共点力的平衡

共点力的平衡
共点力的平衡

高中物理竞赛辅导(2)

南京师范大学物理系列化陈烈佐

静力学力和运动

共点力的平衡

n个力同时作用在物体上,若各力的作用线相交于一点,则称为共点力,如图1所示。

作用在刚体上的力可沿作用线前、后滑移而不改变其

力学效应。当刚体受共点力作用时,可把这些力沿各自的

作用线滑移,使都交于一点,于是刚体在共点力作用下处

于平衡状态的条件是:合力为零。

(1)

用分量式表示:

(2)

[例1]半径为R的刚性球固定在

水平桌面上,有一质量为M的圆环状

均匀弹性细绳圈,原长为,

绳圈的弹性系数为k。将圈从球的正

上方轻放到球上,并用手扶着绳圈使

其保持水平,最后停留在平衡位置。

考虑重力,不计摩擦。①设平衡时绳

圈长,求k值。②若

,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小

元段,长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。

元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R指向球外;两端张力,张力的合力为

位于绳圈平面内,指向绳圈中心。这三个力都在

经线所在平面内,如图示(c)所示。将它们沿经线的切向和

法向分解,则切向力决定绳圈沿球面的运动。

解:(1)由力图(c)知:合张力沿经线切向分力为:

重力沿径线切向分力为:

(2-2)

当绳圈在球面上平衡时,即切向合力为零。

(2-3)

由以上三式得

(2-4)

式中

由题设:。把这些数据代入(2-4)式得。于是。

(2)若时,C=2,而。此时(2-4)式变成

tgθ=2sinθ-1,

即 sinθ+cosθ=sin2θ,

平方后得。

在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。

[例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。

分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。

又设球形碗的半径为R,O'

为球形碗的球心,过下面四球的

球心联成的正方形的一条对角

线AB作铅直剖面。如图3(b)

所示。当系统平衡时,每个球所

受的合力为零。由于所有的接触

都是光滑的,所以作用在每一个

球上的力必通过该球球心。

上面的一个球在平衡时,其重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N,大小相等以表示,方向均与铅垂线成角。

下面四个球,由于分布的对称性,每个球受另外两个球的合作用力是一个水平力,方向垂直于碗的轴线。除水平力外,还有重力mg,碗对球

的支力,上球的压力,这四个力都通过该球球心,并位于同一平面内,如图3(b)所示。

解:以A球为隔离体,把它所受的力分解为水平分量和垂直分量。

以上球为隔离体

联立以上三式解出:。

当下面四球之间的相互作用为零,即N=0,得。如时,下面四球将互相分离。又

由图形(b)看出。

代入(2-4)式得。

此时下面的四个球互相分离,。

2.共面力的平衡

作用在刚体上的所有力都位于同一平面,这些力就叫做共面力。设共面力所在的平面是xy平面,刚体在平面力作用下平衡的条件是:合力为零和对任一点所有力矩之和为零,即

(3)

[例3]有6个完全相同的刚性长薄片

,其两端下方各有一个小突起,薄片

及突起的质量忽略不。将此6个薄片架在一只水平的碗

上,使每个薄片一端的小突起恰好落在碗口上,另一

端小突起位于其下方薄片的正中,由正上方俯视如图

表(a)所示。若将一质量为m的质点放置在薄片上一点,这一点与此薄片

中点的距离等于它与小突起的距离。求:薄片中点所受的(由另一薄片的小突起所施的)压力。

分析:设对中点所施的压力为P,方向向下;将为隔离体,以为支点,可看出所受的压力为;同理将为隔离体,以为支点可得所受的压力考虑薄片,以为支点得所受的

压力是。

解:考虑薄片,以为

支点的力矩平衡方程

解出:。

[例4]一锁链由2n个相同的链环组成,每两个

链环间的接触是光滑的,锁链两端分别在一不光滑的

水平铁丝上滑动,它们的摩擦系数μ。证明:当锁链在铁丝上相对静止时,末个链环与铅垂线交角为,

分析:如图5(a)所示,由于对称性,锁链两端与铁丝接触点0,O'的垂直作用力N=nmg,m是每个链环的质量。铁丝对锁链端点的摩擦力。

解:设链环的长为l,重心在其中心,取右端第一个链环为隔离体,当它平衡时对通过A点垂直于纸面的轴的合力矩为零,

以N、f之值代入,即可解得:。

3、物体平衡的种类

下面讨论物体在重力和支力作用下所处的各种平衡状态,

图6表示放在凹

面底端、凸面顶端和平面上的小球,它们所受的重力和支

力等值反向,都处在平衡位置。

由于某种因素,小球稍稍偏离平衡位置,在凹面底部的小球重心升高,重力势能增大,重力mg和支力N不再保持平衡,合力指向原来的平衡位置,小球会恢复平衡,这种平衡叫做稳定平衡。位于凸面端的小球稍微偏离平衡位置后,重心降低,重力势能减少,重力和支力也不再平衡,合力指向远离原来平衡位置的方向,这种平衡叫做不稳定平衡。平面上的小球偏离原来位置后,重心的高度和重力势能不变,小球仍保持平衡,这种平衡叫做随遇平衡。

[例5]任意横截面的柱体A静止在固定柱体A'上面,如图7(a)所示。G

是A的重心,G到接触点的距离是h,D、D'是这两个截

面接触点的曲率中心;P、P'是相应的曲率半径,求:h、

p、p'满足什么关系时,A处于稳定平衡状态?并加以讨

论。

分析:当A稍微偏离平衡位置,接触点相对于D'转

过角度,而DG与DD'相交θ角,如图7(b)所示,和

θ都是很小的角度,显然PQ=P'Q'。设A的质量为m,由图7(b)知质心G到D'的垂直距离H=(P+P')COS-(p-h)=COS(θ+)。若以D'为零势能的参考点,则当A稍微偏离平衡位置时,其重力势能为

(5-2)

当A在平衡位置时,重力势能是

(5-3)

解:由于和θ是小量,

因此,(5-2)可写作。

。(5-4)

于是,势能增加,相应

于稳定平衡;,势能减少,

相应于不稳定平衡。

因此

即稳定平衡的条件为(5-5)

不稳定平衡条件为(5-6)

