dbscan的matlab代码实现

dbscan的matlab代码实现
dbscan的matlab代码实现

% -------------------------------------------------------------------------

% Function: [class,type]=dbscan(x,k,Eps)

% -------------------------------------------------------------------------

% Aim:

% Clustering the data with Density-Based Scan Algorithm with Noise (DBSCAN) % -------------------------------------------------------------------------

% Input:

% x - data set (m,n); m-objects, n-variables

% k - number of objects in a neighborhood of an object

% (minimal number of objects considered as a cluster)

% Eps - neighborhood radius, if not known avoid this parameter or put []

% -------------------------------------------------------------------------

% Output:

% class - vector specifying assignment of the i-th object to certain

% cluster (m,1)

% type - vector specifying type of the i-th object

% (core: 1, border: 0, outlier: -1)

% -------------------------------------------------------------------------

% Example of use:

% x=[randn(30,2)*.4;randn(40,2)*.5+ones(40,1)*[4 4]];

% [class,type]=dbscan(x,5,[])

% clusteringfigs('Dbscan',x,[1 2],class,type)

% -------------------------------------------------------------------------

% References:

% [1] M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for

% discovering clusters in large spatial databases with noise, proc.

% 2nd Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR, 1996, % p. 226, available from:

% https://www.360docs.net/doc/e29723168.html,rmatik.uni-muenchen.de/cgi-bin/papers?query=--CO

% [2] M. Daszykowski, B. Walczak, D. L. Massart, Looking for

% Natural Patterns in Data. Part 1: Density Based Approach,

% Chemom. Intell. Lab. Syst. 56 (2001) 83-92

% -------------------------------------------------------------------------

% Written by Michal Daszykowski

% Department of Chemometrics, Institute of Chemistry,

% The University of Silesia

% December 2004

% https://www.360docs.net/doc/e29723168.html,.pl

function [class,type,clusteridx]=clu_dbscan_fn(x,k,Eps)

x=zscore(x);%standarlize

[m,~]=size(x);

if nargin<3||isempty(Eps)

[Eps]=epsilon(x,k);

end

x=[(1:m)',x];

[m,n]=size(x);

type=zeros(1,m);

no=1;

touched=zeros(m,1);

for i=1:m

if touched(i)==0;

ob=x(i,:);

D=dist(ob(2:n),x(:,2:n));

ind=find(D<=Eps);

if length(ind)>1 && length(ind)

type(i)=0;

class(i)=0;

end

if length(ind)==1

type(i)=-1;

class(i)=-1;

touched(i)=1;

end

if length(ind)>=k+1;

type(i)=1;

class(ind)=ones(length(ind),1)*max(no);

while ~isempty(ind)

ob=x(ind(1),:);

touched(ind(1))=1;

ind(1)=[];

D=dist(ob(2:n),x(:,2:n));

i1=find(D<=Eps);

if length(i1)>1

class(i1)=no;

if length(i1)>=k+1;

type(ob(1))=1;

else

type(ob(1))=0;

end

for k1=1:length(i1)

if touched(i1(k1))==0

touched(i1(k1))=1;

ind=[ind,i1(k1)];

class(i1(k1))=no;

end

end

end

end

no=no+1;

end

end

end

i1=find(class==0);

class(i1)=-1;

type(i1)=-1;

maxlab=max(class);

clusteridx=[];

clun=[];

for ck=1:maxlab

tidx=find(class==ck);

clusteridx=[clusteridx;[tidx,zeros(1,m-length(tidx))]];

clun=[clun,length(tidx)];

end

disp(clun); %...........................................

function [Eps]=epsilon(x,k)

% Function: [Eps]=epsilon(x,k)

%

% Aim:

% Analytical way of estimating neighborhood radius for DBSCAN

%

% Input:

% x - data matrix (m,n); m-objects, n-variables

% k - number of objects in a neighborhood of an object

% (minimal number of objects considered as a cluster)

[m,n]=size(x);

Eps=((prod(max(x)-min(x))*k*gamma(.5*n+1))/(m*sqrt(pi.^n))).^(1/n);

disp('EPS:');

disp(Eps);

%............................................

function [D]=dist(i,x)

% function: [D]=dist(i,x)

%

% Aim:

% Calculates the Euclidean distances between the i-th object and all objects in x %

% Input:

% i - an object (1,n)

% x - data matrix (m,n); m-objects, n-variables

%

% Output:

% D - Euclidean distance (m,1)

[m,n]=size(x);

