅在高分子工业中的应用它广泛地应用于橡胶、塑料、电子、涂料、陶(搪)瓷、石膏、蓄电池、颜料、胶粘剂、化妆品、玻璃钢、化纤、有机玻璃、环保等诸多领域。 应用范围 由于纳米二氧化硅SP30具有小尺寸效应,表面界面效应、量子尺寸效应和宏观量子遂道效应和特殊光、电特性、高磁阻现象、非线性电阻现象以及在高温下仍具的高强、高韧、稳定性好等奇异性,纳米二氧化硅可广泛应用各个领域,具有广阔的应用前景和巨大的商业价值。纳米二氧化硅是应用较早的纳米材料之一,关于纳米SiO2在橡胶改性、工程塑料、陶瓷、生物医学、光学、建材、树脂基复合材料改性中的应用已有过许多报道,这里重点介绍纳米氧化硅SP30)在其他领域的应用进展。 4.1在涂料领域 纳米二氧化硅具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且提高了颜料的悬浮性,能保持涂料的颜色长期不退色。在建筑内外墙涂料中,若添加纳米氧化硅,可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施式性能良好,尤其是抗沾污染性能大大提高,具有优良的自清洁能力和附着力。纳米SiO2还可与有机颜料配用,可获得光致变色涂料,M.P .J .Peeters 等用溶胶凝胶法合成了含纳米二氧化硅SP30的全透明的耐温涂料 H.Schmidt 等合成了很厚的含纳米SiO2的涂料,并耐高温,在500℃下没有出现裂缝,Fayna Mamme ri等合成了P MMA- SiO2纳米涂料。明显增强了涂料的弹性和强度。

纳米二氧化硅的用途

纳米二氧化硅的用途 , 纳米二氧化硅是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。并为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。 (一)、电子封装材料 有机物电致发光器材(OELD)是目前新开发研制的一种新型平面显示器件,具有开启和驱动电压低,且可直流电压驱动,可与规模集成电路相匹配,易实现全彩色化,发光亮度高(>105cd/m2)等优点,但OELD器件使用寿命还不能满足应用要求,其中需要解决的技术难点之一就是器件的封装材料和封装技术。目前,国外(日、美、欧洲等)广泛采用有机硅改性环氧树脂,即通过两者之间的共混、共聚或接枝反应而达到既能降低环氧树脂内应力又能形成分子内增韧,提高耐高温性能,同时也提高有机硅的防水、防油、抗氧性能,但其需要的固化时间较长(几个小时到几天),要加快固化反应,需要在较高温度(60?至100?以上)或增大固化剂的使用量,这不但增加成本,而且还难于满足大规模器件生产线对封装材料的要求(时间短、室温封装)。将经表面活性处理后的纳米二氧化硅充分分散在有机硅改性环氧树脂封装胶基质中,可以大幅度地缩短封装材料固化时间(为2.0-2.5h),且固化温

二氧化硅的红外光谱特征研究

二氧化硅的红外光谱特征研究 1 引言 二氧化硅是建筑材料的基石,化学式为SiO2,在自然界分布很广,种类繁多,如石英、石英砂、水晶、玛瑙、蛋白石、白炭黑等。随着科学技术不断发展,现在出现了很多人工合成的二氧化硅,如纳米二氧化硅、二氧化硅乳液、介空二氧化硅等。而且不同的二氧化硅具有不同的作用,如石英、石英砂,用来制造石英玻璃;纳米二氧化硅用来制造陶瓷材料、涂料、粘接剂、防水材料等[1]。 红外光谱的产生源于物质分子的振动,不同的物质分子具有不同的振动频率可形成不同的红外光谱图,故红外光谱又被称为物质分子的“指纹图谱”。根据被测样品红外光谱的特征峰进行对比分析,可以作为物质识别和比较的重要依据。傅里叶变换红外(FTIR)光谱法具有操作简单、快速灵敏、重复性好和成本低等优点,可作为二氧化硅的一种定性、快速的检测技术。本文分析研究了八种不同来源的二氧化硅样品,寻找二氧化硅在其红外特征谱中的反映,比较其红外光谱的异同,提供最直接有效的鉴别方法,为人们在建筑材料上开发、研究及选用合适的二氧化硅提供理论指导。 2 实验 2.1实验仪器 红外光谱在Nexus型傅立叶变换显微红外光谱仪上进行。KBr压片法制样,KBr分束器,DTGS KBr检测器,分辨率:4 cm-1,扫描次数:64,测试范围4000~400 cm-1。 2.2样品 白炭黑(自制)、纳米二氧化硅粉末(为浙江舟山明日纳米材料有限公司产品)、二氧化硅乳液(自制)。 3 结果与讨论 3.1白炭黑的红外光谱 白炭黑是白色粉末状X-射线无定形硅酸和硅酸盐产品的总称,主要是指沉淀二氧化硅、气相二氧化硅、超细二氧化硅凝胶和气凝胶,也包括粉末状合成硅酸铝和硅酸钙等。白炭黑化学式SiO2.nH2O 即水合二氧化硅。图6为白炭黑(由稻壳,按文献[4]方法制备)的红外光谱,由图可见,1095 cm-1强而宽的吸收带是Si-O-Si反对称伸缩振动峰,798 cm-1、466 cm-1处的峰为Si-O键对称伸缩振动峰,3450 cm-1处的宽峰是结构水-OH反对称伸缩振动峰,1638 cm-1附近的峰是水的H-O-H弯曲振动峰,955 cm-1处的峰属于Si-OH的弯曲振动吸收峰。其红外光谱图与文献报导一致[4]。