如果上面物体A的接触面为平面,于是稳定平衡条件为,否则

是不稳定平衡。如果物体A放置在平面上,则,稳定平衡的条件为,否则就是不稳定平衡。

4、运动定律的应用

应用牛顿运动定律解决具体问题时,首先要明确讨论的是哪一个(或哪一些)物体的运动,画出隔离体力图。其次要讨论物体的运动情况特别要注意加速度,因为它起着将运动定律和运动学联结起来的作用。对隔离体分析了受力情况和运动情况后,就可列出矢量式,但要求出结果还必须建立坐标系,写出运动方程的分量式。

质点动力学问题大致分成两类:(1)已知质点的运动情况,求其它物体施于该质点的作用力;(2)已知其它物体施于质点的作用力,求质点运动情况。

[例6]图8(a)所示。两个木块A和B,质量分别为,紧挨着并排放

在水平桌面上,A、B间的接触面垂直于纸面且与水平成θ角,A、B间接触面是光滑的,但它们与桌面存在摩擦,静摩擦系数和滑动摩擦系数均为μ,开始时A、B都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B之间不发生相对滑动。则(1)μ的数值应满足什么条件?(2)推力F的最大值不能超过多少?(只考虑平动)?

分析:A、B的受力图如图8(b)所示。

由于A、B间接触面是光滑的,它们之间

相互作用力N垂直于接触面。

解:(1)若A、B之间不发生相对

滑动,则A在竖直方向的加速度为零,

即。(6-1)

B以加速度a>0向右运动

联立以上三式,解出:

(2)在已满足(6-4)式的情况下,A、B的水平加速度均为a,于是

由A:

由B:

解出A、B间不发生相对滑动的

[例7]固定在粗糙桌面上的三棱柱C,质量千克,滑块A、B质量

千克,千克。定滑轮质量不计联接A、B的轻绳不可伸长。开始时使A、B、C都处于静止状态,且滑轮两边轻绳伸直,今以F=26.5牛的水平推力作用于C,同时释放A、B、C。若C沿桌面向左滑行,其加速度,

B相对于桌面无水平方向位移(绳子一直是绷紧的)。求:C与桌面间的摩擦系数μ。已知:

分析:这是一个具有相对运动的动力学问

题,以桌面为静止参照物,三棱柱C为运动参照

系,则滑块相对于桌面的加速度(绝对加速度)

a,等于滑块相对于三棱柱的加速度(相对加速

度)a'与三棱柱相对于桌面的加速度(牵连加速

度)a0之和。

由题意:滑块B相对于桌面无水平方向位移,所以B的绝对加速度沿水平x 方向的分量为零。

于是滑块的相对加速度的大小

由于绳子不可伸长,又是绷紧的,所以A、B的相对加速度的数值是相等的但方向不同,由图9(b)所示。

滑块A的绝对加速度的两个分量:

滑块B的绝对加速度的两个分量:

解:对于A、B、C组成的系统,在x方向受到外力是推力F和摩擦力f。于是:将有关数据代入,解出f=10牛。

系统在y方向受到的外力是:桌面作用于C的支持力N,方向+y;A、B、C 所受的重力为,方向-y,所以

将有关数据代入,得N=93牛。

最后得摩擦系数。

习题

1.质量为m,半径为R的球放在竖直墙和板AB之间。

A端用绞链固定在墙上,B端用水平细绳拉住,如图10所

示。板长l,和墙夹角a。不计摩擦及板的质量。求:(1)

绳的拉力T;(2)角a为何值时,T有最小值。

2.用一个水平放置的半径为R的圆柱形光滑槽面,其轴线通过O点,槽内放着两个半径均为r的光滑圆柱体A、B,如图11所示。质量分别为,且r=R/3,求:圆柱体A、B平衡时,OA线与竖直线间的夹角a是多少?

3.一条轻绳跨过同一高度上的两轻滑轮。两端分别栓

上质量为4千克和2千克的物体,滑轮间的一段绳上挂第

三个物体M,如图12所示。试问:M的质量小于何值时,

三个物体平衡将被破坏?不考虑滑轮大小和摩擦。(千

克)

4.底边长为a,高度为b的长

方形匀质的物块置于斜面上,斜面和

物体之间的静摩擦系数为μ,斜面

的倾角为θ,当θ足够小时,物块

静止在斜面上(如图13)。如逐渐

将倾角增大,当θ取某个临界值

时,物块或将开始滑动,或将翻倒。

试说明在什么条件下出现的是滑动;

在什么条件下出现的是翻倒。

(当,木块滑动;,木块翻倒)

5.两个质量分别为的小环能沿着一轻绳光滑地滑动,绳的两端固定于直杆的两端,杆与水平线成角度θ。在此杆上又套一轻小环,绳穿过轻环并使在其两边(如图14)。设环与直杆的接触是光滑的,当系统平衡时,

直杆与轻环两边的绳夹角。试证:

6.在互相垂直的斜面上放置一匀质杆AB,如图

15示。设各接触面的摩擦角均为,求平衡时杆AB与与斜面AO的交角θ。已知斜面BO和水平面交角a。

7.两个相同的等腰楔子,质量均为M,顶角为2a,把它们的底面靠在一起,放置于粗糙水平桌面上,底面与桌面之间的静摩擦系数为μ,底面边长为l,把一个质量为m,半径为r的光滑球放置其间。由图16

所示。试证:平衡的必要条件是:

