Phosphoproteomics Screen Reveals Akt Isoform-Specific Signals Linking RNA Processing to Lung Cancer

Phosphoproteomics Screen Reveals Akt Isoform-Specific Signals Linking RNA Processing to Lung Cancer
Phosphoproteomics Screen Reveals Akt Isoform-Specific Signals Linking RNA Processing to Lung Cancer

Molecular Cell

Article

Phosphoproteomics Screen Reveals Akt

Isoform-Speci?c Signals

Linking RNA Processing to Lung Cancer

Ioannis Sanidas,1,5Christos Polytarchou,1,2,5Maria Hatziapostolou,1,2Scott A.Ezell,1,6Filippos Kottakis,1,7Lan Hu,3 Ailan Guo,4Jianxin Xie,4Michael https://www.360docs.net/doc/ec10469291.html,b,4Dimitrios Iliopoulos,2and Philip N.Tsichlis1,*

1Molecular Oncology Research Institute,Tufts Medical Center,Boston,MA02111,USA

2Division of Digestive Diseases,Center for Systems Biomedicine,David Geffen School of Medicine at UCLA,Los Angeles,CA90095,USA 3Department of Biostatistics and Computational Biology,Center for Cancer Computational Biology,Dana-Farber Cancer Institute,Boston, MA02215,USA

4Cell Signaling Technology,Danvers,MA01923,USA

5These authors contributed equally to this work

6Present address:Cutaneous Biology Research Center,Massachusetts General Hospital and Harvard Medical School,Charlestown,

MA02129,USA

7Present address:Massachusetts General Hospital,Boston,MA02114,USA

*Correspondence:ptsichlis@https://www.360docs.net/doc/ec10469291.html,

https://www.360docs.net/doc/ec10469291.html,/10.1016/j.molcel.2013.12.018

SUMMARY

The three Akt isoforms are functionally distinct.Here

we show that their phosphoproteomes also differ,

suggesting that their functional differences are due

to differences in target speci?city.One of the top

cellular functions differentially regulated by Akt

isoforms is RNA processing.IWS1,an RNA process-

ing regulator,is phosphorylated by Akt3and Akt1

at Ser720/Thr721.The latter is required for the

recruitment of SETD2to the RNA Pol II complex.

SETD2trimethylates histone H3at K36during tran-

scription,creating a docking site for MRG15and

PTB.H3K36me3-bound MRG15and PTB regulate FGFR-2splicing,which controls tumor growth and invasiveness downstream of IWS1phosphorylation.

Twenty-one of the twenty-four non-small-cell-lung

carcinomas we analyzed express IWS1.More impor-

tantly,the stoichiometry of IWS1phosphorylation in

these tumors correlates with the FGFR-2splicing

pattern and with Akt phosphorylation and Akt3

expression.These data identify an Akt isoform-

dependent regulatory mechanism for RNA process-

ing and demonstrate its role in lung cancer. INTRODUCTION

Akt is an AGC family serine-threonine protein kinase.It is acti-vated by a variety of extracellular and intracellular signals,and its activation depends on PtdIns-3,4,5-P3and to a lesser extent on PtdIns-3,4-P2,both of which are products of the phosphoino-sitide3-kinase(Franke et al.,1995;Manning and Cantley,2007). Although the three Akt isoforms,Akt1,Akt2,and Akt3,have been treated by most of the earlier studies as a single entity,recent evidence supports their unique roles in the regulation of cell func-tion(Chen et al.,2001;Cho et al.,2001;Ezell et al.,2012;Iliopou-los et al.,2009;Maroulakou et al.,2007;Polytarchou et al.,2011; Tschopp et al.,2005;Wan et al.,2011).

To determine whether the functional differences between Akt isoforms are due to signaling differences,we employed a system of immortalized lung?broblasts,which were engineered to express one Akt isoform at a time but are otherwise identical (Ezell et al.,2012;Iliopoulos et al.,2009;Polytarchou et al., 2011).A phosphoproteomics screen of these cells identi?ed 606proteins that are phosphorylated on Akt phosphorylation consensus sites in at least one of the Akt isoform-expressing cells.Analysis of the phosphoproteome data indeed identi?ed signaling pathways and cellular functions preferentially regulated by one or another isoform.One of the differentially regulated functions was the posttranscriptional processing of mRNA (RNA metabolism)(Moore and Proudfoot,2009).

One of the differentially phosphorylated proteins involved in the regulation of RNA metabolism is IWS1,which is phosphory-lated at a conserved phosphorylation site,primarily by Akt3and Akt1.IWS1was originally identi?ed in the yeast Saccharomyces cerevisiae through its interaction with Spt6(Krogan et al.,2002), a histone H3/H4chaperone(Duina,2011).Spt6also binds the C-terminal domain(CTD)of the large subunit of RNA Pol II, following the phosphorylation of the latter at Ser2(Yoh et al., 2007).Recent studies in mammalian cells revealed that the Spt6/IWS1complex contains two additional proteins:Aly/REF, an adaptor that contributes to nucleocytoplasmic RNA trans-port,and SetD2,a histone H3trimethyl transferase(Yoh et al., 2007,2008).The same studies showed that this complex con-tributes both to alternative RNA splicing and to nucleocytoplas-mic RNA transport.