D=sqrt(sum((((ones(m,1)*i)-x).^2)'));

if n==1

D=abs((ones(m,1)*i-x))';

end

%********************************************************

matlab,isrgb函数源代码

function y = isrgb(x) %ISRGB Return true for RGB image. % FLAG = ISRGB(A) returns 1 if A is an RGB truecolor image and % 0 otherwise. % % ISRGB uses these criteria to determine if A is an RGB image: % % - If A is of class double, all values must be in the range % [0,1], and A must be M-by-N-by-3. % % - If A is of class uint8 or uint16, A must be M-by-N-by-3. % % Note that a four-dimensional array that contains multiple RGB % images returns 0, not 1. % % Class Support % ------------- % A can be of class uint8, uint16, or double. If A is of % class logical it is considered not to be RGB. % % See also ISBW, ISGRAY, ISIND. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.15.4.2 $ $Date: 2003/08/23 05:52:55 $ wid = sprintf('Images:%s:obsoleteFunction',mfilename); str1= sprintf('%s is obsolete and may be removed in the future.',mfilename); str2 = 'See product release notes for more information.'; warning(wid,'%s\n%s',str1,str2); y = size(x,3)==3; if y if isa(x, 'logical') y = false; elseif isa(x, 'double') % At first just test a small chunk to get a possible quick negative m = size(x,1); n = size(x,2); chunk = x(1:min(m,10),1:min(n,10),:); y = (min(chunk(:))>=0 && max(chunk(:))<=1); % If the chunk is an RGB image, test the whole image

Matlab工具箱中地BP与RBF函数

Matlab工具箱中的BP与RBF函数 Matlab神经网络工具箱中的函数非常丰富,给网络设置合适的属性,可以加快网络的学习速度,缩短网络的学习进程。限于篇幅,仅对本章所用到的函数进行介绍,其它的函数及其用法请读者参考联机文档和帮助。 1 BP与RBF网络创建函数 在Matlab工具箱中有如表1所示的创建网络的函数,作为示例,这里只介绍函数newff、newcf、newrb和newrbe。 表 1 神经网络创建函数 (1) newff函数 功能:创建一个前馈BP神经网络。 调用格式:net = newff(PR,[S1 S2...S Nl],{TF1 TF2...TF Nl},BTF,BLF,PF) 参数说明: ?PR - R个输入的最小、最大值构成的R×2矩阵; ?S i–S NI层网络第i层的神经元个数; ?TF i - 第i层的传递函数,可以是任意可导函数,默认为'tansig',

可设置为logsig,purelin等; ?BTF -反向传播网络训练函数,默认为'trainlm',可设置为trainbfg,trainrp,traingd等; ?BLF -反向传播权值、阈值学习函数,默认为'learngdm'; ?PF -功能函数,默认为'mse'; (2) newcf函数 功能:创建一个N层的层叠(cascade)BP网络 调用格式:net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) 参数同函数newff。 (3) newrb函数 功能:创建一个径向基神经网络。径向基网络可以用来对一个函数进行逼近。newrb函数用来创建一个径向基网络,它可以是两参数网络,也可以是四参数网络。在网络的隐层添加神经元,直到网络满足指定的均方误差要求。 调用格式:net = newrb(P,T,GOAL,SPREAD) 参数说明: ?P:Q个输入向量构成的R×Q矩阵; ?T:Q个期望输出向量构成的S×Q矩阵; ?GOAL:均方误差要求,默认为0。 ?SPREAD:分散度参数,默认值为1。SPREAD越大,网络逼近的函数越平滑,但SPREAD取值过大将导致在逼近变化比较剧烈的函

matlab代码大全

MATLAB主要命令汇总 MATLAB函数参考 附录1.1 管理用命令 函数名功能描述函数名功能描述 addpath 增加一条搜索路径 rmpath 删除一条搜索路径 demo 运行Matlab演示程序 type 列出.M文件 doc 装入超文本文档 version 显示Matlab的版本号 help 启动联机帮助 what 列出当前目录下的有关文件 lasterr 显示最后一条信息 whatsnew 显示Matlab的新特性 lookfor 搜索关键词的帮助 which 造出函数与文件所在的目录 path 设置或查询Matlab路径 附录1.2管理变量与工作空间用命令 函数名功能描述函数名功能描述 clear 删除内存中的变量与函数 pack 整理工作空间内存 disp 显示矩阵与文本 save 将工作空间中的变量存盘 length 查询向量的维数 size 查询矩阵的维数 load 从文件中装入数据 who,whos 列出工作空间中的变量名 附录1.3文件与操作系统处理命令 函数名功能描述函数名功能描述 cd 改变当前工作目录 edit 编辑.M文件 delete 删除文件 matlabroot 获得Matlab的安装根目录 diary 将Matlab运行命令存盘 tempdir 获得系统的缓存目录 dir 列出当前目录的内容 tempname 获得一个缓存(temp)文件 ! 执行操作系统命令 附录1.4窗口控制命令 函数名功能描述函数名功能描述 echo 显示文件中的Matlab中的命令 more 控制命令窗口的输出页面format 设置输出格式 附录1.5启动与退出命令 函数名功能描述函数名功能描述 matlabrc 启动主程序 quit 退出Matlab环境 startup Matlab自启动程序 附录2 运算符号与特殊字符附录 2.1运算符号与特殊字符 函数名功能描述函数名功能描述