8.一个

熟鸡蛋的圆、

尖两端的曲

率半径分别

为a、b,且

长轴的长度为c,证明:蛋尖的一端可

以在不光滑的水平面上稳定直立。如

图17所示。并求碗的半径r。

9.A、B、C三物体,质量分别为,A、B叠放在光滑的水平桌面上(如图18),A、B之间的静摩擦系数为μ,不计绳与滑轮之间的摩擦

及质量。整个系统由静止释放。讨论:A与B不发

生相对运动的条件。

10.如图19所示,在水平光滑的平面上,质量

分别为的两个质点,用轻质弹簧联在一起,并

以长为的细线拴在轴O上,均以角速度ω

绕轴O作匀速圆周运动。两球间的距离。如将线烧断。求:在线刚烧断的瞬间,的加速度。

讲解:求解共点力平衡问题的八种方法

求解共点力平衡问题的八种方法 一、分解法 一个物体在三个共点力作用下处于平衡状态时, 将其中任意一个力沿其他两个力的反方 向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题, 则每个方向上的一对力大 小相等。 二、合成法 对于三力平衡时,将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡, 把三力平衡转化为二力平衡问题。 [例1]如图1所示,重物的质量为 m ,轻细绳Ao 和Bo 的A 端、B 端是固定的,平衡 时AO 是水平的,BO 与水平面的夹角为 θ, AO 的拉力F i 和BO 的拉力F ?的大小是( ) A . F i = mgcos θ B. F i = mgcot θ C. F 2= mgs in θ D. F 2= mg/sin θ [解析]解法一(分解法) 用效果分解法求解。F 2共产生两个效果:一个是水平方向沿 A →O 拉绳子AO ,另一个 是拉着竖直方向的绳子。如图 2甲所示,将F 2分解在这两个方向上,结合力的平衡等知识 解得F i = F ?' = mgcot θ F ?= F —眉 卫迅。显然,也可以按mg (或F i )产生的效果分解 Sin θ Sin θ F i )来求解此题。 解法二(合成法) 由平行四边形定则,作出 F i 、F 2的合力F i2,如图乙所示。又考虑到 F i2 = mg ,解直角 三角形得F i = mgcot θ, F 2= mg/sin θ,故选项 B 、D 正确。 mg (或

[答案]BD 三、正交分解法 物体受到三个或三个以上力的作用处于平衡状态时,常用正交分解法列平衡方程求解: F X合=0, F y合=0。为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则。 [例2]如图3所示,用与水平成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动。关于物块受到的外力,下列判断正确的是 A .推力F先增大后减小 B .推力F —直减小 C.物块受到的摩擦力先减小后增大 D .物块受到的摩擦力一直不变 [解析]对物体受力分析,建立如图4所示的坐标系。 r Γ∣Γ & ^^I匚 图4 由平衡条件得 FCoS θ—F f = 0 F N —(mg + FS in θ)= 0 又F f= μF N 可见,当θ减小时,F —直减小,故选项B正确。 [答案]B 四、整体法和隔离法 若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法。对于多物体问题,如果不求物体间的相互作用力,优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法 相结合的方法。 [例3](多选)如图5所示,放置在水平地面上的质量为M的直角劈上有一个质量为m 联立可得 μ mg cos θ—μin θ 图3

复习专题:共点力平衡问题

【课题】共点力作用下的静态平衡问题 【课型】复习课 【三维目标】 一、知识与能力 掌握共点力作用下的静态平衡问题的解决方法。 二、过程与方法 系统的归纳在共点力平衡问题中可能会用到的整体法和隔离法;正交分解法和矢量三角形法。 三、情感态度与价值观 通过系统的归纳与学习,使学生能够把电磁学中力学知识跟平衡问题有机的结合,积极应对高考。 【教学重点】 共点力平衡问题的一般方法;整体法与隔离法;研究对象的转移;正交分解法及矢量三角形法 【教学难点】 整体法与隔离法的选择;正交分解法 【教学过程】 一、新课导入 上节课我们通过考点网络结构的方式给大家复习了高中阶段必须掌握的几种力:重力、弹力、摩擦力、电场力、安培力、洛伦兹力。那么物体在这些力的作用下可能会达到平衡状态,今天我们就一起来复习物体在共点力作用下

的静态平衡问题的解决方法及其他物理方法。 二、课程设计 问:何为物体的静态平衡? 答:物体在力的作用下保持静止状态或匀速直线运动状态。 接下来我们就通过一道例题来总结一下解决共点力平衡问题的一般方法和步骤。(过渡) 例1:如图所示,两根相距L的光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ,质量为m 的金属杆ab 垂直导轨放置,整个装置处于垂直金属导轨平面向上的匀强磁场中。当金属杆ab中通有从a到b的电流I时,金属杆ab保持静止。求: (1)金属杆对导轨的压力。 (2)磁感应强度的大小。 解:以通电金属杆为研究对象, 受力分析如图,正交分解重力, 得:mg x=mgsinθ mg y=mgcosθ

则,mgsinθ=IBL mgcosθ=F 解方程的B= mgsinθ/IL 根据牛顿第三定律,金属杆对导轨的压力为mgcosθ。 现在我们来总结下解决这个问题的一般步骤: 【课件展示】 (一)选择合适的研究对象(选对象) (二)对研究对象进行受力分析(分析力) (三)选择合适的方法处理受力(处理力) (四)根据平衡条件列出方程(列方程) (五)解方程,得出结论(得结论) 有的同学可能在想,老师现在都第二轮复习了,你怎么还讲这么简单的题目呢?我要告诉大家的是,我们现在并不是学会解这道题,而是学会解决这类问题的一般方法。那么,请问大家知道在解决这类问题的每一个步骤中又会遇到什么特殊情况吗?让我们回过头来在看一下每个解题步骤。(过渡) (一)选择合适的研究对象(选对象) 【课件展示】 1、整体法:在分析两个或者两个以上物体间的相互作用时,如果两个物体的运动状态相同,且分析的受力是两个物体的外力。

共点力平衡的几种解法(例题带解析)