The regulation of RNA splicing is a complex and poorly under-stood process.Although some of the splicing events are consti-tutive,occurring in all cell types independently of external signals,others,also known as alternative splicing events,are conditional.Recent estimates suggest that at least90%of the

metazoan genes are alternatively spliced(Wang et al.,2008). This gives rise to a proteome that is signi?cantly more complex than the number of genes would suggest.Alternative splicing plays an important role in differentiation and development,as well as in the response of fully differentiated cells to various sig-nals(Kalsotra and Cooper,2011).Defects in alternative splicing have been linked to a host of human diseases,primarily neurode-generative diseases and cancer(Cooper et al.,2009).Alternative splicing depends on the interplay of cis-acting RNA elements with trans-acting splicing factors(Chen and Manley,2009),and on epigenetic cues,such as DNA methylation and histone mod-i?cations(Luco et al.,2011).However,very little is known about the control of this machinery by cellular signals(Zhou et al., 2012).

One of the genes that undergo alternative splicing during development and in some cancers is the gene encoding FGF Receptor-2(FGFR-2)(Carstens et al.,2000;Warzecha et al., 2009).Alternative splicing gives rise to two isoforms of the recep-tor,the IIIc and the IIIb isoform,of which only the IIIc isoform is recognized by basic FGF(bFGF or FGF-2)(Miki et al.,1992). The IIIc isoform is expressed preferentially in mesenchymal cells, as opposed to epithelial cells(Luco et al.,2010;Orr-Urtreger et al.,1993),and promotes cell migration and invasiveness in response to FGF-2.Moreover,the FGFR-2IIIb-to-IIIc switch has been linked to epithelial mesenchymal transition(EMT)and to a migratory and metastatic phenotype in cancer cells(Thiery and Sleeman,2006).The FGFR-2alternative splicing discussed above belongs to a subset of alternative splicing events which depend on histone H3trimethylation at K36in the body of the target gene and on the polypyrimidine tract binding protein (PTB)(Carstens et al.,2000;Luco et al.,2010).

The data presented in this report con?rmed the differential phosphorylation of IWS1at Ser720/Thr721by Akt3and Akt1 and showed that its phosphorylation at this site is required for the recruitment of SetD2to the Spt6-IWS1-Aly/REF complex. In the absence of SetD2recruitment to the complex in lung car-cinoma cell lines,the trimethylation of histone H3at K36in the body of the FGFR-2gene was impaired.This interfered with the recruitment of MRG15,an H3K36me3-binding protein,and its interacting partner PTB,and shifted the splicing of FGFR-2 from the IIIc to the IIIb isoform.The shift in the alternative splicing of FGFR-2interferes with cell migration and invasiveness in response to FGF-2and suppresses the proliferation and inva-siveness of tumor cells both in culture and in animals.Address-ing the expression of FGFR-2in a set of lung-derived normal and tumor samples revealed that whereas the overall expression was similar in both,there was a shift toward the IIIc isoform in the tumor samples.More importantly,the relative expression of the IIIc and IIIb isoforms in non-small-cell-lung carcinomas (NSCLCs)correlated with the stoichiometry of IWS1phosphory-lation,and the latter correlated with Akt phosphorylation and Akt3expression.Finally,data from‘‘Oncomine’’show that the levels of expression of IWS1in lung cancer correlate with the tumor stage.These?ndings combined underpin the importance of this pathway in the pathogenesis of lung cancer.Overall,our data suggest that Akt isoform-dependent phosphorylation events are essential for RNA processing and provide insights into the role of Akt in carcinogenesis.RESULTS

Differential Regulation of the Akt-Phosphoproteome by the Three Akt Isoforms

To investigate signaling differences between Akt isoforms,we performed a phosphoproteomics screen on an isogenic cellular platform,in which Akt null cells were engineered to express one Akt isoform at a time,or a combination of all three(Figure1A and see Figure S1A available online).Cell lysates were digested with LysC,and the resulting peptides were af?nity puri?ed with Akt phosphosubstrate antibodies.Enriched phosphopeptides were digested with trypsin,puri?ed over StageTip,and analyzed by mass https://www.360docs.net/doc/ec10469291.html,parison of the Z scores(Figure S1B) of individual phosphorylation sites revealed signi?cant differ-ences between the phosphoproteomes of Akt1,Akt2,Akt3, and Akt1/2/3cells(Figure1B).To validate these data,we exam-ined the Z scores of known phosphorylation events that were also detected in our screen(Figure1C and Table S1),and we examined and con?rmed a set of phosphorylation events ?rst detected in the present study(Figures1C and S1C–S1G). These analyses validated all phosphorylation events above MAD=à0.64.A Venn diagram of Akt1-,Akt2-,Akt3-,and Akt1/2/3-mediated phosphorylation events,with Z scores above MAD=2,identi?ed sets of proteins that are differentially phos-phorylated by one or another isoform(Figure S2A).The sub-cellular localization of these proteins revealed differences in distribution between isoform-speci?c targets(Figure S2B). Moreover,bioinformatics analyses suggested that Akt isoforms differentially regulate canonical pathways and cell functions(Fig-ures2A and2B).One of the functions predicted to be differen-tially regulated by different Akt isoforms is RNA metabolism, which is represented by25proteins that are involved in different stages of the process(Figures3C and S2C).

