新型扫描近场微波显微术 3

新型扫描近场微波显微术 3
新型扫描近场微波显微术 3

3 收到初稿 修回

新型扫描近场微波显微术3

高 琛

中国科学技术大学国家同步辐射实验室 合肥

项 晓 东

劳伦斯伯克利国家实验室材料科学部 伯克利 美国

吴 自 勤

中国科学技术大学天文与应用物理系 合肥

摘 要 简要回顾了近场显微术 特别是扫描近场微波显微术的发展历史 简要介绍了一种新型扫描近场微波显微镜的结构!工作原理以及相应的微波近场显微理论 介绍了它在超导材料!铁电材料!高密度存储技术研究中的应用

关键词 近场微波显微术 隐失波

ΝΟ?ΕΛΣΧΑΝΝΙΝΓΤΙΠΜΙΧΡΟ?Α?ΕΝΕΑΡ

ΦΙΕΛΔΜΙΧΡΟΣΧΟΠΨ

(ΝατιοναλΣψνχηροτρονΡαδιατιονΛαβορατορψ,Υνι?ερσιτψοφΣχιενχεανδΤεχηνολογψοφΧηινα,Ηεφει )

÷ ÷

(ΜατεριαλσΣχιενχεσΔι?ισιον,ΛαωρενχεΒερκελεψΝατιοναλΛαβορατορψ,Βερκελεψ)

?∏

(ΔεπαρτμεντοφΑστρονομψανδΑππλιεδΠηψσιχσ,Υνι?ερσιτψοφΣχιενχεανδΤεχηνολογψοφΧηινα,Ηεφει )

Αβστραχτ × √ √ × ∏ ∏ √ √ √ ∏ ∏ ∏ Κεψωορδσ √

√ √ 历史回顾

所有的显微术都是将某种形式的波动作用于物体 然后通过探测被物体调制了的!并负载了物体信息的载波来重构物体某一物理性质的空间分布 传统的显微术 如光学显微镜都属于远场显微术 远场显微术的最大特点是 源!物和探测器之间的距离远大于波长 由于相互之间都在远场 成像的 个环节 波的发射!波与物体的相互作用和载波的探测是相互独立的

或者说物体的存在并不会影响到源的发射 而

载波的探测也不会影响到波与物体的相互作用 在这样的系统中 能量或信息的流动是单向的

经过长期的发展 各种远场显微术 包括相应的成像理论都已趋成熟 并构成了一个较为完整的体系 在科学技术的进步中扮演了不可或缺的角色 然而 远场显微术的分辨能力受波动衍射极限的制约 对小于 波长的细节 远

#

#物理

场显微术无能为力 这也正是人们致力于发展各种短波显微术 如电子显微镜!软÷射线显微镜的原因所在 这个极限一度曾被认为是不可逾越的 沿用傅里叶光学中空间频率的概念 要想再现某一尺度的物体 必须用与其尺度相当或更高频率的波与之作用并接收到相应空间频率的载波 空间频率作为一种被载波是调制在负载波上的 由于负载波无法携带高于其自身频率的被载波 所以分辨率是有极限的 事实上 早在 年 ≥ ≈ 就已意识到高于负载波频率的被载波虽然不能传播 但却是存在的 只不过被限制在距离光源或物体表面大约波长尺度的范围内 这就是所谓的隐失波 √ √ 原则上讲 如果能接收到足够高空间频率的隐失波 分辨率是没有极限的 在此基础上 ≥ 预言 用比波长更小的点源在足够近的距离内照明物体 或用比波长更小的点探测器在足够近的距离内探测物体的散射波 分辨率可以突破衍射极限 进入 年代以后 当技术的进步终于能够提供上述条件时 以扫描近场光学显微镜为代表的近代显微术也就由设想变成了现实 并在较短的时间里取得了长足的进展 具体表现为不仅突破了衍射极限 而且还开辟了如纳米光学!超高密度存储等一系列新的研究领域 由于显微术本身是一门跨学科的 应用遍及物理!化学!生物!医学!信息!材料!微电子!精密机械等的综合学科 其巨大的应用前景已经并且正在带动新的高科技产业的兴起

新型扫描近场微波显微镜的发展和构造

近场微波显微术同近场光学显微术有许多的相似之处 不同的是近场微波显微镜的工作频率正好处在高速半导体芯片和光通信中超高频光调制器的工作波段 因而倍受工业界的重视 此外 近场光学显微术只适用于透明或半透明材料的研究 而近场微波显微术则适用于包括介电材料!铁电材料!导体!半导体!超导体等几乎所有类型的材料