共点力平衡的几种解法 1. 力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三个力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到的这两个分力势必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2. 矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法,根据正弦定理、余弦定理或相似三角形等数学知识可求得未知力。 矢量三角形作图分析法,优点是直观、简便,但它仅适于处理三力平衡问题。 3. 相似三角形法:相似三角形法,通常寻找的是一个矢量三角形与三个结构(几何)三角形相似,这一方法也仅能处理三力平衡问题。 4. 正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 5. 三力汇交原理:如果一个物体受到三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必为共点力。 6. 正交分解法:将各力分别分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件,多用干三个以上共点力作用下的物体的平衡,值得注意的是,对“x、y方向选择时,尽可能使落在x、y轴上的力多;被分解的力尽可能是已知力。不宜分解待求力。 7. 动态作图:如果一个物体受到三个不平行外力的作用而处于平衡,其中一个力为恒力,第二个力的方向一定,讨论第二个力的大小和第三个力的大小和方向。 三. 重难点分析: 1. 怎样根据物体平衡条件,确定共点力问题中未知力的方向? 在大量的三力体(杆)物体的平衡问题中,最常见的是已知两个力,求第三个未知力。解决这类问题时,首先作两个已知力的示意图,让这两个力的作用线或它的反向延长线相交,则该物体所受的第三个力(即未知力)的作用线必定通过上述两个已知力的作用线的交点,然后根据几何关系确定该力的方向(夹角),最后可采用力的合成、力的分解、拉密定理、正交分解等数学方法求解。 2. 一个物体受到n个共点力作用处于平衡,其中任意一个力与其余(n-1)个力的合力有什么关系? 根据二力平衡条件,一个物体受n个力平衡可看作是任意一个力和其余(n-1)个力的合力应满足平衡条件,即任意一个力和其余(n-1)个力的合力满足大小相等、方向相反、作用在同一直线上。 3. 怎样分析物体的平衡问题 物体的平衡问题是力的基本概念及平行四边形定则的直接应用,也是进一步学习力和运动关系的基础。 (1)明确分析思路和解题步骤 解决物理问题必须有明确的分析思路.而分析思路应从物理问题所遵循的物理规律本身去探求。物体的平衡遵循的物理规律是共点力作用下物体的平衡条件:,要用该规律去分析平衡问题,首先应明确物体所受该力在何处“共点”,即明确研究对象.在分析出各个力的大小和方向后,还要正确选定研究方法,即合成法或分解法,利用平行四边形定则建立各力之间的联系,借助平衡条件和数学方法,确定结果.由上述分析思路知,解决平衡问题的基本解题步骤为: ①明确研究对象。 在平衡问题中,研究对象常有三种情况: <1> 单个物体,若物体能看成质点,则物体受到的各个力的作用点全都画到物体的几何中心上;若物体不能看成质点,则各个力的作用点不能随便移动,应画在实际作用位置上。 <2> 物体的组合,遇到这种问题时,应采用隔离法,将物体逐个隔离出去单独分析,其关键是找物体之间的联系,相互作用力是它们相互联系的纽带。 <3> 几个物体的的结点,几根绳、绳和棒之间的结点常常是平衡问题的研究对象。 ②分析研究对象的受力情况 分析研究对象的受力情况需要做好两件事:

共点力平衡(练习)【教育机构专用】高三物理寒假讲义(学生版)

专题04 共点力平衡(学生版) 基础部分: 1.(2020·四川安州东辰国际学校高一月考)下列关于力的说法中,正确的是() A.合力的大小至少大于一个分力 B.物体放在桌面上,桌面受到的压力就是物体的重力 C.静止的物体不可能受滑动摩擦力 D.如果物体形状发生了改变,则一定受到了力的作用 2.(2020·四川高一月考)两个力F1和F2间的夹角为θ,两力的合力为F。以下说法正确的是()A.若F1和F2大小不变,夹角θ由零增大到180°过程中,合力先减小后增大 B.合力F总比分力F1和F2中任何一个力都大 C.F1和F2大小相等时,它们的合力大小F可能等于分力大小 D.两力F1、F2与F是物体同时受到的三个力 3.(2020·江苏高三期中)世界上最大最雄伟的100座桥梁有80座在中国。其中单面索斜拉桥具有经济,美观,视线不受遮挡的优点。单面索斜拉桥所有钢索均处在同一竖直面内,索塔与钢索如图所示。下列说法正确的是() A.仅增加索塔高度可减小钢索的拉力大小 B.仅减小索塔高度可减小钢索的拉力大小 C.仅增加钢索的数量可减小索塔受到向下的压力

D.仅减少钢索的数量可减小索塔受到向下的压力 4.(2020·四川射洪中学高一期中)如图所示,上网课时小明把手机放在斜面上,下面说法正确的是 () A.手机受斜面的作用力,方向竖直向上 B.手机所受重力可分解为平行于斜面的下滑力和对斜面的正压力 C.当倾角增大时,只要手机不滑动,它受的摩擦力随斜面倾角的增大而减小 D.当倾角增大时,并手机开始沿斜面下滑,它所受的摩擦力将随斜面倾角的增大而减小5.(2020·上海市奉贤区奉城高级中学高一期末)如图,重为G的圆球与两轻杆连接,轻杆与竖直墙壁间分别用A、B铰链连接,O为球心,将球的重力按作用效果分解,分力的方向应为() A.OA与OB方向B.OB与OD方向 C.OC与OB方向D.OC与OD方向 6.(2020·浙江高一期中)生活中拉链在很多衣服上应用,图中是衣服上拉链的一部分,当我们拉拉链的时候,拉头与拉链接触处呈三角形,使很难直接分开的拉链拉开,关于其中的物理原理,以下说法正确的是()

第四讲 共点力平衡

第四讲 共点力平衡 方法提示 力三角形力判断法:三力平衡时,三力构成闭合三角形;只要作出各种可能的闭合力三角形,根据一簇力三角形的边角变化,即可直观地了解力的变化情况。 三类常见动态平衡判断:1. 已知一个力大小方向,第二个力的方向; 2. 已知一个力大小方向,第二个力的大小; 3. 已知一个力大小方向,另二力方向变化有依据. 例题精讲 类型1: 【例1】如图所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小. 类型2: 【例2】小球质量m,用一细线悬挂.现用一大小恒定的力F(F<mg)慢慢将小球拉起,在小球可能的平衡位置中,细线最大的偏角θ是多少? 【例3】求在“探究求合力的方法”的实验中,用两只弹簧测力计A,B把小圆环拉到某一位置O,这时AO,BO间夹角∠AOB<90°,如图所示.现改变弹簧测力计A的拉力方向,使α角减小,但不改变拉力的大小,那么要使小圆环仍被拉到O点,就应调节弹簧测力计B的拉力大小及 β角.在下列调整方法中,哪些是可行的() 【例4】如图所示,杆BC的B端铰接在竖直墙上,另一端C为一滑轮.重物G上系一绳经过滑轮固定于墙上A点处,杆恰好处于平衡.若将绳的A端沿墙向下移到,再使之平衡(BC杆、滑轮、绳的质量及摩擦均不计),则 A.绳的拉力增大,BC杆受到的压力增大 B.绳的拉力不变,BC杆受到的压力减小 C.绳的拉力不变,BC杆受到的压力增大 D.绳的拉力不变,BC杆受到的压力 类型3:

【例5】如图所示,固定在水平面上的光滑半球,球心O的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A点,另一端绕过定滑轮,如图所示.今缓慢拉绳使小球从 A点滑向半球顶点(未到顶点),则此过程中,小球对半球的压力大小N及细绳的拉力T大 小的变化情况是() A. 变大,T变大 B.N变小,T变大 C.N不变,T变小 D.N变大,T变小 【例6】如图所示,两根轻绳一端系于结点O,另一端分别系于固定圆环上的A、B两点,O为圆心。 O点下面悬挂一物体M,绳OA水平,拉力大小为F1,绳OB与绳OA成α=120°,拉力大小 为F2。将两绳同时缓慢顺时针转过75°,并保持两绳之间的夹角α始终不变,物体始终保 持静止状态。则在旋转过程中,下列说法正确的是 A.F1逐渐增大 B.F1先增大后减小 C.F2逐渐减小 D.F2先减小后增大 【例7】不可伸长的轻绳AO和BO下端系一个物体P,细线长AO>BO,A、B两端点在同一水平线上,开始时两线刚好绷直,BO垂直于AB,如图所示.现保持A、B在同一水平线上,使A逐渐远 离B,在此过程中,细线上的拉力FA、FB的大小随A、B间距离的变化情况是() A.FA随距离增大而一直增大 B.FA随距离增大而一直减小 C.FB随距离增大而一直增大 D.FB随距离增大而一直减小 4 【例8】两光滑平板MO、NO构成一具有固定夹角θ0=75°的V形槽,一球置于槽内,用θ表示NO板与水平面之间的夹角,如图所示。若球对板NO压力的大小正好等于球所受重力的大小,则 下列θ值中哪个是正确的() A.15° B.30° C.45° D.60° 【例9】如图所示,在水平放置、半径为R的光滑圆弧槽内,有两个半径均为R/3、重分别为G1、G2的小球A和B,平衡时槽面圆心O与球A的球心连线与竖直方向的夹角α多大? 方法提示 巧取研究对象示例: 尽量取整体、需“化内为外”时取部分、方程数不足时取部分、整、分结合,方便解题

共点力平衡习题精选

1.下列情况下,物体处于平衡状态的是( ) A .竖直上抛的物体到达最高点时 B.做匀速圆周运动的物体 C .单摆摆球摆到最高点时 D.水平弹簧振子通过平衡位置时 2.下列各组的三个点力,可能平衡的有 ( ) A .3N ,4N ,8N B .3N ,5N ,7N C .1N ,2N ,4N D .7N ,6N ,13N 3.右图是一种测定风力的仪器的原理图,质量为m 的金属球,固定在一细长的轻金属丝下端,能绕悬点O在竖直平面内转动,无风时金属丝自然下垂,有风时金属丝将偏离竖直方向一定角度θ,角θ的大小与风力大小F 有关,下列关于风力F与θ的关系式正确的是( ) A.F=mg ·tan θB.F=mg ·sin θC.F=mg ·cos θ D.F=mg ∕cos θ 4.如图1所示,在同一平面内,大小分别为1N 、2N 、3N 、4N 、5N 、 6N 的六个力共同作用于一点,其合力大小为( ) A .0 B .1N C .2N D .3 5.A 、B 、C 三物体质量分别为M 、m 、m 0,作如图所示的连接,绳 子不可伸长,且绳子和滑轮的摩擦均不计,若B 随A 一起沿水平桌面 向右做匀速运动,则可以断定( ) A .物体A 与桌面之间有摩擦力,大小为m 0g B .物体A 与B 之间有摩擦力,大小为m 0g C .桌面对A ,B 对A ,都有摩擦力,方向相同,大小均为m 0g D .桌面对A ,B 对A ,都有摩擦力,方向相反,大小均为m 0g 6.人站在自动扶梯的水平踏板上,随扶梯斜向上匀速运动,如图所 示.以下说法正确的是( ) A .人受到重力和支持力的作用 B .人受到重力、支持力和摩擦力的作用 C .人受到的合外力不为零 D .人受到的合外力方向与速度方向相同 7.用一轻绳将小球P 系于光滑墙壁上的O 点,在墙壁和球P 之间夹有一矩形物块Q ,如图所示.P 、Q 均处于静止状态,则下列相关说法正确的是 A .P 物体受4个力 B .Q 受到3个力 C .若绳子变长,绳子的拉力将变小 D .若绳子变短,Q 受到的静摩擦力将增大 8.如图所示,质量为m 的楔形物块,在水平推力F 作用下,静止在倾角为θ的光滑固定斜面上,则楔形物块受到的斜面支持力大小为 ( ) A .Fsin θ B .sin F θ C .mgcos θ D .cos mg θ 9.如图所示,用轻绳吊一个重为G 的小球,欲施一力F 使小球在图示 位置平衡(θ<30°), 下列说法正确的是( ) A .力F 最小值为θsin ?G B .若力F 与绳拉力大小相等,力F 方向与竖直方向必成θ角. C .若力F 与G 大小相等,力F 方向与竖直方向必成θ角. D .若力F 与G 大小相等,力F 方向与竖直方向可成2θ角. 10、如图在水平力F 的作用下,重为G 的物体沿竖直墙壁匀速下滑,物体风θ m O 1N 2N 3N 4N 5N 6N 图1 60° 60° 60° 60° 60° 60° v θ F P Q O

专题04 共点力平衡的七大题型(解析版)

2020年高考物理一轮复习热点题型归纳与变式演练 专题04 共点力平衡的七大题型 【专题导航】 目录 一、三类常考的“三力静态平衡”问题 (1) 热点题型一三个力中,有两个力互相垂直,第三个力角度(方向)已知。 (1) 热点题型二三个力互相不垂直,但夹角(方向)已知。 (3) 热点题型三三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。 (5) 二、三类常考的“动态平衡”模型 (6) 热点题型四矢量三角形法类 (6) 热点题型五相似三角形法类 (9) 热点题型六单位圆或正弦定理发类型 (10) 热点题型七衣钩、滑环模型 (12) 【题型演练】 (14) 【题型归纳】 一、三类常考的“三力静态平衡”问题 热点题型一三个力中,有两个力互相垂直,第三个力角度(方向)已知。 解决平衡问题常用的方法有以下五种 ①力的合成法 ②力的正交分解法 ③正弦定理(拉米定理)法 ④相似三角形法 ⑤矢量三角形图解法 【例1】如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下静止P点。设滑块所受支持力为N F。OF与水平方向的夹角为 。下列关系正确的是()

A .θtan mg F = B .θtan mg F = C . θtan mg F N = D .θtan mg F N = 【答案】 A 【解析】 解法一 力的合成法 滑块受力如图甲,由平衡条件知:mg F =tan θ?F =mg tan θ , F N =mg sin θ 。 解法二 力的分解法 将滑块受的力水平、竖直分解,如图丙所示,mg =F N sin θ,F =F N cos θ, 联立解得:F =mg tan θ,F N =mg sin θ 。 解法三 力的三角形法(正弦定理) 如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =mg tan θ,F N =mg sin θ 。 【点睛】通过例题不难发现针对此类题型应采用“力的合成法”解决较为容易。 【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜 面平行。,重力加速度取10m/s 2。若轻绳能承受的最大张力为1 500 N ,则物块的质量最大为( ) A .150kg B . C .200 kg D . 【答案】A 【解析】

典型共点力平衡问题例题汇总

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少?

