常用体积及表面积计算公式

常用体积及表面积计算公式

常用体积及表面积计算公式

所有图形的面积-体积-表面积公式

长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高

圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα

平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长 α-夹角 D-长对角线长 d-短对角线长S=Dd/2 =a2sinα 梯形a和b-上、下底长 h-高 m-中位线长S=(a+b)h/2 =mh 圆r-半径 d-直径C=πd=2πr S=πr2 =πd2/4 扇形r—扇形半径 a—圆心角度数

C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径S=π(R2-r2) =π(D2-d2)/4 椭圆D-长轴 d-短轴S=πDd/4 立方图形 名称符号面积S和体积V

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

常用面积体积计算公式大全

电如_边長 馬-高 F-底面积 0-底両申銭的交点 卩=FJ — (c -+i H - c) * b+2F 禺="+6+c)*ft ,-一个粗合三箱我的両积 71 -组合三角形的惱 O-锥底备对角護交点 年店-两平行底面的面积 力L 底面间歴畫 "-一个爼舍梯戒的面积 R-组合梯形数 多面体的体积和表面积 体积(茁)庭百积(F ) 表面瞅门侧恚面积(鬲) 图形 尺寸符号 d-刘角爲 表 面积 覇-侧表面积 长 方 扩=Q S=6a 2 CS 血为-边拴 0-底面对角线的交点 V = a*h* h S = 2(a ? b 4-(j ? h +i * ft) £l-2Ma+&) 圆 柱 和 空 心 圆 柱 A 管 去-外宰径 —内半径 £-柱壁區度 p -平均半径 心=内外側面祝 B&- $=2滋?/! +2JC £^ E\ = 2/rR ? h 空心言圆柱: F =凤疋7勺=2叭伤 S=X?4F )JU2/I (用-沔 场=2品第卄) 5=n?/ + F

h -盘小高度 怒-毘大高度F-属面举径 尸-廐面半径巾-高卜母爼长 E工-虧面半径巾-高 ”母緩g ■制血+吩2*卩+—!_:cos a 禺F偽十吗) & = + F — ttri y-^^2+ ^+^) 禺■忒迎肝) 卩十押 十试疋■!■/) 球扇r-*e 4宜径 尸■兰直玉■輕:?口」 石6沪 3 6 S =血2 -

夙-球半径 ①巳-底面半径 S ■ 4nJ -2J &, ■ £戊■矽一4了*彷 V a,b,c-半轴 交 叉 圆 柱 体 球 缺 椭 球 体 A 胎 D-中间斷面苴狂 说 -廐直径 『-桶高 = 2冲丘= ST ⑷-Q 护=佩乃 -町 十山2 y~—(3R^3^+h^ $■2鈕 g= 2fviih 十牙叶 4-^) 卫-風总儒平旳半径 0-同环体平均半径 川-凰环体截面言径 r-回环体茁両半径 .—— 圆 环 体 为-球鎂的高 r- 瑋岐半栓 日-平切厨言径 业=曲面"5^ 球破表面积 用于抛物线我桶徘 卩=竺口“+戊4丄护) 15 4 对于园飛确体 卩皤用十吗

些数学的体积和表面积计算公式

一些数学的体积和表面积计算公式 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积=(长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高

平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/( 2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

体积和表面积计算公式

体积和表面积计算公式 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积=(长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高

平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα 平行四边形a,b-边长h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长α-夹角D-长对角线长 d-短对角线长S=Dd/2 =a2sinα 梯形a和b-上、下底长 h-高m-中位线长S=(a+b)h/2=mh 圆r-半径d-直径C=πd=2πr S=πr2 =πd2/4 扇形r—扇形半径a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长b-弦长h-矢高r-半径 α-圆心角的度数S=r2/2·(πα/180-sinα)

最常用的面积体积计算公式

用求面积、体积公式 1 平面图形面积 平面图形面积见表1-73。 平面图形面积表1-73 2 多面体的体积和表面积 多面体的体积和表面积见表1-74。 多面体的体积和表面积表1-74 3 物料堆体积计算 物料堆体积计算见表1-75。 物料堆体积计算表1-75 4 壳体表面积、侧面积计算 1-3-4-1 圆球形薄壳(图1-1) 图1-1 圆球形薄壳计算图 4-2 椭圆抛物面扁壳(图1-2) 图1-2 椭圆抛物面扁壳计算图1-3-4-3 椭圆抛物面扁壳系数计算 见图1-2,壳表面积(A)计算公式:

A=S x ·S y =2a×系数K a ×2b×系数K b 式中 K a 、K b ——椭圆抛物面扁壳系数,可按表1-76查得。 椭圆抛物面扁壳系数表表1-76 查表说明 [例]已知2a=24.0m,2b=16.0m,h x =3.0m,h y =2.8m,试求椭圆抛物面扁壳表面 积A。 先求出h x /2a=3.0/24.0=0.125 h y /2b=2.8/16.0=0.175 分别查表得系数K a 为1.0402和系数K b 为1.0765,则扁壳表面积A=24.0×1.0402× 16.0×1.0765=429.99m2 1-3-4-4 圆抛物面扁壳(图1-3) 图1-3 圆抛物面扁壳计算图 1-3-4-5 单、双曲拱展开面积 1.单曲拱展开面积=单曲拱系数×水平投影面积。 2.双曲拱展开面积=双曲拱系数(大曲拱系数×小曲拱系数)×水平投影面积。 单、双曲拱展开面积系数见表1-77。单双曲拱展开面积计算图见图1-4。 图1-4 单、双曲拱展开面积计算图

图形各面积体积计算公式大全

长方形的周长=(长+ 宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+ 下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径 圆的周长=圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6

正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a b) S=ab 三角形 a,b,c-三边长 h-a边上的高

s-周长的一半 A,B,C-内角 其中s=(a b c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长 α-夹角

D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a b)h/2 =mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360)

空间几何体的表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S )(21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥

② 圆锥 3、 ① 棱台 ② 圆台 4、 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积=底S ,侧面积 =侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= 4a ; (6)内切球半径; r= 12a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知

底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( ) A. π288 3cm B. π192 3cm C. π288 3cm 或 π192 3cm D. π1923cm 8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A. 4s π B. S π2 C. S π D. S π3 32

常用图形周长面积体积计算公式

常用图形周长面积体积计算公式: 1、正方形 C周长 S面积 a边长 周长=边长×4 面积=边长×边长 C=4a S=a×a S=a2 2、正方体 V体积 a棱长 (1)表面积=棱长×棱长×6 (2)体积=棱长×棱长×棱长S表=a×a×6 表=6a2 V=a×a×a V= a3 3、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 V体积 S面积 a长 b宽 h高 (1)表面积=(长×宽+长×高+宽×高)×2 (2)体积=长×宽×高 S=2(ab+ah+bh) V=abh 5、三角形 S面积 a底 h高 面积=底×高÷2 S=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6、平行四边形 S面积 a底 h高 面积=底×高 S=ah 7、梯形 S面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 S=(a+b)× h÷2 8、圆形 S面积 C周长π圆周率 d直径 r半径 周长=直径×π 周长=2×π×半径 面积=半径×半径×π C=πd C=2πr S=πr2 d=C÷π d=2r r=d÷2 r=C÷2÷π S环=π(R2-r2) 9、圆柱体 V体积 h高 S底面积 r底面半径 C底面周长侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 S侧=Ch S侧=πdh V=Sh V=πr2h 圆柱体积=侧面积÷2×半径 10、圆锥体 V体积 h高 S底面积 r底面半径 体积=底面积×高÷3 V=Sh÷3 长度单位换算 1千米=1000米;1米=10分米;1分米=10厘米; 1米=100厘米;1厘米=10毫米 面积单位换算 1平方千米=100公顷;1公顷=10000平方米; 1平方米=100平方分米;1平方分米=100平方厘米; 1平方厘米=100平方毫米;1平方米=0.0015亩; 1万平方米=15亩; 1公顷=15亩=100公亩=10000平方米; 1公亩等于100平方米;1(市)亩等于666.66平方米 体(容)积单位换算 1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升;1立方厘米=1毫升; 1立方米=1000升 重量单位换算 1吨=1000千克;1千克=1000克;1千克=1公斤 人民币单位换算 1元=10角;1角=10分;1元=100分 时间单位换算 1世纪=100年;1年=12月; 大月(31天)有:1\3\5\7\8\10\12月; 小月(30天)的有:4\6\9\11月 平年2月28天,闰年2月29天; 平年全年365天,闰年全年366天 1日=24小时1时=60分; 1分=60秒1时=3600秒 总数÷总份数=平均数 和差问题的公式: (和+差)÷2=大数;(和-差)÷2=小数 和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数(或者和-小数=大数) 差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数(或小数+差=大数) 植树问题 1、非封闭线路上的植树问题主要可分为以下三种情形:

常用建筑面积计算公式

土建工程工程量计算规则公式汇总 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则

(1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积: 方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下