扫描近场微波显微镜的原型可以追溯到 年代或更早以前≈ 但当时人们并未意识到近场作用的存在 那时的近场微波显微镜大多采用中空的波导作为探针 为了满足分辨率的要求 波导的尺寸必须小于截止频率 微波以指数衰减的形式从波导中传向被测物体 因而能从波导中通过并与物体发生作用的场很弱 系统的灵敏度很差 为了减小衰减 ≈ 使用了渐细的同轴电缆 早期明确提出近场微波显微概念的是? 和≤ ∏ 年诺贝尔物理奖得主朱棣文 等≈ 他们改用一中心导体尖化了的微同轴电缆为探针 由于同轴电缆没有截止频率 灵敏度有了较大的改善 但为满足分辨率而采用的小尺寸微同轴电缆或渐细同轴电缆的尖端还是有较强的衰减 灵敏度仍不够理想 此外 在他们的设计中 与物体作用的场还包含了较多的远场成分 背景信号较强 结果难以定量 此后 研究者们又在其基础上进行了许多改进 并在应用上取得了相当的进展≈ ) 新型扫描近场微波显微镜的设计是在 年提出的≈ 基本结构如图 所示 其核心部件是一个高品质因素 ± 的 波长同轴共振腔 尖化后的探针则安装在共振腔开端的中心导体上 并从开端壁上的小孔中伸出共振腔约 ) 为了提高共振腔的品质因素和屏蔽远场成分 小孔用镶在腔壁上的镀有 膜的白宝石构成 白宝石上孔的大小应能容针尖穿过 越小越好 而镀层的厚度以 的趋肤深度为最佳 这样的设计既可有效地屏蔽远场成分 又可避免针尖与镀层间高损微同轴电缆的形成 以维持共振系统的高品质因素和灵敏度 大致说来 该系统的灵敏度比相应的同轴电缆法高±倍 即提高了约 ) 个量级 所以这是一次质的飞跃 针尖下方的样品通过与针尖的相互作用改变腔的有效长度和损耗 进而改变系统的共振频率和品质因素 通过压电片振动针尖 光电二极管探测针尖对激光的散射 或用其他方法 可将针尖与样品控制在 或Λ 量级的恒定距离上 对绝缘材料 也可将样

#

#

卷 年 期

图 扫描探针近场微波显微镜

品支撑在弹簧悬臂上 实现样品与针尖的软接触 共振系统通过闭端处的两个磁耦合环与外界相连 在扫描样品的同时 高速电子学系统通过鉴相器!比较器和放大器控制频率合成器 随时跟踪系统的共振频率 并由微波二极管检波!放大得到腔内的振幅 以确定系统的品质因素 同时记录三维平台上样品的位置和微波的响应 并通过一系列的理论计算可以再现介电性质!电导率的空间分布

近场微波显微理论

由于近场显微术的基本思想是要将远小于波长的/点0源或/点0探测器控制在离样品足够近的距离之内 在/点0源发出的波由于衍射而在扩散之前照明物体 或在载波中检测某个小区域的贡献 然而 由于源和物的距离或物和探测器的距离已经小于波长 它们之间不再是独立的 换句话说 在近场条件下 物体的存在势必会影响到源的发射 而探测器的存在也会干扰物体对波的散射 即它们已经形成一个不可分割的整体 这给相应的成像理论提出了挑战 基于以上的原因 在近场条件下 阿贝成像理论已失去了意义 取而代之的是必须在波长或更小的尺度上 根据实际的边界条件解麦克斯韦方程组 而其中所涉及到的隐失波又是传统波

#

#物理

动理论中很少考虑的 这几乎不可避免地要依赖于计算机数值方法 给结果的定量化带来了一定的困难 也限制了近场显微术的广泛应用 所以 时至今日 近场光学显微术还没有令人满意的成像理论 对于系统的分辨能力!灵敏度也难以给出定量的预期 少量的一些工作也都是采用数值方法针对特定的情况进行的 结果不具有普适性 有人认为这正是为分辨率的提高所付出的代价