(3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。 设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得 T≈8N, (2)圆环将要滑动时,得 m G g=Tctgθ, m G=0.6kg。

共点力的平衡练习(有答案)

共点力平衡练习 1、有三个共点力,大小分别为2N 、3N 、4N ,它们合力的最大值为 9 N ,最小值为 0 N 。 2、如图所示,物体B 的上表面水平,B 上面载着物体A ,当它们一起沿固定斜面C 匀速下滑的过程中物体A 受力是:( B ) A 、只受重力; B 、只受重力和支持力; C 、有重力、支持力和摩擦力; D 、有重力、支持力、摩擦力和斜面对它的弹力。 3、把一木块放在水平桌面上保持静止,下面说法中哪些是正确的:( C ) A 、木块对桌面的压力就是木块受的重力,施力物体是地球 B 、木块对桌面的压力是弹力,是由于桌面发生形变而产生的 C 、木块对桌面的压力在数值上等于木块受的重力 D 、木块保持静止是由于木块对桌面的压力与桌面对木块的支持力二力平衡 4、在力的合成中,下列关于两个分力(大小为定值)与它们的合力的关系的说法中,正确的是:( D ) A 、合力一定大于每一个分力; B 、合力一定小于分力; C 、合力的方向一定与分力的方向相同; D 、两个分力的夹角在0°~180°变化时,夹角越大合力越小。 5、如图所示,恒力F 大小与物体重力相等,物体在恒力F 的作用下,沿水平面做匀速运动,恒力F 的方向与水平成θ角,那么物体与桌面间的动摩擦因数为:( C ) A 、θcos ; B 、θctg ; C 、θ+θsin 1cos ; D 、θtg 。 6、物体A 、B 、C 叠放在水平桌面上,用水平力F 拉B ,使三者一起匀速向右运动,则:( AC ) A 、物体A 对物体 B 有向左的摩擦力作用; B 、物体B 对物体 C 有向右的摩擦力作用; C 、桌面对物体A 有向左的摩擦力作用; D 、桌面和物体A 之间没有摩擦力的作用。 7、如图所示,F 1、F 2为两个分力,F 为其合力,图中正确的合力矢量图是:( AC ) 8、如下图所示,甲、乙、丙、丁四种情况,光滑斜面的倾角都是α,球的质量都是m ,球都是用轻绳系住处于平衡状态,则:( BC )

共点力平衡的七大题型Word版含解析(2020年10月整理).pdf

专题 共点力平衡的七大题型 目录 一、三类常考的“三力静态平衡”问题 (1) 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 (1) 热点题型二 三个力互相不垂直,但夹角(方向)已知 。 (3) 热点题型三 三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。 (5) 二、三类常考的“动态平衡”模型 (6) 热点题型四 矢量三角形法类 (6) 热点题型五 相似三角形法类 (9) 热点题型六 单位圆或正弦定理发类型 (10) 热点题型七 衣钩、滑环模型 (12) 【题型归纳】 一、三类常考的“三力静态平衡”问题 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 解决平衡问题常用的方法有以下五种 ①力的合成法②力的正交分解法③正弦定理法④相似三角形法⑤矢量三角形图解法 【例1】如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止P 点。设滑块所受支持力为N F 。OF 与水平方向的夹角为θ。下列关系正确的是( ) A .θtan mg F = B .θtan mg F = C . θtan mg F N = D .θtan mg F N = 【答案】 A 解法一 力的合成法滑块受力如图甲,由平衡条件知:mg F =tan θ?F =mg tan θ,F N =mg sin θ 。

解法二 力的分解法 将滑块受的力水平、竖直分解,如图丙所示,mg =F N sin θ,F =F N cos θ,联立解得:F =mg tan θ,F N =mg sin θ 。 解法三 力的三角形法(正弦定理) 如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =mg tan θ,F N =mg sin θ 。 【点睛】通过例题不难发现针对此类题型应采用“力的合成法”解决较为容易。 【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜 面平行。,重力加速度取10m/s 2。若轻绳能承受的最大张力为1 500 N ,则物块的质量最大为( ) A .150kg B . C .200 kg D . 【答案】A 【解析】 T =f +mg sin θ,f =μN ,N =mg cosθ,带入数据解得:m =150kg ,故A 选项符合题意。 【变式2】(2019·新课标全国Ⅲ卷)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于 两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平 直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2则( ) A .12F F , B .12F F , C .121==22F mg F , D .121==22 F F mg , 【答案】D 【解析】对圆筒进行受力分析知圆筒处于三力平衡状态,受力分析如图,由几何关系可知,1cos30F mg '=?, 2sin 30F mg '=?。解得12F mg '=,212F mg '= 由牛顿第三定律知121,22 F mg F mg ==,故D 正确

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法 共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。 一、力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反; 1.(2008年·广东卷)如图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ(A 、B 点可以自由转动)。设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是( ) A.F 1=mgsinθ B.F 1= sin mg q C.F 2=mgcosθ D.F 2=cos mg q 二、力的分解法 在实际问题中,一般根据力产生的实际作用效果分解。 2、如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少? 3.如图所示,质量为m 的球放在倾角为α的光滑斜面上,试分析挡板AO 与斜面间的倾角β多大时,AO 所受压力最小。 三、正交分解法 解多个共点力作用下物体平衡问题的方法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解: 0x F =合,0 y F =合. 为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则 . θ

4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60° 角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解. 5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( ) A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C , N F 不变、T F 变小 D. N F 变大、T F 变小 6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。已知两绳所能承受的最大拉力均为T ,则每根绳长度不得短于____ 。 五、用图解法处理动态平衡问题 对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断. 7、如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( ) A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用 若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。 8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G ,斜面的倾角为θ,求下列情况

【通用版】高考物理二轮复习讲义:第1讲 明“因”熟“力”破解共点力的平衡问题(含解析)