Akt1and Akt3Phosphorylate IWS1at Ser720/Thr721 One of the proteins we identi?ed as a differentially phosphory-lated Akt target was IWS1(Figures2D and2E),which is known to contribute to the assembly of a transcriptional elongation complex on the Ser2-phosphorylated CTD of the large subunit of RNA polymerase II(Yoh et al.,2007,2008).Immunoprecipita-tion of IWS1from Flag-IWS1-transduced lung?broblasts expressing Akt1,Akt2,or Akt3with the Akt phosphosubstrate antibody and probing the immunoprecipitates with an anti-Flag antibody con?rmed the Akt isoform-dependent phosphor-ylation of IWS1at a site corresponding to the Akt phosphoryla-tion consensus(Figure2F).In agreement with this observation, the inhibition of all Akt activity in HELA cells with5m M of the Akt inhibitor MK2206blocked IWS1phosphorylation(Figure2G). Finally,in vitro kinase assays using bacterially expressed wild-type IWS1and its phosphorylation site mutants as substrates con?rmed that IWS1is phosphorylated directly by Akt and that Ser720/Thr721is the only Akt phosphorylation site in this protein(see Supplemental Information for further discussion). Remarkably,IWS1was phosphorylated by Akt3and less ef?-ciently by Akt1,but not Akt2,suggesting that isoform-depen-dent phosphorylation speci?city may be the result of structural differences that directly affect substrate recognition(Figures 2H and S2D).

Molecular Cell Chromatin Regulation by Akt and RNA Splicing

IWS1Phosphorylation at Ser720/Thr721Is Required for the Recruitment of SetD2to the RNA Polymerase II Elongation Complex

To determine the biological signi?cance of IWS1phosphoryla-tion,we ?rst examined its expression in a set of human tumor cell lines.This analysis identi?ed the NSCLC cell lines NCI H522and NCI H1299as high expressors and T47D,a human mammary carcinoma cell line,as a low expressor (Figure S3A).Western blotting con?rmed that NCI H522and NCI H1299cells express higher levels of IWS1than T47D cells.IGF1stimulation of these cells revealed that IWS1phosphorylation is regulated by receptor tyrosine kinase-generated signals and correlates with activation of Akt (Figure 3A).

In parallel experiments NCI H522,NCI H1299,and T47D cells were transduced with shIWS1-resistant constructs of FLAG-IWS1or Flag-IWS1S720A/T721A.Subsequent infection of these cells with the shIWS1lentiviral construct gave rise to cell lines in which the endogenous IWS1was knocked down or replaced by exogenous wild-type or mutant IWS1(Figure 3B).The phosphor-ylation of the wild-type protein was con?rmed by probing IWS1immunoprecipitates of wild-type and mutant rescue cell lysates with the Akt phosphosubstrate antibody (Figure 3C,upper panel).Alternatively,lysates from the same cells were probed with the phospho-IWS1and total IWS1antibodies (Figure 3C,lower panel).The speci?city of the phospho-IWS1antibody was further validated by using it to probe lysates of NCI H1299and T47D cells,before and after treatment with MK2206(Figure S3B).

IWS1interacts with Spt6,which binds the phosphorylated Ser2in the CTD of RNA Pol II,Aly/REF,and SetD2(Yoh et al.,2007,2008).Coimmunoprecipitation experiments revealed that the Ser720/Thr721phosphorylation mutant of IWS1fails to bind SetD2but continues to bind Aly/REF and SPT6.As a result,neither IWS1nor RNA Pol II coimmunoprecipitates with SetD2(Figure 3D).This ?nding was con?rmed with the reciprocal immu-noprecipitation experiment.An HA-SetD2construct was intro-duced into shIWS1NCI H1299cells rescued with wild-type or mutant IWS1.FLAG-IWS1was immunoprecipitated from cells rescued with wild-type IWS1,before and after treatment with MK2206,as well as from cells rescued with mutant IWS1,and western blots of the immunoprecipitates were probed with an anti-HA antibody.The results (Figure S3C)con?rmed the data in Figure 3D.

SetD2catalyzes the trimethylation of histone H3at K36,a his-tone mark linked to alternative splicing of a set of genes that include FGFR-2(Kolasinska-Zwierz et al.,2009;Luco et al.,2010).Alternative splicing via an H3K36me3-regulated process (Luco et al.,2010)gives rise to the FGFR-2isoforms IIIb and IIIc (Figure 3E),which encode receptors with different ligand speci?cities and different expression patterns (Luco et al.,2010;Miki et al.,1992).Replacement of endogenous IWS1with its phosphorylation site mutant prevented the binding of SetD2and decreased the abundance of histone H3K36me3in the FGFR-2gene.Chromatin immunoprecipitations (ChIPs)re-vealed that IWS1binds to exons IIIb and IIIc,but not to the tran-scription start site (TSS)of FGFR-2(Figure 3F),and that IWS1phosphorylation at Ser720/Thr721is not required for the binding (Figures 3G and S3D).ChIP assays for SetD2in cells

transduced

Figure 1.The Phosphoproteomes of Akt1-,Akt2-,Akt3-,and Akt1/2/3-Expressing Cells

(A)Western blots of cell lysates of Akt null (TKO)lung ?broblasts and their Akt isoform-expressing derivatives were probed with the indicated antibodies.(B)Heatmap of the relative abundance of all the phosphorylation events de-tected in the phosphoproteomics screen.The relative abundance of each phosphorylation event is presented as the robust Z score of the ratio Akt1/TKO,Akt2/TKO,Akt3/TKO,or Akt1/2/3/TKO.

(C)Heatmap of the abundance of phosphorylation of known Akt substrates (black)and Akt substrates that were identi?ed in this screen (red).The phos-phorylated residue is shown on the right.

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

Figure 2.The Phosphoproteomes of Akt1-,Akt2-,and Akt3-Expressing Cells Suggest Functional Differences between Akt Isoforms;IWS1Phosphorylation by Akt1and Akt3

(A)Heatmap showing the probability [àlog(p value)]that a given canonical pathway may be regulated by Akt1,Akt2,Akt3,or Akt1/2/3.Analysis based on phosphorylation events with a robust Z score R 2MAD.