在充分考虑了微波的特点后 我们针对新型探针扫描近场微波显微镜系统提出了一套/准静态0理论≈ 现以介电材料软接触的情况为例说明如下 由于探针的设计 针尖可被近似为处在共振腔峰值电位上的金属微球 考虑到针尖场的作用范围 Λ 量级 远小于微波波长 或 量级 作用范围内的位相差可以不予考虑 而作为一级近似 样品的损耗也可先行略去 因而适用/准静态0近似 当针尖附近没有样品时 等势的微球表面可用球心处的点电荷替代 在针尖电场的作用下 样品发生极化 而极化了的样品反过来作用于针尖 引起针尖上电荷的重新分布 无限重复这一过程可求出样品中的电场分布!系统的频移和±值的改变 根据求得的电场分布 可以计算系统的分辨能力和灵敏度 计算结果表明 系统的分辨能力与被测样品的介电常数有关 可比针尖的曲率半径小两个量级 造成这种现象的原因是极化了的样品对针尖上电荷的吸引 使得有效探测电荷进一步向尖端和样品靠拢 缩短了探测电荷与样品的距离 这一结论已被实验所证实≈

应用举例

用° 薄膜验证系统的分辨率可达

° 薄膜是一类重要的铁电功能材料 以曲率半径为 Λ 的针尖 作者用上述新型扫描近场微波显微镜观察了白宝石衬底上 取向 1 ° 1 ° × 薄膜的介电性质 得到了分辨率为 !灵敏度达 ? 的图像≈ 证明了理论对分辨率的计算是正确的

高温超导薄膜

高温超导材料的重要应用之一是低噪声!高功率微波器件 由于高温超导材料的超导电性对成分配比非常敏感 氧含量的微小变化也会造成超导转变温度的很大起伏 由薄膜沉积和刻蚀所形成的不均匀性 经常会引起电流的集中而造成非线性甚至局部区域的相变 研究这些不均匀性的形成和发展对高温超导薄膜材料的应用意义重大 × ∏ ≈ 等人用新型扫描近场微波显微镜研究了≠ ≤∏ ξ薄膜 观察到了由刻蚀造成的边缘效应和由氧缺陷造成的不均匀超导相变 × ≈ 等人用微同轴电缆扫描近场微波显微镜也观察到了类似的现象 ≥ ∏ ≈ 等人还将微同轴电缆扫描近场微波显微镜反过来使用 工作在被动模式下 测量了微波器件中实际的电场分布 用于指导设计和器件质量的检验

中的铁电畴

中的 β铁电畴没有光学反差 只能以差分侵蚀或其他破坏性的方法进行观察 ∏≈ 等人首次用新型扫描近场微波显微镜直接观察到了 单晶中 β的周期铁电畴和位错应力场引起的介电常数起伏 我们则定量研究了上述铁电畴的非线性≈

超高密度存储

信息存储是一种特殊的显微技术 任何新的显微术也都蕴涵着某种新的存储技术 目前使用的光盘采用的是远场技术 读写斑的尺寸被衍射极限控制在 Λ 左右 存储密度约为 若采用近场技术使读写斑的尺寸减小到 则密度可提高到 按此密度计算 一张 光盘的总容量可达 相当于美国国会 年档案信息量的总和 接近人脑的总存储能力 ≈ 等人采用近场光学显微术 结合多层膜磁畴的磁光效应 成功地演示了这种可能 使读写斑的尺寸减小到 存储密度达到了

#

#

卷 年 期

近场微波显微术结合铁电薄膜铁电畴的非线性可能具有更大的优势 原因是铁电畴的畴壁比磁畴壁更窄 潜在的存储密度更高 但目前这方面的工作还未开展

参考文献

≈ ≥ ∞ ° )

≈ ≥ ? ° ) ≈ ≤ ∏ √ ≥ ∏ )

≈ ? ≤ ∏≥ & ×? ≤ ∏ )

≈ × ≥ ≥ ≥ ≥ × )

≈ √ ? √ √? ° )

≈ ? ≤° ≤ ≥ εταλ.

° ) ≈ ? εταλ. ° )

≈ ? × ÷ ÷? ? ? ? εταλ ° )

≈ ≤ ÷ ÷? √ ≥ ∏ )

≈ ≤ ? × ?∏ ?εταλ. ° )

≈ × ∏ ? × ?∏ ?εταλ. ° )

≈ × ≥ ?∏ ≥ ? ≤°εταλ.

° )

≈ ≥ ∏ ?∞ ? ≤° ?∏ ≥ εταλ.