第1讲 ??? 明“因”熟“力”,破解共点力的平衡问题 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 考法 学法 平衡问题是历年高考的重点,高考既可能在选择题中单独考查平衡问题,也可能在计算题中综合考查平衡问题。考查的内容主要包括:①对各种性质的力的理解; ②共点力作用下平衡条件的应用。 该部分内容主要解决的是选择题中的受力分析和 共点力平衡问题。用到的思想方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想。 提能点(一) 根据不同力的特点,正确进行受力分析????? ???基础保分类考点练练就能过关 [知能全通]———————————————————————————————— 受力分析是整个高中阶段物理知识的基础,能正确进行受力分析是解答力学问题的 关键。 1.受力分析的一般步骤 2.分析三种典型力的注意事项 (1)弹力:弹力的方向一定与接触面或接触点的切面垂直,且指向受力物体。 (2)静摩擦力:两物体接触处有无静摩擦力,要根据物体间有无相对运动趋势或根据平衡条件进行判断。 (3)滑动摩擦力:利用公式求解滑动摩擦力时,一定要注意分析接触面间的实际压力,不能简单地代入重力求解。 [题点全练]———————————————————————————————— 1.[多选](2018·湖北中学调研)如图所示,顶角为θ的光滑圆锥体固 定在水平面上,一质量为m 的匀质圆环套在圆锥体上处于静止状态, 重力加速度大小为g ,下列判断正确的是( )

A .圆锥体对圆环的作用力方向垂直于圆锥的侧面 B .圆锥体对圆环的作用力方向竖直向上 C .圆环的张力不为零 D .圆环的张力方向指向圆环的圆心 解析:选BC 由题意知圆环受重力和圆锥体对圆环的作用力处于平衡状态,则圆锥体对圆环的作用力与圆环所受的重力等大反向,即圆锥体对圆环的作用力方向竖直向上,故A 错误,B 正确;质量为m 的匀质圆环套在圆锥体上,圆环有被撑开的趋势,所以圆环的张力不为零,故C 正确;圆环的张力方向沿圆环的切线方向,故D 错误。 2.如图所示,小明在水平桌面上将三个形状不规则的石块成功叠放在一 起,下列说法正确的是( ) A .石块a 一定只受两个力 B .石块b 对a 的支持力与a 受到的重力是一对相互作用力 C .石块c 受到水平桌面向左的摩擦力 D .水平桌面对石块c 的支持力等于三个石块受到的重力之和 解析:选D 石块a 与b 的接触面不一定沿水平方向,可能还受到摩擦力,故A 错误;石块b 对a 的支持力与a 受到的重力性质不同,作用在一个物体上,不是一对相互作用力,故B 错误;对a 、b 、c 整体受力分析,受重力和水平桌面的支持力而平衡,即石块c 与水平桌面之间无摩擦力,故C 错误;对a 、b 、c 整体,由平衡条件得:水平桌面对石块c 的支持力等于三个石块受到的重力之和,故D 正确。 3.(2018·淄博实验中学一诊)如图所示,一质量均匀的实心 圆球被直径AB 所在的平面一分为二,先后以AB 沿水平和竖直 两种不同方向放置在光滑支架上,处于静止状态,两半球间的 作用力分别为F 和F ′,已知支架间的距离为AB 长度的一半,则F F ′等于( ) A.3 B.32 C.233 D.33 解析:选A 设两半球的总质量为m ,当球以AB 沿水平方向放置,可 知F =12 mg ;当球以AB 沿竖直方向放置,单独对右半球受力分析如图

处理共点力平衡问题得常见方法与技巧

处理共点力平衡问题得常见方法与技巧 物体所受各力得作用线(或其反向延长线)能交于一点,且物体处于静止状态或匀速直线运动状态,则称为共点力作用下物体得平衡。它就是静力学中最常见得问题,下面主要介绍处理共点力作用下物体平衡问题得一些思维方法。 1、解三个共点力作用下物体平衡问题得方法 解三个共点力作用下物体平衡问题得常用方法有以下五种: (1)力得合成、分解法:对于三力平衡问题,一般可根据“任意两个力得合成与第三个力等大反向”得关系,即利用平衡条件得“等值、反向”原理解答。 例1、如图1所示,一小球在纸面内来回振动,当绳OA与OB拉力相等时,摆线与竖直方向得夹角为:( ) 图1 A、 15° B、 30° C、 45° D、 60° 解析:对O点进行受力分析,O点受到OA绳与OB绳得拉力F A与F B及小球通过绳子对O 点得拉力F三个力得作用,在这三个力得作用下O点处于平衡状态,由“等值、反向”原理得,F A 与F B得合力F合与F就是等值反向得,由平行四边形定则,作出F A与F B得合力F合,如图2所示,由图可知,故答案就是A。 图2 (2)矢量三角形法:物体受同一平面内三个互不平行得力作用平衡时,这三个力得矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力得合成必为零,因此可利用三角形法,求得未知力。 例2、图3中重物得质量为m,轻细线AO与BO得A、B端就是固定得。平衡时AO就是水平得,BO与水平面得夹角为。AO得拉力与BO得拉力得大小就是:( ) 图3 A、B、 C、D、

解析:因结点O受三力作用而平衡,且与mg垂直,所以三力应组成一个封闭得直角三角形,如图4所示,由直角三角形知识得:,所以选项B、D正确。 图4 (3)正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 例3、如图5(a)所示,质量为m得物体用一轻绳挂在水平轻杆BC得C端,B端用铰链连接,C点由轻绳AC系住,已知AC、BC夹角为,则轻绳AC上得张力与轻杆BC上得压力大小分别为多少? 图5 解析:选C点为研究对象,受力情况如图5(b)所示,由平衡条件与正弦定理可得 即得与 所以由牛顿第三定律知,轻绳AC上得张力大小为,轻杆BC上得压力大小为。 (4)三力汇交原理:如果一个物体受到三个不平行外力得作用而平衡,这三个力得作用线必在同一平面上,而且必为共点力。 例4、如图6所示,两光滑板AO、BO与水平面夹角都就是60°,一轻质细杆水平放在其间,用竖直向下得力F作用在轻杆中间,杆对两板得压力大小为____________。 图6 解析:选轻杆为研究对象,其受三个力而平衡,因此这三力必为共点力(汇交于O”),作出受力分析如图7所示。 图7 由图可知,F TA与F TB对称分布,所以,且这两力得夹角为120°,其合力F”应与F相等,以F TA,F TB为邻边构成得平行四边形为菱形,其性质为对角线垂直且平分,根据三角形知识,有