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现 2013-12-16 13:58 2296人阅读评论(0) 收藏举报 分类: Matlab(15) 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。 频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

用MATLAB求解规划问题

§15. 利用Matlab求解线性规划问题 线性规划是一种优化方法,Matlab优化工具箱中有现成函数linprog对如下式描述的LP问题求解: % min f'x % s.t .(约束条件):Ax<=b % (等式约束条件):Aeqx=beq % lb<=x<=ub linprog函数的调用格式如下: x=linprog(f,A,b) x=linprog(f,A,b,Aeq,beq) x=linprog(f,A,b,Aeq,beq,lb,ub) x=linprog(f,A,b,Aeq,beq,lb,ub,x0) x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval]=linprog(…) [x, fval, exitflag]=linprog(…) [x, fval, exitflag, output]=linprog(…) [x, fval, exitflag, output, lambda]=linprog(…) 其中: x=linprog(f,A,b)返回值x为最优解向量。 x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。若没有不等式约束,则令 111

A=[ ]、b=[ ] 。 x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options为指定优化参数进行最小化。 Options的参数描述: Display显示水平。选择’off’ 不显示输出;选择’I ter’显示每一步迭代过程的输出;选择’final’ 显示最终结果。 MaxFunEvals 函数评价的最大允许次数 Maxiter 最大允许迭代次数 TolX x处的终止容限 [x,fval]=linprog(…) 左端fval 返回解x处的目标函数值。 [x,fval,exitflag,output,lambda]=linprog(f,A,b, Aeq,beq,lb,ub,x0) 的输出部分: exitflag描述函数计算的退出条件:若为正值,表示目标函数收敛于解x 处;若为负值,表示目标函数不收敛;若为零值,表示已经达到函数评价或迭代的最大次数。 output 返回优化信息:output.iterations表示迭代次数;output.algorithm表示所采用的算法;outprt.funcCount表示函数评价次数。 lambda返回x处的拉格朗日乘子。它有以下属性: lambda.lower-lambda的下界; lambda.upper-lambda的上界; lambda.ineqlin-lambda的线性不等式; lambda.eqlin-lambda的线性等式。 112

多目标规划_matlab程序-XX的小论文

优化与决策 ——多目标线性规划的若干解法及MATLAB实现 指导老师: XX教授 学生姓名: XX 多目标线性规划的若干解法及MATLAB实现 丁宏飞 (西南交通大学数学学院四川成都 610031)

摘要:求解多目标线性规划的基本思想大都是将多目标问题转化为单目标规划,本文介绍了理想点法、线性加权和法、最大最小法、目标规划法[1],然后给出多目标线性规划的模糊数学解法[2],最后对每种解法给出例子,并用Matlab 软件加以实现。 关键词:多目标线性规划 Matlab 模糊数学 Some solutions of Multi-objective linear programming and realized by Matlab Ding Hongfei School of Mathematics, Southwest Jiaotong University ,Chengdu, 610031 Abstract: The basic ideas to solve Multi-objective linear programming are transforming the multi-objective problem into single-objective planning, This paper introduces the ideal point method, linear weighted and law, max-min method, the goal programming method, then given multi-objective linear programming Fuzzy mathematics method, finally give examples of each method and used Matlab software to achieve. Key words: Multi-objective Linear Programming Matlab fuzzy mathematics 一.引言 多目标线性规划是多目标最优化理论的重要组成部分,由于多个目标之间的矛盾性和不可公度性,要求使所有目标均达到最优解是不可能的,因此多目标规划问题往往只是求其有效解(非劣解)。目前求解多目标线性规划问题有效解的方法,有理想点法、线性加权和法、最大最小法、目标规划法,然而这些方法对多目标偏好信息的确定、处理等方面的研究工作较少,本文也给出多目标线性规划的模糊数学解法。 二.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122m ax n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++?? =+++?? ? ?=+++? (1)