° )

≈ ≠ ? × ?∏ ?εταλ.≥ )

≈ ≤ ?∏ ? ∏≠εταλ. ° )

≈ ∞ × ∏ ? εταλ. ° )

1999年第11期5物理6内容预告

庆祝建国 周年

我国同步辐射发展应用现状 冼鼎昌

我国光物理研究进展 杨国桢

我国大气物理研究进展 吕达仁

年来的中国电离层物理研究 萧佐

研究快讯

金属薄膜中磁性交换耦合的量子阱效应机制研究新进展 张志东

知识和进展

石墨的非还原热离子发射特性的发现与研究进展 肖应凯

发现和优化新材料的集成材料芯片方法 高琛等

物理学和经济建设

太阳电池发展现状与我国阳光发电规划 魏光普 拉曼微区分析技术在古颜料研究中的应用 左健等

实验技术

导电原子力显微镜及其应用 郭云等

讲座

世纪的光学和光电子学讲座第一讲激光化学)))化学物理中的一个新研究领域 马兴孝

前沿和动态

纳米碳管中的 √ 振荡 戴闻

测量高温超导体中的动态位相劲度 戴闻

#

#物理

近场光学

第十九章光学显微镜、近场光学显微镜与近场光学第三节近场光学 一、超分辨与近场光学概论 (一)细光束的极值 1、海森伯不确定性原理 2、传输光束中光子的空间不确定性极值 (二)突破分辨极限成像的关键 (三)近场光学的定义 二、近场光学显微镜(NOM) (一)NOM的发展历史 1、早期NOM的设想与研究 2、扫描隧道显微镜(STM)的发明促进A-SNOM发展 3、尖散射型扫描近场光学显微镜(S-SNOM ) 4、隧道结光发射扫描近场光学显微镜(TE-SNOM) 5、光子扫描隧道显微镜(PSTM) (1)早期的光子扫描隧道显微镜(PSTM) (2)原子力与光子扫描隧道组合显微镜(AF/PSTM) (二)NOM综述 1、NOM基本类型 (1)基本类型 (2)基本结构 (3)有代表性的研究成果 (4)NOM的适用范围 2、NOM超分辨成像的基本条件 (1)隐失光成像 (2)超分辨尺度的光探测尖 (3)光探测尖与样品表面间距的精确反馈控制

(4)三维超衍射极限精度的扫描机构和高灵敏度记录系统 3、NOM的产业化现状 三、近场光学理论模拟方法 (一)理论基础与方法 1、近场、远场和隐失波、传输波概念的数学表述 2、理论基础与其早期的研究 3、近场光学理论方法 (二)时域有限差分法 1、时域有限差分法特点 2、叶(Y ee)氏网格 3、麦克斯韦(Maxwell)方程的差分形式 4、数值稳定性问题 5、数值色散问题 6、吸收边界条件 (1)莫尔(Mur)二阶吸收边界 (2)PML理想匹配层吸收边界 7、散射场计算方法 (1)总场和散射场方法 (2)分离场公式 8、色散介质中的时域有限差分方程(FD)2TD 9、举例 (1)A-SNOM实验结果 (2)S-SNOM模拟结果 (3)PSTM模拟演示 (三)格林并矢方法 1、李普曼-施温格(Lippmann-Schwinger)积分方程 2、求解李普曼-施温格积分方程 (1)介质样品“OPTICS”字符的PSTM 等高光场分布模拟

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

北邮电磁场与微波技术实验实验一

实验一网络分析仪测量振子天线输入阻抗 一,实验目的 1.掌握网络分析仪矫正方法; 2.学习网络分析仪测量振子天线输入阻抗的方法; 3.研究振子天线输入阻抗随振子电径变化的情况。 二,实验步骤 1.设置仪表为频域模式的回损连接模式后,矫正网络分析仪; 2.设置参数并加载被测天线,开始测量输入阻抗; 3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4.更换不同电径(Φ1,Φ3,Φ9)的天线,分析两个谐振点的阻抗变化情况。 三,实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印廷矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h<<λ时,可认为 R≈40(πh)2 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一λ ?1] 倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为W=60[ln2h a 四,实验数据 试验参数:BF=600,ΔF=25,EF=2600,n=81 1.短路时矫正,阻抗点分布:

2.开路时矫正,阻抗点分布: 3.选择电径为Φ1=1mm的天线,阻抗点分布:

由图及数据表可知其谐振点频率约为1225MHz,第二谐振点频率约为2450MHz,即第二次谐振时频率约为第一次两倍。 4.选择电径为Φ3=3mm的天线,阻抗点分布:

扫描电子显微分析

第11-12讲 教学目的:使学生了解扫描电子显微镜结构、工作成像原理及应用 教学要求:了解扫描电子显微镜的发展、原理与应用;了解扫描电镜相关术语;掌握扫描电镜制样技术 教学重点:1. 扫描电镜的工作原理; 2. 扫描电镜的二次电子像和背散射电子像 教学难点:两种种像差的形成原理; 教学拓展:扫描电镜的未来发展趋势 第3节扫描电子显微分析 扫描电子显微镜又称扫描电镜或SEM(scaning electron microscope),它是利用细聚 焦电子束在样品表面做光栅状逐点扫描,与样品相互作用后产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。扫描电镜所需的加速电压比透射电镜要低得多,一般约在 1~30kV,实验时可根据被分析样品的性质适当地选择。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 3.1扫描电子显微镜概述、基本结构、工作原理 一、扫描电子显微镜概述 第一阶段理论奠基阶段 1、1834年法拉第提出“电的原子”概念; 2、1858年普鲁克发现阴极射线; 3、1878年阿贝-瑞利给出显微镜分辨本领极限公式; 4、1897年汤姆逊提出电子概念; 5、1924年德布罗依提出波粒二象性; 第二阶段试验阶段 1、1935年克诺尔提出用电子束从样品表面得到图像的原理并设计简单实验装置; 2、1938年冯.阿登制备出了第一台透射扫描电子显微镜;

电磁场与微波技术实验天线部分实验二

信息与通信工程学院 电磁场与微波实验天线部分报告 XXX班 XXXX 学号:XXXXX 实验二 网络分析仪测试八木天线方向图 一、实验目的: 1.掌握网络分析仪辅助测试方法 2.学习测量八木天线方向图方法 3.研究在不同频率下的八木天线方向图特性 二、实验步骤: (1)调整分析仪到轨迹(方向图)模式 (2)调整云台起点位置270° (3)寻找归一化点(最大值点) (4)旋转云台一周并读取图形参数 (5)坐标变换、变换频率(F=600MHz、900MHZ、1200MHZ),分析八木天线方向图三、实验原理 实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可) 八木天线原理图

引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。发射状态作用过程亦然。 3.实验步骤 四、实验测量图 不同频率下的测量图如下: 600MHz: 最大增益方向:73度,幅度:1 3dB点:55度,幅度:0.715 3dB点:97度,幅度:0.703 主瓣宽度: 97-55=42度

扫描电子显微镜文献综述

扫描电子显微镜的应用及其发展 1前言 扫描电子显微镜SEM(Scanning Electron Microscopy)是应用最为广泛的微观 形貌观察工具。其观察结果真实可靠、变形性小、样品处理时的方便易行。其发展进步对材料的准确分析有着决定性作用。配备上X射线能量分辨装置EDS (Energy Dispersive Spectroscopy)后,就能在观察微观形貌的同时检测不同形貌特征处的元素成分差异,而背散射扫描电镜EBSD(Electron Backscattered Diffraction)也被广泛应用于物相鉴定等。 2扫描电镜的特点 形貌分析的各种技术中,扫描电镜的主要优势在于高的分辨率。现代先进的扫描电镜的分辨率已经达到1纳米左右;有较高的放大倍数,20-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构试样制备简单;配有X射线能谱仪装置,这样可以同时进行 显微组织性貌的观察和微区成分分析[1]。低加速电压、低真空、环境扫描电镜和电子背散射花样分析仪的使用,大大提高了扫描电子显微镜的综合、在线分析能力;试样制备简单。直接粘附在铜座上即可,必要时需蒸Au或是C。 扫描电镜也有其局限性,首先就是它的分辨率还不够高,也不能观察发光或高温样品。样品必须干净、干燥,有导电性。也不能用来显示样品的内部细节,最后它不能显示样品的颜色。 需要对扫描电镜进行技术改进,在提高分辨率方面主要采取降低透镜球像差系数, 以获得小束斑;增强照明源即提高电子枪亮度( 如采用LaB6 或场发射电子枪) ;提高真空度和检测系统的接收效率;尽可能减小外界振动干扰。 在扫描电镜成像过程中,影响图像质量的因素比较多,故需选择最佳条件。例如样品室内气氛控制、图像参数的选择、检测器的选择以及控制温度的选择,尽可能将样品原来的面貌保存下来得到高质量电镜照片[2]。