(B)Probability that RNA traf?cking and RNA posttranscriptional modi?cations may be regulated by Akt1,Akt2,or Akt3.

(C)Diagram of the sequential steps involved in RNA processing.Akt targets identi?ed or con?rmed by our screen are indicated.

(D)Sequence of the phosphorylated IWS1peptide.The asterisks show the phosphorylated residues.The numbers show the median absolute deviation of the robust Z scores.

(E)Conservation of the phosphorylated peptide and the adjacent sequence.

(F)(Upper)Western blots of TKO lung ?broblasts and their Akt isoform-expressing derivatives were probed with anti-myc or anti-Hsp90(loading control).(Lower)The lung ?broblasts in the upper panel were transduced with the indicated constructs,and their lysates were used for immunoprecipitation and immunoblotting with the indicated antibodies.Western blots of the same lysates were probed with anti-FLAG or anti-CREB,as indicated.

(G)HeLa cells transduced with lentiviral constructs of FLAG-IWS1(WT or mutant)were treated with 5m M MK2206or DMSO for 2hr.Anti-Flag-IWS1immu-noprecipitates were probed with the Akt phosphosubstrate antibody.Western blots of the same cell lysates were probed with the indicated antibodies.

(H)(Left)In vitro kinase assays of myc-tagged Akt1,Akt2,or Akt3,using GST-IWS1wt (upper panel)and GSK3a /b (lower panel)recombinant proteins as sub-strates.Phosphorylation was detected with the Akt phosphosubstrate or the phospho-GSK3a /b (21/9)antibody.(Right)In vitro kinase assay of myc-Akt1using WT or mutant GST-IWS1as substrates.

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

with an HA-SetD2construct con?rmed that IWS1phosphoryla-tion is required for SetD2recruitment to the FGFR-2gene(Fig-ures3H,3I,and S3E)and the trimethylation of histone H3at K36in exons IIIb and IIIc(Figures3J and3K).

IWS1Phosphorylation at Ser720/Thr721Regulates the Alternative Splicing of FGFR-2

High abundance of histone H3K36me3in the IIIb exon is a signal for exon skipping,while low abundance of the same mark is a signal for exon inclusion(Kolasinska-Zwierz et al., 2009).As a result,knocking down SetD2or IWS1,which is required for the recruitment of SetD2to the elongation complex, increased the abundance of the IIIb relative to the IIIc tran-scripts,in NCI H522and NCI H1299cells,which express primarily FGFR-2IIIc,but not in T47D cells,which express primarily FGFR-2IIIb(Figures4A,4B,S4A,and S4B).More importantly,the change in alternative splicing induced by the knockdown of IWS1was rescued by the wild-type IWS1,but not by IWS1S720A/T721A(Figure4B).We conclude that IWS1phosphorylation by Akt3and Akt1shifts the balance of FGFR-2splicing toward FGFR-2-IIIc,by regulating the recruit-ment of SetD2to the elongation complex.If the recruitment of SetD2depends on the phosphorylation of IWS1,as our data indicate,one would expect that overexpression of SetD2would not rescue the FGFR-2alternative splicing phenotype in shIWS1 and shIWS1/mutant rescue cells.The experiment in Figure S4C con?rmed the prediction.

To address the dependence of FGFR-2alternative splicing on Akt,we treated the cells with5m M MK2206,a dose that fully inhibits all Akt isoforms.Akt inhibition reduced H3K36trimethy-lation in exons IIIb and IIIc and promoted exon IIIb inclusion in the FGFR-2transcript(Figure4C),suggesting that the IWS1 phosphorylation phenotype depends on the activity of Akt. Knocking down different Akt isoforms sequentially or in combi-nation in the same cells not only con?rmed this conclusion but also showed that the skipping of exon IIIb is promoted primarily by Akt3and Akt1(Figure4D).

The preceding data raised the question of whether Akt regu-lates FGFR-2splicing primarily by phosphorylating IWS1or whether it also utilizes an alternative pathway.To address this question,we examined the splicing of FGFR-2in MK2206or DMSO-treated NCI H522and NCI H1299cells transduced with the phosphomimetic mutant IWS1-S720D/T721E(IWS1-DE)or with the empty vector(EV).The results showed that IWS1-DE rescues the MK2206-induced FGFR-2alternative splicing phenotype(Figure4E).The rescue of the MK2206-induced shift in alternative splicing by the Akt-independent IWS1-DE mutant supports the hypothesis that Akt controls FGFR-2alternative splicing by phosphorylating IWS1,and not through an alternative pathway.Support for this conclusion was provided by the exper-iment in Figure S4D,which showed that none of the Akt isoforms can reverse the shIWS1-or shSetD2-induced shifts in FGFR-2 splicing when overexpressed in NCI H522cells.Although this conclusion is in agreement with all the data in this report,it should be viewed with caution,because Akt overexpression had no effect on FGFR-2alternative splicing even in shControl cells(Figure S4D),perhaps because NCI H522cells express suf-?cient levels of Akt to keep the pathway fully active.

If IGF1promotes the phosphorylation of IWS1,perhaps through Akt(Figure3A),and the phosphorylation of IWS1shifts the alternative splicing of FGFR-2toward the IIIc isoform,one would expect that treatment of NCI H522and NCI H1299cells with IGF1would decrease the FGFR-2IIIb/IIIc ratio.The experi-ment in Figure4F con?rmed this prediction and provided evi-dence that Akt regulates FGFR-2alternative splicing by receptor tyrosine kinase-induced signals.