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

Matlab程序设计(2016大作业)

Matlab程序设计 课程大作业 题目名称:_________________________________ 班级:_________________________________ 姓名:_________________________________ 学号:_________________________________ 课程教师:温海骏 学期:2015-2016学年第2学期 完成时间: MATLAB优化应用 §1 线性规划模型 一、线性规划问题: 问题1:生产计划问题 假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。甲单位产品的利润70元,乙单位产品的利润120元。问如何安排生产,才能使该厂所获的利润最大。 问题2:投资问题 某公司有一批资金用于4个工程项目的投资,其投资各项目时所得的净收益(投入资金百分比)如下表:工程项目收益表 工程项目 A B C D 收益(%) 15 10

12 由于某种原因,决定用于项目A的投资不大于其他各项投资之和而用于项目B和C的投资要大于项目D的投资。试确定该公司收益最大的投资分配方案。 问题3:运输问题 有A、B、C三个食品加工厂,负责供给甲、乙、丙、丁四个市场。三个厂每天生产食品箱数上限如下表: 工厂 A B C 生产数 60 40 50 四个市场每天的需求量如下表: 市场 甲 乙 丙 丁 需求量 20 35 33 34 从各厂运到各市场的运输费(元/每箱)由下表给出: 收点 发点 市场 甲 乙 丙 丁 工 厂 A 2 1 3 2 B

完整的遗传算法函数Matlab程序

完整的遗传算法函数Matlab程序 function [x,endPop,bPop,traceInfo] = ga(bounds,eevalFN,eevalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) n=nargin; if n<2 | n==6 | n==10 | n==12 disp('Insufficient arguements') end if n<3 %Default eevalation opts. eevalOps=[]; end if n<5 opts = [1e-6 1 0]; end if isempty(opts) opts = [1e-6 1 0]; end if any(eevalFN<48) %Not using a .m file if opts(2)==1 %Float ga e1str=['x=c1; c1(xZomeLength)=', eevalFN ';']; e2str=['x=c2; c2(xZomeLength)=', eevalFN ';']; else %Binary ga e1str=['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=',... eevalFN ';']; end else %Are using a .m file if opts(2)==1 %Float ga e1str=['[c1 c1(xZomeLength)]=' eevalFN '(c1,[gen eevalOps]);']; e2str=['[c2 c2(xZomeLength)]=' eevalFN '(c2,[gen eevalOps]);']; else %Binary ga e1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' eevalFN ... '(x,[gen eevalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];']; end end if n<6 %Default termination information termOps=[100];

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

多目标非线性规划程序Matlab完整版

多目标非线性规划程序 M a t l a b Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

f u n c t i o n[e r r m s g,Z,X,t,c,f a i l]= BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,setts,options1,options2,maxSQPit,varargin ); %·Dêy1£Díóa·§¨μü′ú·¨£úDê1ó£DèOptimization toolbox §3 % Minimize F(x) %subject to: xlb <= x <=xub % A*x <= B % Aeq*x=Beq % C(x)<=0 % Ceq(x)=0 % % x(i)éaáD±á£êy£ò1ì¨μ % ê1óê %[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',setts) %fun£o Mt£±íê×Dˉ±êoˉêyf=fun(x) %x0: áDòᣱíê±á3μ %xstat£o áDòá£xstat(i)=0±íêx(i)aáD±á£1±íêêy£2±íê1ì¨μ %xl£o áDòᣱíê±á %xu: áDòᣱíê±áé %A: ó, ±íêD2μèêêμêy %B: áDòá, ±íêD2μèêêé %Aeq: ó, ±íêDμèêêμêy %Beg: áDòá, ±íêD2μèêêóòμ %nonlcon: Mt£±íê·Dêoˉêy[C,Ceq]=nonlin(x),DC(x)a2μèêê, % Ceq(x)aμèêê %setts: ·¨éè %errmsq: ·μ′íóìáê %Z: ·μ±êoˉêy×Dμ %X: ·μ×óa % %àyìa % max x1*x2*x3 % -x1+2*x2+2*x3>=0 % x1+2*x2+2*x3<=72 % 10<=x2<=20 % x1-x2=10 % èD′ Moˉêy % function f=discfun(x) % f=-x(1)*x(2)*x(3); %óa % clear;x0=[25,15,10]';xstat=[1 1 1]'; % xl=[20 10 -10]';xu=[30 20 20]'; % A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10; % [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq); % XMAX=X',ZMAX=-Z %