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

扫描电子显微技术

扫描电子显微技术 扫描电子显微镜[1-3](scanning electron microscope—SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。扫描电子显微技术主要的应用就是扫描电镜,本文主要介绍扫描电镜的结构、原理及应用。 Knoll等人于年曾进行过扫描电子显微镜简称的实验, 而普通透射电子显微镜(简称CEM)是由Ruska等人于1933年创制,故可以说SEM和CEM诞生于同一时期。但是, 此后电子显微镜的研究主要致力于提高分辨率上, 而因SEM在电子线路技术上问题很多, 故把改进仪器的精力集中在发展CEM上了。然而, 1949年开始发展的射线显微分析仪, 在其研制中引进了SEM的技术, 1960年扫描型X射线显微分析仪才能成为商品在市场上出售, 随着它们的普及, 在制造厂中制造SEM的基础技术得以充实起来。当时又赶上电子线路技术全面大发展的时期, 因而导致1966年英国和日本的SEM在工业上得到了成功的应用。 1 扫描电子显微镜的基本组成 图1 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。如图1。 (1)真空系统 真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。真空泵用来在真空柱内产生真空。对于扫描电镜来说,通常要求真空度优于10-3~10-4Pa。任何真空度

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

浅析光学显微镜机械结构设计

浅析光学显微镜机械结构设计 摘要:光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所 不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。光学显 微镜的使用范围非常的广泛,发展至今,也衍生出了非常多的类型,本文结合光 学显微镜的结构组成,从人体工程视角探索光学显微镜的机械结构设计,从使用 的安全性、科学性、可靠性的角度分析了光学显微镜的机械结构设计的规范和标准。 关键词:光学显微镜;机械结构;人体工程学 光学显微镜的结构主要有光学结构和机械结构组成,机械结构的部分不仅能 对光学结构有很好的固定作用,还起着关键性的调节作用,机械结构能够发挥光 学系统的最大功效,辅助光学系统完成相关的显微镜观察工作。光学显微镜的机 械结构的部分主要在载物台、物镜转换器以及调焦装置等,这些机械结构的设计 不仅要遵循基本的机械结构设计原则,还要保证在光学显微镜中的具体的光学操作,除此之外,设计的原则还要迎合人体操作的需求,使得光学显微镜的机械结 构更加的吻合人体工程学的设计要求,使得光学显微镜使用更加的舒适方便。 一、光学显微镜的基本构造 对于光学显微镜的机械设计,我们首先要了解光学显微镜的构造组成部分, 而且还要知道这些零部件的作用,只有熟知了这些零部件的作用和使用规范,我 们才能更加合理的设计光学显微镜的机械结构部分,光学显微镜一般是由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台的作用是放置被观察的物体,使用调焦旋钮来驱动调焦机构能完成对载物台的调节工作。聚光灯照明系统由聚 光灯和光源组成,聚光灯的作用能够让光更多的聚集到被观察的部位。物镜距离 载物台比较近,是第一级的放大装置。目镜则是于人眼靠近的第二级放大镜头。 这三部分是光学显微镜的重要组成部分,构成了光学显微镜的主要工作原理。 那么机械装置有哪些呢?一般光学显微镜的机械装置有镜座、镜臂、载物台、镜筒、物镜转换器、与调焦装置。这些机械装置的主要作用是固定和调节光学镜头,调节标本的位置等。其中镜座是支撑整个显微镜的装置,而镜臂则用来支撑 精通和载物台。 二、基于人体工程学的光学显微镜的机械结构设计 人体工程学的设计原理主要是考虑到人体结构和机械结构尺寸,并且综合考 虑到人们劳动、工作效果、工作效能等方面,利用系统工程、控制理论、统计学 的原理设计出一系列的设计方法。具体到光学显微镜的机械结构设计中,我们就 要考虑到人们的身体尺寸和应用习惯,首先我们从有关部分获得了我国成年人的 人体部分尺寸的表格(表-1),以此为根据设计光学显微镜结构部分。 1、载物台的设计 从上面的介绍中我们知道,载物台的作用是用来放置被观察物体的,并且式 样能够在载物台上自由的移动,以获取最佳的观察效果。一般的移动范围是 30mm*70mm和50mm*70mm,主要的设计标准就是,载物台距离工作底面的距 离于载物台和人体的水平距离,分别设为B1和B2,考虑到人在调节使用载物台 的过程中的行为习惯,得出计算式。 其中y1和y2分别衣着修正指数和身体活动余量修正。同理得出B2的表达式。经过计算得出: B1=307~357mm