IWS1Phosphorylation at Ser720/Thr721Is Required for the Binding of MRG15and PTB to the FGFR-2Gene Histone H3K36me3provides a docking site for MRG15(Zhang et al.,2006),a chromodomain protein that interacts with the polypyrimidine track binding protein(PTB)to translate the H3K36me3mark into a signal that regulates alternative splicing (Luco et al.,2010).Consistent with the data on SetD2binding and histone H3K36trimethylation in the FGFR-2gene(Figure3), chromatin IPs in NCI H522and NCI H1299cells con?rmed that knocking down IWS1reduces the binding of both MRG15and PTB and that their binding is restored by wild-type,but not the mutant IWS1(Figures4G,4H,4I,4J,and S4E).

The data in Figure4C con?rmed that the regulation of FGFR-2 alternative splicing by SetD2is IWS1phosphorylation depen-dent.Since the binding of MRG15and PTB to target genes de-pends on histone H3K36trimethylation,which is mediated by SetD2,these data suggest that MRG15and PTB would also regulate FGFR-2alternative splicing in an IWS1phosphoryla-tion-dependent manner.This prediction was con?rmed with the experiment in Figure S4F,which showed that the MK2206-induced increase in the IIIb/IIIc ratio is not rescued by MRG15, PTB,or SetD2.We conclude that the regulation of FGFR-2alter-native splicing by SetD2,MRG15,and PTB is strictly dependent on IWS1phosphorylation by Akt.

Model of the Regulation of PTB-Dependent Alternative Splicing by IWS1Phosphorylation

Based on the data presented in Figure3and Figure4,we propose that IWS1phosphorylation regulates PTB-dependent alternative splicing via the mechanism described in the model in Figure5.According to this model,IWS1phosphorylation is required for the recruitment of SetD2to RNA Pol II.Inhibition of IWS1phosphorylation prevents the trimethylation of histone H3at K36in the body of FGFR-2and perhaps other target genes. This abrogates the recruitment of the histone H3K36me3-inter-acting protein MRG15and its binding partner PTB and results in shifts in alternative splicing of target genes,such as FGFR-2. Alternative Splicing of FGFR-2Induced by IWS1 Phosphorylation at Ser720/Thr721Promotes Cell Migration,Invasiveness,and Proliferation in Response

to FGF-2

The IIIb isoform of FGFR-2is not recognized by FGF-2(bFGF) whereas the IIIc isoform is(Miki et al.,1992).This suggested that by shifting FGFR-2splicing from the IIIb to the IIIc isoform, the Akt1/Akt3-dependent IWS1phosphorylation would promote cell migration and proliferation in response to FGF-2.Wound healing and transwell?lter assays in NCI H1299and NCI H522 cells con?rmed that IWS1phosphorylation indeed promotes

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

Figure 3.IWS1Phosphorylation at Ser720/Thr721Is Required for SETD2Recruitment and H3K36me3Trimethylation in the FGFR-2Gene

(A)NCI H522,NCI H1299,and T47D cell lysates,harvested before and after treatment with IGF-1,were probed with the indicated antibodies.

(B)Lysates of shControl,shIWS1,shIWS1/WT rescue and shIWS1/mutant rescue NCI H522,NCI H1299,and T47D cells were probed with the indicated antibodies.

(C)(Upper)Flag-IWS1immunoprecipitates of shIWS1/WT rescue and shIWS1/mutant rescue NCI H1299cells were probed with the Akt phosphosubstrate or the anti-FLAG (IWS1)antibody.(Lower)The same lysates were probed with antibodies to phospho-IWS1or total IWS1.

(legend continued on next page)

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

both nondirectional and directional cell migration in the presence of FGF-2(Figures 6A,6B,S5A,and S5C).Similarly,matrigel inva-sion and cell proliferation assays con?rmed that IWS1phosphor-ylation promotes cell invasion and proliferation downstream of FGF-2(Figures 6C,S5B,S5C,and 6D).To determine whether the expression of the IIIc,as opposed to the IIIb isoform of FGFR-2,is responsible for the enhanced migration and prolifer-ation of the shControl and the shIWS1/WT rescue cells,we infected shIWS1-transduced NCI H1299cells with constructs expressing the IIIc or IIIb isoforms.shControl and shIWS1cells not transduced with the IIIc or IIIb construct were used as https://www.360docs.net/doc/ec10469291.html,ing these cells we showed that whereas the expression of the IIIc isoform rescues fully the impaired migration and inva-siveness of cells growing in FGF-2-supplemented media (Fig-ures 6E,6F,and 6G),the expression of the IIIb isoform does not (Figures 6I,6J,and 6K).The IIIc isoform also rescued the impaired proliferation phenotype of the same cells,although only partially (Figure 6H).A repeat of the cell proliferation exper-iment in cells growing in DMEM supplemented with 10%serum revealed that cell proliferation under these conditions is also regulated by IWS1phosphorylation at Ser720/Thr721(Figures 6L,6M,and 6N).Despite that,FGFR-2IIIc overexpression did not rescue the impaired proliferation induced by IWS1knock-down (Figure S5D),suggesting that although IWS1phosphoryla-tion regulates the proliferation of cells growing both in FGF-2and in serum-supplemented media,the mechanisms by which it functions in the two culture conditions are not the same.Thus,whereas IWS1phosphorylation regulates cell proliferation of cells growing in FGF-2-supplemented media in part by shifting the alternative splicing pattern of FGFR-2,in cells growing in serum-supplemented media it may function by regulating the transcriptional elongation or splicing of other target genes.