各种形状物体面积体积计算公式

各种形状物体面积、体积 计算公式 长方形的周长=(长+宽)& 正方形的周长=边长>4 长方形的面积=长>宽正方形的面积=边长>边长三角形的面积=底>高吃平行四边形的面积=底>高梯形的面积=(上底+下底)>高^2 直径二半径>2半径=直径吃圆的周长=圆周率>直径= 圆周率>半径>圆的面积=圆周率>半径>半径长方体的表面积= (长观+长>高+宽>高)>长方体的体积二长观>高正方体的表面积=棱长>棱长>6 正方体的体积=棱长>棱长>棱长圆柱的侧面积=底面圆的周长>高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积>高圆锥的体积=底面积>高七长方体(正方体、圆柱体) 的体积=底面积>高 平面图形 名称符号周长C和面积S 正方形a—边长C = 4a S = a2 长方形a和b —边长C = 2(a+b) S = ab 三角形a,b,c —三边长h—a边上的高s—周长的一半 A,B,C —内角其中s = (a+b+c)/2 S = ah/2 =ab/2 sinC =[s(s-a)(s-b)(s-c)]1/2 =a2si nBsi nC/(2si nA) 四边形d,D —对角线长 a—对角线夹角S= dD/2 ? sin a 平行四边形a,b-边长 h —a边的咼 a—两边夹角S = ah =absin a 麦形a —边长 a—夹角 D-长对角线长 d —短对角线长S= Dd/2 =a2sin a

梯形a和b-上、下底长 h —高 m —中位线长S = (a+b)h/2 =mh 圆r-半径 d 一直径C =nd= 2 n r S = n r2 =n d2/4 扇形r—扇形半径 a—圆心角度数 C= 2r + 2 n r x (a/360) S =n r2 x (a/360) 弓形I 一弧长 b —弦长 h —矢咼r—半径 a—圆心角的度数S = r2/2 ? ( na丿S80 a ) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =na r2/360 b/2 [r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ?2bh/3 圆环R—外圆半径 r—内圆半径D—外圆直径 d —内圆直径S =n (R2r2)

体积、表面积计算公式大全

施工员计算公式大全 多面体的体积和表面积 伉一棱 M -对角线 表面积 &-侧表面积 心虻为一边长 力一高 F-底面积 。-底面中线的交点 V = a*b*h Jl-2h(d+t) d J, +H +2 $=a+b+M"+2F S] = (a+0+c)J 厂-个组合三角形的而积 -胎三角形的个数 0柳各对角线交点 &,兀-两平行底面的面积 冃-底面间距离 a -一个组合梯形的面称 ?-组合梯形数 图形 尺寸符 体祝0)砸积(F) 表而积⑸01俵而积(曲 训也长 0俪朋腿茲 s=他+斤+马 JS\ = an

施工员计算公式大全 R -外半径尸-内半径 1柱壁厚度 P-平均半径场=内外侧面祝 勺-垠小咼?度転-量大高度r-底面半径 凰柱: 扩=心2心y=2d?皿+2点 ^ = ^R*h 空心直圃住: 卩三鈕疋-丿)=2唤也 加(R+Rh + 2机昭一 F) 禺=2总(R+E 犷=2疽2为= 209447朗 3 JT ■空(4A+M)?ld7r(4ft +d) r-底面半径力-高 i-母线长 艮尸-底面半径I =胪+Q 八耳?(疋+』+商) ^ = ^(j? + r) J = J;i?-r)3+ft a +F) J7 = -nr3 = —=0J236d3 3 6 球半径 弓形底圆直径力一弓形高/二时(岛+血)+疔J(l +丄-)COSrt 禺=nr(加+慰)

施工员计算公式大全 h—球缺的高尸- 球缺半径&-平切 圆直径他=曲面面积—球缺表面积 尺-圆球体平均半径£>-园环体平均半径d -匾]环悻韋面直径F-園环体截面半径矿=nh\r—勻 3 % ■ 2f^h■ rr(^-+ A3) S= nfi<4r - AJ d-2= 4隧N -Ja) n冷 S^^Rr=^Dd=39.^Ry R -球半径 1电_底面半径 血-腰高 % -球心o至带底圆的距离V = ~(3R^ +2務 +/) b = 2 鈕 忙=靳础+说用+尸扌) 中间断面直径厶-底直径 1-桶高对于血物线老桶体矿■旦〔2衣+3 +纟川2) 15 4 对于凰形桶体矿=吕(2&+护) a,b,c斗轴 r-园柱半径 -圆柱长v = —abcfr 3 S = 2匹心?肿+Q

各种形状物体面积体积计算公式

各种形状物体面积、体积计算公式 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA)

四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα 平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长 α-夹角 D-长对角线长 d-短对角线长S=Dd/2 =a2sinα 梯形a和b-上、下底长 h-高 m-中位线长S=(a+b)h/2 =mh 圆r-半径 d-直径C=πd=2πr S=πr2 =πd2/4 扇形r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径S=π(R2-r2)

各种图形面积计算公式

各种图形面积计算公式 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽S=ab 4、正方形的面积=边长×边长S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积=长×宽×高V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh 各种图形体积计算公式 平面图形 名称符号周长C和面积S 1、正方形a—边长C=4a S=a2 2、长方形a和b-边长C=2(a+b) S=ab 3、三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA)

1-3常用求面积体积公式.