电磁场与微波实验指导书实验一

电磁场与微波实验指导 书实验一 Revised as of 23 November 2020

实验一微波基础计算器与MWO软件熟悉 一、实验目的 1.掌握传输线(长线)基本理论; 2.熟练掌握Smith圆图的工作原理; 3.熟练使用微波技术基础计算器计算单枝节线匹配。 4.熟悉MWO软件界面和基本操作。 二、实验原理 微波技术基础计算器是以微波计算为基础的进行专业计算的工具。实现了微波技术基础理论中长线(传输线)理论、Smith圆图、网络理论等部分的计算。此计数器共包括:长线上任意点输入阻抗、反射系数、行波系数、驻波比的计算;smith圆图的绘制;任意长线和负载的单枝节匹配;双口网络S、Z、Y、A参数的相互转换。 1、长线理论 基础知识回顾:--微波传输线(长线)理论 (Q1: 传输线理论中基本物理量是什么) 电压波与电流波(入射与反射)关系: 理想(无耗)均匀传输线的传输特性归结为两个实数:传播常数和特性阻抗。传输线理论三套参量:输入阻抗in,反射系数,驻波参量(驻波系数和最小距离l min) 三套参量间的换算关系: 三套参量同时一个单位圆内表示

1)由横坐标表示反射系数实部,纵坐标表示反射系数虚部,构成反射系数复平面; 2)对于一个无耗均匀传输线,其反射系数的模是不变的,变化的是位相(位置)构成反射系数同心圆;以负载为参考面向源移动时,位相角减少,顺时针转动 3)驻波系数在反射系数复平面上也是同心圆, 4) 阻抗在反射系数复平上表示时要归一化;某一点的阻抗由经过该点的等电阻圆与等电抗弧线确定。 2、并联单枝节传输线匹配 1) 终端短路传输线相当于一个纯电抗 2) 在主传输线上并联一个短路面位置可调的支路传输线,相当并联一个可变电抗。 3) 由于并联枝节,进行匹配设计时用导纳方法表示更为方便。 三、 微波基础计算器的使用 有了这些基本概念之后,我们就可以学习微波计算器的使用方法。这个计算器实际上就是利用以上的公式,编成、作图完成的,国内外也还有很多类似的软件。微波计算器的主界面如图1所示。 图1 微波计算器主界面 选择图1中所示的“长线”工具。出现如图2所示的窗口。 开路 匹配

扫描电子显微镜的操作步骤和注意事项心得

扫描电子显微镜的操作步骤和注意事项心得扫描电子显微镜的操作步骤与注意事项一、样品制备 将分散好的样品滴于铜片上,干燥后将载有样品的铜片粘在样品座上的导电胶 带上(对于大颗粒样品可直接将样品粘在导电胶带上)。 对于导电性不好的样品必须蒸镀导电层,通常为蒸金:将样品座置于蒸金室 中,合上盖子,打开通气阀门,对蒸金室进行抽真空。选择好适当的蒸金时间,达 到真空度定好时间后加电压并开始计时,保持电流值,时间到后关闭电压,关闭仪器。取出样品。(注意:打开蒸金室前必须先关闭通气阀门,以防液体倒流。) 二、扫描电镜的操作 1.安装样品 “Vent”直至灯闪,对样品交换室放氮气,直至灯亮; 1) 按 2) 松开样品交换室锁扣,打开样品交换室,取下原有的样品台,将已固定好 样品的样品台,放到送样杆末端的卡抓内(注意:样品高度不能超过样品台高度,并 且样品台下面的螺丝不能超过样品台下部凹槽的平面); 3) 关闭样品交换室门,扣好锁扣; 4) 按“EVAC”按钮,开始抽真空,“EVAC”闪烁,待真空达到一定程度,“EVAC”点亮; 5) 将送样杆放下至水平,向前轻推至送样杆完全进入样品室,无法再推动为 止,确认“Hold”灯点亮,将送样杆向后轻轻拉回直至末端台阶露出导板外将送 样杆竖起卡好。(注意:推拉送样杆时用力必须沿送样杆轴线方向,以防损坏送样杆) 2.试样的观察(注意:软件控制面板上的背散射按钮千万不能点,以防损坏仪器) -51) 观察样品室的真空“PVG”值,当真空达到9.0×10Pa时,打开“