Experiments in Figures S4C and S4F showed that overex-pression of SetD2in NCI H522and NCI H1299cells cannot rescue the FGFR-2splicing defect induced by blocking the IWS1phosphorylation or by inhibiting the activity of Akt.These data predict that SetD2should not rescue the impaired migra-tion and invasiveness phenotype in cells in which the expression or phosphorylation of IWS1was blocked.The experiments in Figure S5E con?rmed the prediction.Given our observation that the splicing phenotype of the IWS1phosphorylation block is not affected by SetD2overexpression,it is unlikely that it will be affected by MRG15or PTB.However,the overexpression

of these molecules may affect the biological phenotype,because they may have additional activities unrelated to RNA splicing.

The Role of IWS1Phosphorylation at Ser720/Thr721in Lung Cancer

To determine the role of IWS1phosphorylation in oncogenesis,shControl,shIWS1,shIWS1/WT rescue,and shIWS1/mutant rescue NCI-H1299cells were injected subcutaneously in nude mice.The inoculated animals were monitored for tumor growth,and they were sacri?ced 4weeks later.The results con?rmed that IWS1phosphorylation promotes both the growth and invasiveness of the tumor cells (Figures 7A and S6A).Immuno-histochemical analysis of the xenografts with the validated anti-phospho-IWS1antibody (Figures 3C and S3B)con?rmed the IWS1phosphorylation in vivo (Figure 7B).

Western blotting of cell lysates derived from a set of human lung specimens (2normal and 24NSCLCs)revealed that IWS1is not expressed in normal lung but is expressed in 21of 24NSCLCs (Figure 7D).Immunohistochemical staining of a normal lung and NSCLC tissue array (17and 23samples,respectively)with the anti-phospho-IWS1antibody also revealed increased phospho-IWS1nuclear staining in a fraction of the tumors (Fig-ure S6B).Based on these ?ndings,which suggest a potential role for IWS1in NSCLC,we proceeded to address the expres-sion of FGFR-2IIIb and IIIc in normal lung and NSCLC samples.The results revealed that the overall FGFR-2expression is similar in both,but it shifts toward IIIc in the tumor samples (Figure 7C).More importantly,the shift correlates with the phosphorylation of IWS1,and the latter correlates with the phosphorylation of Akt and the expression of Akt3.Plotting the relative stoichiometry of IWS1phosphorylation (p-IWS1-(S720)/total IWS1)against the FGFR-2IIIb/IIIc ratio in the 21NSCLC samples that express IWS1revealed that whereas tumors with high relative levels of IWS1phosphorylation have almost universally low IIIb/IIIc ratios,tumors with low relative levels of IWS1phosphorylation exhibit IIIb/IIIc ratios that are randomly distributed (Figures 7D and 7E)(p =0.0002,by Levene’s test for equality of variances).Plotting the relative stoichiometry of IWS1phosphorylation against phospho-Akt (Ser 473),or Akt3(Figure 7E),also revealed statis-tically signi?cant correlations (p =0.00636and p =0.00745,respectively,by Spearman’s rank order correlation).Collectively,these data provide strong support to the hypothesis that the

(D)SetD2,Spt6,REF/Aly,and Flag-IWS1immunoprecipitates from lysates of shIWS1/WT rescue and shIWS1/mutant rescue NCI H522cells were probed with anti-Flag (IWS1),anti-RNA PolII,and antiSetD2,as indicated.The same cell lysates were probed with the indicated antibodies.

(E)Schematic showing the alternatively spliced exons 8(IIIb)and 9(IIIc)of the human FGFR-2gene.The map position of the primer sets is indicated by square dots.TSS,transcription start site.

(F)ChIP assays showing the binding of IWS1to the FGFR-2and GAPDH genes in the indicated shControl and shIWS1cells.Bars show the mean fold enrichment in the binding of endogenous IWS1in shControl,versus shIWS1cells ±SD.

(G)ChIP of Flag-IWS1in shIWS1/WT rescue and shIWS1/mutant rescue NCI H522cells shows that both WT and mutant IWS1bind exons IIIb and IIIc of FGFR-2.Bars show the mean fold enrichment in binding of Flag-IWS1in these cells,relative to the parental cells ±SD.IWS1binding is also presented as percentage of the input in Figure S3D.

(H and I)ChIP assays showing the binding of HA-SetD2to the FGFR-2and GAPDH genes in the indicated shControl,shIWS1,shIWS1/WT rescue,and shIWS1/mutant rescue cells,transduced with an HA-SetD2lentiviral construct.Bars show the mean fold enrichment in binding of HA-SetD2in shControl relative to shIWS1cells or in shIWS1/WT rescue relative to shIWS1/mutant rescue cells ±SD.HA-SetD2expression and binding are also presented as percentage of the input in Figure S3E.

(J and K)ChIP assays showing the abundance of histone H3K36me3in the FGFR-2and GAPDH genes in the indicated cells.Bars show the mean fold enrichment in H3K36me3in shControl relative to shIWS1cells or in shIWS1/WT rescue relative to shIWS1/mutant rescue cells ±SD.

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

Figure 4.IWS1Phosphorylation at Ser720/Thr721by Akt3and Akt1Regulates the Alternative Splicing of the FGFR-2Gene

(A)The SETD2knockdown shifts the IIIb/IIIc ratio of the FGFR-2mRNA toward the IIIb isoform.(Left)Real-time RT-PCR for SETD2in the indicated cell lines transduced with two different shSetD2constructs or with an shControl construct.(Right)Real-time RT-PCR showing the IIIb/IIIc FGFR-2mRNA ratios in the cells on the left panel.Bars show the mean SETD2levels or the mean IIIb/IIIc ratios in shSetD2,relative to shControl cells ±SD.