1-3 常用求面积、体积公式 1-3-1平面图形面积 平面图形面积见表1-73。 平面图形面积表1-73

a——短边b——长边 d---- 对角线A = a *6 d -」J+T2 在对他线交点上 人■ 高 I——寺周长 a x b、c---- 对应角A、B、 C的边长A -号護*absinC GD = 〒BD CD= DA 平行 四边形a、b - 邻边 h—对边间的距离 A 二b?h = fesina 在对角线交点上 0 E CE = AB AF=CD a^CD(上 底边)6 = AB (下底边) ■ h—高 HG = KG = h 2a心 1■■■ 1? ? ?i r --- 半径 d—直艳 p—阕廊长 a、b--- 主轴 r --- 半径 s --- 弧长 a----- 弧s的对应中心角 r—半径 $——厲长 a——中心角 b——弦长 h --- 高 A = nr1-=川 4 = 0.785/2 = 0.07958 p? p - nd 在圆心上 在主轴交点G上 8岭?乎 当a =90*时 60甘冬5 " A = 4■円简ma)二寺b ($亠6)+ bh) i = r*a* j|j = 0.0175r-a 00佥* 当a = 180?时 = 0.4244r

1-3-2 多面体的体积和表面积多面体的体积和表面积见表1-74。 多面体的体积和表面积表1-74

体积(V)底面积(A) 表面积(S)侧表面积(SJ 图形尺寸符号 a、b、c ---- 边长h--- 高A——底面枳O——底面中线的交点"=A?人 S?(a + b+c) ? h + 2A Si = (a + 6 寺 *) ? A f——一个组合三角形的面枳 n——组合三角形的个数 0一底各对角线交点A】、Aj --- 两平行底面 的面枳h——底面间的距离a 个组 合梯形的面 积n—组合梯形数A】?2 JA)A2 + 3A2 A1 + y A J A J + A 2 d—对角线 S---- 农面枳S]―侧衣面积V = a3 S = 6a2在对角线交点上 长方 体(棱柱)a、b> h---- 边长 O—底面对角线交点 V-a*6*A S = 2 (a?b+ a?h U) Si = 2h (a * 6) d ■ Jo1令七h2 區 柱和空心圆柱(管》R—外半径 r—内半轻t—柱壁 醪更 P—平均半径 St—内外侧團枳 圆出 V F RU S-2Kkh^2nR2 S^2^Rh 空心直圆柱:V =Rh (R2-r2) =2 沅RPth S = 2r (R + r) A + 2r X (R2-r2) Si = 2n (R + 刀h 三 梭 柱 V=~A-A S-H-/+A Si = n-/ (Ai +A2 S = art + A】? A2 S j = dn 台

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体 积公式汇总表 Prepared on 24 November 2020

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( ) A. π288 3cm B. π192 3cm C. π288 3cm 或 π192 3cm D. π1923cm 8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A. 4s π B. S π2 C. S π D. S π3 32

图形面积及体积计算公式

平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα 平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长 α-夹角 D-长对角线长 d-短对角线长S=Dd/2 =a2sinα 梯形a和b-上、下底长 h-高 m-中位线长S=(a+b)h/2 =mh 圆r-半径 d-直径C=πd=2πr S=πr2 =πd2/4 扇形r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2

=παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径S=π(R2-r2) =π(D2-d2)/4 椭圆D-长轴 d-短轴S=πDd/4 立方图形 名称符号面积S和体积V 正方体a-边长S=6a2 V=a3 长方体a-长 b-宽 c-高S=2(ab+ac+bc) V=abc 棱柱S-底面积 h-高V=Sh 棱锥S-底面积 h-高V=Sh/3 棱台S1和S2-上、下底面积 h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积 S2-下底面积 S0-中截面积 h-高V=h(S1+S2+4S0)/6 圆柱r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积 S表—表面积C=2πr S底=πr2 S侧=Ch S表=Ch+2S底 V=S底h =πr2h 空心圆柱R-外圆半径 r-内圆半径 h-高V=πh(R2-r2) 直圆锥r-底半径

相关文档
最新文档