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

MATLAB编程0-1规划问题

MATLAB 语言应用————最优化 MATLAB 编程线性规划问题 第二章0-1规划 MATLAB 的0-1规划函数bintprog 是针对下述0-1规划: 12min *.**[,,],01,1,2,n i z f x s t A x b aeq x beq x x x x x or i n L L ()解0-1规划()的0-1规划函数bintprog 表述为 [x, fv, exitflag, output]= bintprog(f,A,b,aeq, beq) ()输入部分: f 为目标函数,实为目标函数的系数。 A 为()中的不等式约束矩阵 b 为()中的不等式约束向量 aeq 为()中的等式约束矩阵 beq ()中的等式约束向量 输出部分: x 为最优解fval 为最优值 exitflag 为输出标志 exitflag=1,有最优解exitflag=0,迭代次数超过设定次数exitflag==-2,约束区域不可行 exitflag=-3,问题无解 output ,表明算法和迭代情况如果我们不需要了解迭代情况和存储情况,可将 0-1规划函数bintprog 写成[x, fv, ex]= linprog(f,A,b,aeq, beq) () 在函数bintprog 中,输入或输出元素的符号可以变更,如()中 ex 仍为输出标志,但元素的符号位置不能变更。在输出部分,如有缺者,可用 []号代替。函数bintprog 的使用要点与函数linprog 的使用要点相同。 函数是为求目标函数的最小值而设置的, 如要求函数的最大值,可先求出()f 的最小值fv ,则fv 必为f 的最大值。 例一用函数bintprog 求解下列0-1规划用MA TLAB 语言编程如下:

MATLAB常用工具箱及常用函数

常用工具箱 MATLAB包括拥有数百个内部函数的主包和三十几种工具包。工具包又可以分为功能性工具包和学科工具包。功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能。学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类。 开放性使MATLAB广受用户欢迎。除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。 Matlab Main Toolbox——matlab主工具箱 Control System Toolbox——控制系统工具箱 Communication Toolbox——通讯工具箱 Financial Toolbox——财政金融工具箱 System Identification Toolbox——系统辨识工具箱 Fuzzy Logic Toolbox——模糊逻辑工具箱 Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱 Image Processing Toolbox——图象处理工具箱 computer vision system toolbox----计算机视觉工具箱 LMI Control Toolbox——线性矩阵不等式工具箱 Model predictive Control Toolbox——模型预测控制工具箱 μ-Analysis and Synthesis Toolbox——μ分析工具箱 Neural Network Toolbox——神经网络工具箱

Optimization Toolbox——优化工具箱 Partial Differential Toolbox——偏微分方程工具箱Robust Control Toolbox——鲁棒控制工具箱 Signal Processing Toolbox——信号处理工具箱 Spline Toolbox——样条工具箱 Statistics Toolbox——统计工具箱 Symbolic Math Toolbox——符号数学工具箱 Simulink Toolbox——动态仿真工具箱 Wavele Toolbox——小波工具箱 DSP system toolbox-----DSP处理工具箱 常用函数 Matlab内部常数[2] eps:浮点相对精度 exp:自然对数的底数e i 或j:基本虚数单位 inf 或Inf:无限大,例如1/0 nan或NaN:非数值(Not a number),例如0/0 pi:圆周率p(= 3.1415926...) realmax:系统所能表示的最大数值 realmin:系统所能表示的最小数值 nargin: 函数的输入引数个数

计算方法及其MATLAB实现第二章作业

作者:夏云木子 1、 >> syms re(x) re(y) re(z) >> input('计算相对误差:'),re(x)=10/1991,re(y)=0.0001/1.991,re(y)=0.0000001/0.0001991 所以可知re(y)最小,即y精度最高 2、 >> format short,A=sqrt(2) >> format short e,B=sqrt(2) >> format short g,C=sqrt(2)

>> format long,D=sqrt(2) >> format long e,E=sqrt(2) >> format long g,F=sqrt(2) >> format bank,H=sqrt(2) >> format hex,I=sqrt(2) >> format +,J=sqrt(2) >> format,K=sqrt(2)

3、 >> syms A >> A=[sqrt(3) exp(7);sin(5) log(4)];vpa(pi*A,6) 4、1/6251-1/6252=1/6251*6252 5、(1)1/(1+3x)-(1-x)/(1+x)=x*(3*x-1)/[(1+3*x)*(1+x)] (2) sqrt(x+1/x)-sqrt(x-1/x)=2/x/[sqrt(x-1/x)+sqrt(x+1/x)] (3) log10(x1)-log(x2)=log10(x1/x2) (4) [1-cos(2*x)]/x =x^2/factorial(2)-x^4/factorial(4)+x^6/factorial(6)-…

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

相关文档
最新文档