(B)IWS1phosphorylation regulates FGFR-2alternative splicing.Real-time RT-PCR showing the IIIb/IIIc FGFR-2ratios in the indicated shControl,shIWS1,shIWS1/WT rescue,and shIWS1/mutant rescue cells.Bars show the mean IIIb/IIIc ratio in shIWS1,shIWS1/WT rescue,and shIWS1/mutant rescue cells relative to shControl cells ±SD.

(C)Akt inhibition interferes with histone H3K36trimethylation in the FGFR-2gene and promotes inclusion of the IIIb exon in the transcript.(Top left)Lysates of the indicated cells,harvested before and after a 2hr treatment with MK2206(5m M)or DMSO,were probed with antibodies,as shown.(Top right)The FGFR-2IIIb to

(legend continued on next page)

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

phosphorylation of IWS1plays a major role in the regulation of FGFR-2alternative splicing in primary human NSCLCs and are consistent with our other data showing that the knockdown of Akt1and Akt3shifts the splicing of FGFR-2from the IIIc to the IIIb isoform.Since a low IIIb/IIIc ratio has been shown to promote EMT and tumor cell invasiveness (Thiery and Sleeman,2006),these data support the hypothesis that Akt promotes cancer pro-gression by phosphorylating IWS1.This conclusion is further supported by data from the oncomine database (Bild et al.,2006),which reveal a positive correlation between IWS1expres-sion with tumor stage (Figure S6C).DISCUSSION

Linking Functional Differences between Akt Isoforms to Differences in Target Speci?city

In this paper we focused on a phosphoproteomics screen,which was carried out in a set of lung ?broblast cell lines that express different Akt isoforms but are otherwise identical.The results re-vealed signi?cant differences in target speci?city between Akt isoforms and identi?ed a host of signaling pathways and cellular functions that may be differentially regulated by them (Figure 2A).Some of the predictions,such as the regulation of insulin and IGF signaling primarily by Akt2,are in agreement with prior literature

IIIc ratio was measured by quantitative RT-PCR.Bars show the ratio in cells treated with MK2206relative to cells treated with DMSO (mean ±SD).p values were calculated with the Student’s t test.(Bottom)ChIP assays measuring the abundance of H3K36me3trimethylation in FGFR-2in the indicated cell lines before and after a 2hr treatment with 5m M MK2206or with DMSO.Bars show the fold enrichment of the abundance of H3K36me3trimethylation in DMSO-treated versus Akt inhibitor-treated cells (mean ±SD).

(D)The knockdown of Akt1and/or Akt3promotes inclusion of the IIIb exon in the FGFR-2transcript.Lysates of NCI H1299cells harvested 48hr after transfection with siAKT1,siAkt2,siAkt3,or siControl were probed with the indicated antibodies (left).IIIb/IIIc ratios were measured by quantitative RT-PCR (right).Bars show the IIIb/IIIc ratio in siAkt versus si-control cells (mean ±SD).

(E)The Akt-independent mutant IWS1-DE reversed the MK2206-induced shift in FGFR-2alternative splicing.RNA isolated from MK2206or DMSO-treated NCI H522and NCI H1299cells transduced with the IWS1phosphomimetic mutant IWS1-DE or the empty vector was analyzed for the IIIb/IIIc ratio by quantitative RT-PCR.Bars show the IIIb/IIIc ratio in MK2206-treated versus DMSO-treated cells (mean ±SD).

(F)FGFR-2splicing shifts toward the IIIc transcript in response to IGF1.RNA from the cells in Figure 3A was analyzed for the IIIb/IIIc ratio by quantitative RT-PCR.Bars show the IIIb/IIIc ratio in IGF1-treated versus untreated cells (mean ±SD).

(G and H)IWS1phosphorylation is required for the binding of MRG15to FGFR-2.ChIP assays showing the binding of MRG15to the indicated sites in the FGFR-2and GAPDH genes in shControl,shIWS1,shIWS1/WT rescue,and shIWS1/mutant rescue NCI H522(G)and NCI H1299(H)cells.Bars show the mean fold enrichment in MRG15binding in shControl versus shIWS1or in shIWS1/WT rescue versus shIWS1/mutant rescue cells ±SD.

(I and J)IWS1phosphorylation is required for the binding of PTB to FGFR-2.ChIP assays showing the binding of myc-PTB to the indicated sites in the FGFR-2and GAPDH genes in shControl,shIWS1,shIWS1/WT rescue,and shIWS1/mutant rescue NCI H522(I)and NCI H1299(J)cells,transfected with a myc-PTB construct.The expression of myc-PTB is shown in Figure S4E.Bars show the mean fold enrichment in myc-PTB binding in shControl versus shIWS1or in shIWS1/WT rescue versus shIWS1/mutant rescue cells ±SD.Myc-PTB binding is also presented as percentage of the input in Figure S4

E.

Figure 5.Model of the Regulation of FGFR-2Alternative Splicing by IWS1Phosphorylation at Ser720/Thr721by Akt1or Akt3

The phosphorylation of IWS1attracts SetD2to the Spt6/IWS1/Aly complex in the CTD of RNA Pol II.SetD2in the complex trimethylates histone H3at K36during transcriptional elongation.MRG15and its partner PTB bind histone H3K36me3.Binding of PTB to the IIIb exon promotes exclusion of this exon from the spliced transcript.

(Cho et al.,2001).Based on these data it is expected that Akt inhibitors may have widely variable therapeutic effects and

toxicity,depending on their relative speci?city against the three Akt isoforms.