Maintenance”,加高压5kv,软件上扫描的发射电流为10μA,工作距离“WD”为8mm,扫描模式为“Lei”(注意:为减少干扰,有磁性样品时,工作距离一般为15mm左右); 2) 操作键盘上按“Low Mag”、“Quick View”,将放大倍率调至最低,点击“Stage Map”,对样品进行标记,按顺序对样品进行观察; 3) 取消“Low Mag”,看图像是否清楚,不清楚则调节聚焦旋钮,直至图像清楚,再旋转放大倍率旋钮,聚焦图像,直至图像清楚,再放大……,直到放大到所需要的图; 4) 聚焦到图像的边界一致,如果边界清晰,说明图像已选好,如果边界模糊,调节操作键盘上的“X、Y”两个消像散旋钮,直至图像边界清晰,如果图像太亮或太暗,可以调节对比度和亮度,旋钮分别为“Contrast”和“Brightness”,也可以按“ACB”按钮,自动调整图像的亮度和对比度; 5) 按“Fine View”键,进行慢扫描,同时按“Freeze”键,锁定扫描图像; 6) 扫描完图像后,打开软件上的“Save”窗口,按“Save”键,填好图像名称,选择图像保存格式,然后确定,保存图像; 7) 按“Freeze”解除锁定后,继续进行样品下一个部位或者下一个样品的观察。 3.取出样品 1) 检查高压是否处于关闭状态(如HT键为绿色,点击HT键,关闭高压,HT键为蓝色或灰色); mm,点击样品台按钮,按Exchang(2)检查样品台是否归位,工作距离为8 键, Exchang灯亮; (3) 将送样杆放至水平,轻推送样杆到样品室,停顿1秒后,抽出送样杆并将送样杆竖起卡好,注意观察Hold关闭,为样品台离开样品室。

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

A1 五、实验数据 I(uA ) 0 10 20 30 40 50 60 70 80 90 θ° 理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许 范围内,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但 是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候, 由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。 所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 垂直极化波入射在两种媒质的分界面上,反射系数和折射系数分别为:

电磁场与微波技术实验

实验三对称天线和天线阵的方向图 实验目的:1、熟悉对称天线和天线阵的概念; 2、熟悉不同长度对称天线的空间辐射方向图; 3、理解天线阵的概念和空间辐射特性。 实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。排列方式可以是直线阵、平面阵和立体阵。实际的天线阵多用相似元组成。所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。天线阵的辐射场是各单元天线辐射场的矢量和。只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性 方向图乘积定理 f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。 已知对称振子以波腹电流归算的方向函数为 实验步骤:1、对称天线的二维极坐标空间辐射方向图 (1)建立对称天线二维极坐标空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中不同长度对称天线的空间辐射特性 E面方向函数: 2、天线阵—端射阵和边射阵 (1)建立端射阵和边射阵空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中两种天线阵的空间辐射特性 实验报告要求:(1)抓仿真程序结果图 (2)理论分析与讨论 1、对称天线方向图 01)clc clear lambda=1;%自由空间的波长 L0=1; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令 L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360]; theta=theta0*pi/180; 90 270 0 L=λ时对称阵子天线的方向图

扫描式电子显微镜观察

掃描式電子顯微鏡觀察 為觀察觀音一號井與麓山帶地層中碎屑性和自生性黏土礦物之 分佈與生長,以及隨埋藏深度增加,自生性黏土礦物(如:混層伊萊石膨潤石)之元素組成之比例有無改變,本研究使用中央大學地球物理研究所JSM-7000F熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope, TFE-SEM),用以觀察碎屑性和自生性礦物之分佈與生長情形。SEM的操作條件為加速電壓15 kV、真空室壓力達2.8 × 10-4 Pa、工作距離10 mm。一般掃描式電子顯微鏡偵測主要為偵測二次電子(Secondary Electron Image, SEI)和背向散射電子(Backscattered Electron Image, BEI)成像,由於其產生電子之行為不同,所產生之影像分別為樣本之表面形貌和原子序對比(Goldstein et al., 2003)。平均原子序較高之區域,散射之背向電子訊號較強,呈現之影像較亮。本研究以背向散射電子偵測為主要觀察工具。由於黏土礦物之主要元素成份以原子序較低的矽、鋁氧化物和其他少量金屬鐵、鎂、鈣、鈉、鉀等,因此在背向散射電子影像中,黏土礦物多分佈在深暗色區域。 另外,使用加裝於SEM之元素能量分析儀(Energy Dispersion Spectrometer, EDS),可透過搜集激發電子束產生的X光進行礦物化學組成之定性和半定量分析。EDS操作環境為電子加速電壓15 kV、放大倍率為2000倍以及接收100秒X光光譜時間。使用INCA 軟體(Revision 4.09),鈦元素光譜校準,搜集測量結果之各氧化物重量百分比,混層伊萊石/膨潤石黏土礦物的化學式以22顆氧原子,計算化學式中的陽離子數,部分鋁離子納入四面體網格計算,即矽和鋁離子總和為8;剩餘鋁離子和鐵、鈦、鎂和鈉則被歸為八面體網格計算(Klein, 2002)。

相关文档
最新文档