二氧化硅处理方法的研究2

二氧化硅处理成纳米级二氧化硅及二氧化硅的 表面改性的处理方法 表面改性球形二氧化硅的制备与表征 球形二氧化硅在涂料、催化、色谱填料、感光乳剂、高性能陶瓷及集成电路塑封填料等方面都有广泛应用。表面改性的疏水二氧化硅因具有较强的非极性相互作用,在反相固体萃取填料及高聚物体系性能补强等方面得到重要应用。球形二氧化硅的液相反应法制备主要包括溶胶—凝胶法[1~4]和微乳液法[5~6]。溶胶—凝胶法通常以有机硅醇盐如正硅酸乙酯(TEOS)为原料,用碱或酸作催化剂,在醇或醇水介质中通过水解反应制备。微乳液法则是以TOES或NaSiO2为原料,在反向微乳液(W/O)提供的微反应器中通过水解聚合反应合成。溶胶—凝胶法中,反应溶剂的种类、催化剂的种类和浓度、相关反应物浓度及比例等因素都会影响水解和成胶反应过程,从而影响最终所得二氧化硅颗粒的形貌、粒度分布和颗粒间的聚集状态。研究这些影响因素对颗粒的调控作用对拓宽颗粒粒径的选择范围具有重要的意义。 本研究以TEOS为硅源,在醇水混合溶剂中以氨作催化剂,通过溶胶—凝胶法制备二氧化硅球形颗粒,并以十八烷醇作为改性剂,通过酯化反应对二氧化硅进行表面修饰改性。研究了成胶反应中TEOS浓度对二氧化硅颗粒粒径的影响,并用TEM、XPS、IR、TG-DTG等实验手段对所得产品进行了表征。 一、实验部分 1、1 试剂 TEOS、无水乙醇、氨水、三氯甲烷、环己烷均为分析纯,使用前未经进一步纯化。 1、2 制备方法 按一定比例配制TEOS和无水乙醇的混合溶液,室温(25℃)搅拌下将该混合液滴加到含有一定量浓氨水的无水乙醇溶液中,控制反应体系的PH值约为8,继续搅拌2h后,将其转移到装有搅拌的三口瓶中,加入一定量的十八烷醇和正丁醇,进行蒸馏。当蒸汽温度上升到118℃后,停止蒸馏。通氮气保护下将反应体系加热至反应温度200~210℃,继续搅拌加热3h,后,将反应液趁热转移到烧杯中,加入一定量的以3:2的体积比混合而成的三氯甲烷和环己烷的溶液,搅拌均匀并使其完全溶解。 将上述混合液转入离心管中,在转速为1500r/min下离心分离10min,然后在水浴中加热,再离心10min,将上清液弃去,往含沉淀的离心管中再加入等量的三氯甲烷和环己烷的混合溶液,按上述操作再离心分离两次。将离心后所得的产品从离心管中取出,放在表面皿中自然干燥后即得产品。 1、3样品表征 用NETZS STA 409 PC/PC热分析仪测定样品的热重曲线,实验条件为:升温速率10℃/min分析气氛为空气,流速30mL/min用Joel JEM-2010型透射电子显微镜(TEM)观察颗粒形貌和尺寸,样品先分散在环己烷中,然后用滴加到有非晶碳膜的铜网上,于空气中晾干后进行电镜分析。用Nexus 470型红外光谱