共点力平衡专题

共点力平衡专题

共点力平衡专题 一.共点力 物体同时受几个力的作用,如果这几个力都作用于物体 的同一点或者它们的作用线交于同一点,这几个力叫共点力.能简化成质点的物体受到的力可视为共点力。 二、平衡状态 物体保持静止 ....状态(或有固定转轴的物体匀....或匀速运动 速转动). 注意:这里的静止需要二个条件,一是物体受到的合外 力为零,二是物体的速度为零,仅速度为零时物体不一定处 于静止状态,如物体做竖直上抛运动达到最高点时刻,物体 速度为零,但物体不是处于静止状态,因为物体受到的合外 力不为零. 共点力的平衡:如果物体受到共点力的作用,且处于平 衡状态,就叫做共点力的平衡。 两种平衡状态:静态平衡v=0;a=0 动态平衡v≠0;a=0 ①瞬时速度为0时,不一定处于平衡状态. 如:竖直上 抛最高点.只有加速度也为零才能认为平衡状态. ②.物理学中的“缓慢移动”一般可理解为动态平衡

三、共点力作用下物体的平衡条件 1.物体受到的合外力为零.即F 合=0 其正交分解式为F 合 x =0 ;F 合y =0 2.某力与余下其它力的合力平衡(即等值、反向)。 二力平衡:这两个力大小相等,方向相反,作用在同一直线上,并作用于同一物体 (要注意与一对作用力与反作用力的区别)。 三力平衡:三个力平移后构成一个首尾相接、封闭的矢量 形; 任意两个力的合力与第三个力等大、反向(即是相互平衡) 结论:①非平行的三个力作用于物体而平衡,则这三个力一定共点。 ②几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向 3.多个力平衡 ①物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N-1)个力的合力等大反向。 ②若采用正交分解法求平衡问题,则其平衡条件为:F X合 =0,

共点力的平衡条件及其应用

共点力的平衡条件及其应用 一、知识点整合 1 物体的受力分析 物体的受力分析是解决力学问题的基础,同时也是关键所在,一般对物体进行受力分析的步骤如下: 1.明确研究对象. 在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体.在解决比较复杂的问题时,灵活地选取研究对象可以使问题简化.研究对象确定以后,只分析研究对象以外的物体施予研究对象的力(既研究对象所受的外力),而不分析研究对象施予外界的力. 2.按顺序找力. 重力、弹力、后摩擦力(只有在有弹力的接触面之间才可能有摩擦力). 3.画出受力示意图,标明各力的符号 4.需要合成或分解时,必须画出相应的平行四边形 【例1】如图所示,物体A 靠在竖直墙面上,在力F 作用下,A 、B 保持静止.物体B 的受力个数为( ) A .2 B .3 C .4 D .5 【解析】以物体B 为研究对象,B 受重力,向上的外力F , A 对 B 的压力N ,物体B 有相对A 上移的运动的趋势,故 A 对B 的静摩擦力沿斜边向下.如图所示: 【答案】C 进行受力分析时必须首先确定研究对象, 再分析外界对研究对象的作用,本题还可以分析A 的 受力,同学不妨一试. 2 共点力作用下的物体的平衡 1.共点力:几个力如果作用在物体的 ,或者它们的作用线 ,这几个力叫共点力. 2.平衡状态:物体的平衡状态是指物体 . 3.平衡条件: 共点力平衡的条件为物体受合力为0 推论:(1)共点的三力平衡时,其中任意两个力的合力与第三个力等大反向. (2)物体受n 个力处于平衡状态时,其中n -1个的合力一定与剩下的 那个力等大反向. 【例2】人站在自动扶梯的水平踏板上,随扶梯斜向上匀速运动,如图所示.以下说法正确 A.人受到重力和支持力的作用 B.人受到重力、支持力和摩擦力的作用 C.人受到的合外力不为零 D.人受到的合外力方向与速度方向相同 答案 A 二、共点力平衡的处理方法 1.三力平衡的基本解题方法 (1)力的合成、分解法: 即分析物体的受力,把某两个力进行合成,将三力转化为二力,构成一对平衡力。 f N G B

物理竞赛讲义1

第一部分:静力学 一、复习基础知识点 一、考点内容 1.力是物体间的相互作用,是物体发生形变和物体运动状态变化的原因。 2.重力是物体在地球表面附近所受到的地球对它的引力,重心。 3.形变与弹力,胡克定律。 4.静摩擦,最大静摩擦力。 5.滑动摩擦,滑动摩擦定律。 6.力是矢量,力的合成与分解。 7.平衡,共点力作用下物体的平衡。 二、知识结构 三、复习思路 在复习力的概念时,同学们应注重回顾学过的各种具体的力,包括电磁学中的各种力,也可以联系牛顿第三定律展开研究力的相互性。对于重力,在复习时可以联系万有引力定律,分清为什么“重力是由于地球的吸引而产生的力”。且通过分析物体随地球自转需向心力,最终认识重力与万有引力之间的差异很小,一般可认为。摩擦力是本单元的重点,也是难点,要结合具体的例子,对摩擦力的大小和方向,摩擦力的有无的讨论以及物体在水平面、斜面上、竖直墙上等的滑动摩擦力与弹力的关系等,要分门别类地进行讨论、研究。 三、基础知识 (一)力的处理 1、矢量的运算 (1)加法 表达: + = 。名词:为“和矢量”。 法则:平行四边形法则。如图1所示。 和矢量大小:c = ,其中α为和的夹角。 和矢量方向:在、之间,和夹角sinβ= (2)减法:表达: = -。 名词:为“被减数矢量”,为“减数矢量”,为“差矢量”。 法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。 差矢量大小:a = ,其中θ为和的夹角。 差矢量的方向可以用正弦定理求得。 一条直线上的矢量运算是平行四边形和三角形法则的特例。 (二)、共点力的合成 1、平行四边形法则与矢量表达式 2、一般平行四边形的合力与分力的求法: 余弦定理(或分割成RtΔ)解合力的大小;正弦定理解方向 (三)、力的分解 1、按效果分解 2、按需要——正交分解 二、物体的平衡 (一)共点力平衡 1、特征:质心无加速度。 2、条件:Σ = 0 ,或 = 0 , = 0 例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹

相关文档
最新文档