超微细二氧化硅的改性研究及其应用

超微细二氧化硅的改性研究及其应用 谢海安,戴宏程 (武汉理工大学材料与工程学院,湖北武汉430070) 摘 要:阐述了超微细二氧化硅改性机理及发展趋势,介绍了近年来二氧化硅的改性研究及其应用情况,并对超微细二氧化硅的应用领域作了展望。 关键词:超微细;二氧化硅;改性 中图分类号:T Q 12712 文献标识码:A 文章编号:1004-0404(2001)05-0023-03 1 前言 无机填料以其独特的物理和化学性能在材料中起着重要作用,一般都能给单一的基体材料增韧、补强,提高制品的耐老化、耐腐蚀等能力,而且大都能降低制品的成本。一般认为无机填料的粒径越细,除了成本因素外,填料的作用就越突出。因此,无机填料的粉体技术近几十年得到迅猛发展。目前,超微细乃至纳米级无机粉体的生产已成热点。 二氧化硅以其优越的稳定性、补强性、增稠性和触变性等一直是橡胶、塑料、涂料等制品的重要填料之一,随着二氧化硅粉体制备技术的发展,超微细二氧化硅,特别是纳米二氧化硅工业技术的出现,二氧化硅粉体将会获得更为广泛的应用。 超微细二氧化硅,俗称白炭黑,按其制备方法的不同,分为以下两种: (1) 气相法白炭黑,一般平均粒径在0130~10L m 之间,比表面积范围为50~380m 2#g -1。 (2) 沉淀法白炭黑,产物粒径范围一般在210~2510L m 之间,比表面积一般不超过200m 2 #g -1 。 对上述两种制备二氧化硅的工艺条件进行改进,可生产纳米级二氧化硅粉体。据有关文献报道,目前气相法白炭黑的粒径已达到了100nm 以下。此外,最近十年,世界上又开发了一种生产方法,叫硅酯水解法,产品称为WPH,所得二氧化硅极细,最大粒径50~100nm ,且粒径分布窄,比表面积高达600m 2 #g -1 ,表面呈疏水性[1] ,产量极少。 除了硅酯水解法生产的二氧化硅表面呈疏水性外,气相法和沉淀法二氧化硅表面均呈亲水性。而亲 水性的二氧化硅在有机相中难以浸润和分散,直接填充到材料中,很难发挥其各种作用。如在橡胶硫化系统中,未改性的白炭黑不能很好地在聚合物中分散,填料、聚合物之间很难形成偶联键,从而降低了硫化效率和补强性能。 因此,白炭黑的改性一直是国内外材料理论界和工业界的热门研究课题之一。2 超微细二氧化硅的改性技术211 白炭黑的骨架及表面结构 电子显微镜图片研究表明:白炭黑是二氧化硅的无定形结构,系以Si 原子为中心,O 原子为顶点所形成的四面体不太规则地堆积而成的。它表面上的Si 原子并不是规则排列,连在Si 原子上的羟基也不是等距离,它们参与化学反应时也不是完全等价的。 白炭黑的表面对水有相当强的亲和力。水分子可以不可逆或可逆地吸附在其表面上。所以二氧化硅表面通常是由一层羟基和吸附水覆盖着。前者是化学吸附水,后者是物理吸附水。大量的研究表明:白炭黑有三种羟基。一是孤立的自由羟基;二是连生的、彼此形成氢键的缔合羟基。三是双生的,即两个羟基连在一个Si 原子上的羟基,孤立的和双生的羟基都没有形成氢键。 212 白炭黑表面改性机理 白炭黑的表面改性就是利用一定的化学物质通过一定的工艺方法使其与白炭黑表面上的羟基发生反应,消除或减少表面硅醇基的量,接枝或包覆其它化学物质,以达到改变表面性质的目的。 收稿日期:2001-07-23 作者简介:谢海安(1963-),男,1983年毕业于华中科技大学应用化学专业,1991年毕业于法国洛林理工大学,获工学博士学位,研 究方向为高分子材料、无机/有机复合材料。戴宏程(1970-),在读硕士,1990年毕业于武汉化工学院无机化工专业,研究方向为高分子材料、无机/有机复合材料。 23 2001年第5期湖北化工

二氧化硅处理方法的研究

二氧化硅处理方法的研究 08级化学工程与工艺黄星桥 摘要:随着人们环保意识的不断增长,绿色消费已是当今世界上流社会的时尚。化工生产中,易挥发的毒性有机溶剂渐渐被水所取代,各种无机颗粒填充聚合物乳液体系已得到较为广泛的应用,由于涂料产品总量之大,水性涂料首先成为环境标志的典型代表【1】。此外,水性胶粘剂、水性油墨以及其它复合材料体系也不断得到研究与开发。 在包括填料、聚合物基料和溶剂这样的分散体系中,溶剂和基料竞争填料表面上的吸附位置。为了最佳的或可接受的填料分散,基料如果不是优先吸附,至少应当相等地被吸附【2】。油性体系中,无机填料表面的亲油改性,可保证填料在体系的分散稳定性,树脂与亲油表面的亲和吸附,使填料与基料间界面结合不成为难题;水溶性高分子体系与油性体系类似,无机填料的极性表面基本上不影响分散稳定性及界面问题。而乳胶体系填料在溶剂‘水j中的分散以及它与乳胶颗粒在成膜时的界面粘结成为一对矛盾。为解决这一矛盾,使用带两亲性端基的分散剂是常用的手段,一种优良的代表性氨基醇是2一氨基一2一甲基一1一丙醇,商品名为AMP一95【3】。这种分散由于易受PH值、温度等条件的影响,贮存稳定性不好。为此,Th.Batzilla and A.Tulken 【4】在细Al片表面形成交联共聚物,不容易受各种条件影响,但在体系中这种物理吸附还是存在解吸附现象,影响分散及涂膜的性能。 因此,本实验主要研究通过化学接枝两亲性共聚物的方法,以期使填料(二氧化硅)在乳液体系(聚丙烯酸酯乳液)中,既能长期稳定分散,又能保证它与基料在成膜后有良好的界面结合,除此之外还有物理改性(表面包覆改性,热处理改性)和化学改性(醇酯法表面改性,偶联剂法改性,改性及气相法表面改性)。 一、二氧化硅表面处理方法 1.1 物理改性【5~7】 物理改性是指两组分之间除范德华力、氢键力或静电吸附等分子之间的相互作用力外,不存在离子键或共价键作用的一种表面改性方法。它又可分为表面包覆改性和热处理改性两种方法。 1.1.1 表面包覆改性 表面覆盖改性是指表面改性剂与纳米SiO2表面无化学反应,包覆物与颗粒之间依靠范德华力、氢键、静电作用等而连接起来的改性方法。在制备纳米SiO2的溶液中加入表面活性剂,在形成纳米SiO2的同时,表面活性剂包覆在其表面,形成均匀的纳米颗粒,此种方法可有效地改善纳米SiO2的分散性。 1.1.2 热处理改性 热处理改性是指将纳米SiO2放在一定的介质内加热、保温、冷却,通过改变纳米SiO2表面或内部的组织结构来控制其性能的一种综合工艺过程。热处理后SiO2表面吸湿量低,且其填充制品吸湿量也显著下降,其原因可能是由于高温加热条件下以氢键缔合的相邻羟基发生脱水而形成稳定键合,从而导致吸水量降低。此种方法简便经济,但是仅仅通过热处理,不能很好地改善填充时界面的粘合效果,所以在实际应用中,常对纳米SiO2使用含锌化合物处理后在200-400℃条件下进行热处理,或使用硅烷偶联剂和过渡金属离子对纳米SiO2处理后进行热处理,或用聚二甲基二硅氧烷改性SiO2,然后再进行热处理。 2.1 化学改性 表面化学改性是指表面改性剂与粒子表面一些基团发生化学反应而达到改性目的。由于纳米SiO2表面存在不饱和残键和不同状态的羟基,这些活性基团可以同一些表面改性剂发生反应,从而使SiO2表面带上具有特定化学活性的有机基团,改善SiO2粒子与各种有机溶剂及

纳米二氧化硅

纳米二氧化硅的特性及其研究进展 敖善世2013326602046 摘要:纳米SiO2是有硅或有机硅的氯化物高温水解生成表面带有羟基的超微细粉末,粒径小于10nm,通常为20~60nm,化学纯度高,分散性好,比表面积大。在化学工业中又称为白炭黑,是目前世界上大规模生产的产量高的一种纳米粉体材料。纳米二氧化硅无毒、无味、无污染,具有表面能高及其吸附能力强等特异性优点, 是优质的稳定剂和融合剂.在电子、光学、生化科学等都有着广泛的应用。 关键词:纳米二氧化硅;性质;制备;应用 一、纳米二氧化硅的性质 纳米二氧化硅是纳米材料中的重要一员,是一种外形为白色无定型粉末,无毒、无味、无污染的非金属材料,其微结构呈絮状或网状的准颗粒结构,为球形.这种特殊的结构使它具有独特的性质。 纳米二氧化硅对波长490nm 以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。 纳米二氧化硅的小尺寸效应和宏观量子隧道效应可以产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。 二氧化硅不但具有粒径小、化学纯度高、分散性好等特异性优势,还具有吸附性强、可塑性良好、同时具有高磁阻性和低热导性的优势。 二、纳米二氧化硅的制备 制备二氧化硅的工艺分为干法和湿法两大类。干法制备的特点是其产品纯度高,而且性能相对较好,但是其所需设备要求高投资成本大、而且在生产实践过程中能耗大.湿法制备应用要求较低,所需原料普遍且价格低廉,所生产产品纯度虽然比干法制备的低,但经一系列的化学反应改性后,性能与炭黑接近。无论是采用干法制备还是湿法制备我们所要达到的目的是生产出纯度高、颗粒小、分散性好的纳米二氧化硅产品。

相关文档
最新文档