Regulation of RNA Processing by Akt Isoforms

One of the top functions differentially regulated by Akt isoforms is RNA metabolism,with 25proteins involved in various steps of the RNA maturation process being phosphorylated by at least one of the three isoforms (Figures 2B and 2C).IWS1,one of these proteins,is phosphorylated primarily by Akt3and Akt1and is a component of a transcriptional elongation complex,which in-cludes Spt6,Aly/REF,and SetD2and assembles on the Ser2phosphorylated CTD of RNA Pol II (Yoh et al.,2007,2008).Data in this report showed that IWS1phosphorylation is required for the recruitment of SetD2to the complex and the trimethyla-tion of histone H3at K36in the body of the target genes.Subse-quent recruitment of the histone H3K36me3-intracting protein MRG15and its binding partner PTB results in shifts in the alter-native splicing of target genes,one of which is FGFR-2.Regulation of Alternative RNA Splicing by Akt Isoforms The alternative splicing of FGFR-2gives rise to two isoforms,IIIb and IIIc (Carstens et al.,2000;Warzecha et al.,2009).IIIb is ex-pressed primarily in epithelial cells,while IIIc,which is the iso-form induced by IWS1phosphorylation,is expressed primarily

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

Figure 6.IWS1Phosphorylation at Ser720/Thr721in Lung Carcinoma Cell Lines Promotes Cell Migration,Invasiveness,and Proliferation

(A)Wound healing in serum-free media supplemented with FGF-2.Assays were carried out on con?uent monolayers of the indicated NCI H1299cells.The bars show the fraction of the width of the wound that was covered by the migrating cells 24hr later (mean ±SD).

(B)Directional migration of the cells in (A)toward FGF-2was measured with the transwell assay.Bars show the numbers of migrating cells (mean ±SD)at 16hr.(C)Cell invasiveness of the cells in (A)in FGF-2-free and FGF-2-containing semisolid media.Bars show the numbers of invading cells (mean ±SD)at 16hr.(D)Growth curves of the cells in (A),in media supplemented with 1%FBS and 20ng/ml FGF-2.Live-cell numbers (mean ±SD)were measured with the MTT assay in ?ve independent cultures of each cell type.

(E–G)The IIIc isoform of FGFR-2rescued the cell migration (E and F)and invasiveness (G)defects in shIWS1NCI H1299cells.Data are presented as in (A)–(C).(H)Growth curves of the cells in (E),in media supplemented with 1%FBS and 20ng/ml FGF-2.Live-cell numbers (mean ±SD)were measured with the MTT assay in ?ve independent cultures of each cell type.

(I–K)The IIIb isoform of FGFR-2failed to rescue the cell migration (I and J)and invasiveness (K)defects in shIWS1NCI H1299cells.Data are presented as in (A)–(C).

(L–N)Growth curves of the indicated NCI H522,NCI H1299,and T47D cells in media supplemented with 10%FBS.Live-cell numbers (mean ±SD)were measured with the MTT assay in ?ve independent cultures for each cell type.

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

Figure 7.IWS1Phosphorylation at Ser720/Thr721in NSCLC

(A)IWS1phosphorylation at Ser720/Thr721promotes tumor growth and invasiveness in a xenograft NSCLC model in nude mice.Nude mice were injected subcutaneously with shControl,shIWS1,shIWS1/WT rescue,and shIWS1/mutant rescue NCI H1299cells (n =10mice/group).(Top)Tumor growth is expressed as mean tumor volume ±SE.(Bottom)Frequency of macroscopic invasion of the adjacent tissue by the tumor cells.Shown are combined data from two experiments.

(B)Phospho-IWS1(Ser720)staining of tumor xenografts.Formalin-?xed,paraf?n-embedded tumor samples from the experiment in (A)were stained with a noncommercially available anti-phospho-IWS1(Ser720)antibody from Cell Signaling (see Figure 3C,lower panel,and Figure S3B).Secondary antibody was HRP labeled.Tissues were counterstained with hematoxylin.

(C)FGFR-2IIIc/IIIb exon ratio (left)and FGFR-2expression (right)in normal human lung and lung cancer specimens were determined by quantitative RT-PCR and presented as box plots.

(D and E)The shift of FGFR-2splicing toward IIIc in NSCLCs correlates with IWS1phosphorylation at Ser720/Thr721,and the latter correlates with Akt phos-phorylation and Akt3expression.(D)Lysates of 2normal lung and 24NSCLC samples were probed with the indicated antibodies.(E)(Upper)The relative stoichiometry of IWS1phosphorylation in the 21NSCLCs expressing IWS1was estimated from the phospho-IWS1/total IWS1band density ratios and was used to place the tumors in an ascending order of IWS1phosphorylation abundance.(Middle)IIIb/IIIc exon ratios in the tumors in the upper panel.The IIIb/IIIc ratio in normal lung was given the value of 1.Bars show the ratios in tumors versus normal lung,with some tumors exhibiting values greater and some lower than 1.(Lower)The relative stoichiometry of IWS1phosphorylation in the same tumors correlates with phospho-Akt (Ser473)(left)and Akt3expression (right).

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

in mesenchymal cells and in invasive and metastatic tumors (Luco et al.,2010;Orr-Urtreger et al.,1993).Of these isoforms, only IIIc is recognized by FGF-2(Miki et al.,1992).In agreement with these data,lung carcinoma cell lines in which the endoge-nous IWS1was replaced with the phosphorylation site mutant exhibit defects in FGF-2-induced cell proliferation,migration, and invasion.More importantly,the defects in cell migration and invasiveness were fully rescued by FGFR-2IIIc,but not IIIb,while the defect in cell proliferation was rescued partially and only when the cells were grown in FGF-2-supplemented media.IWS1phosphorylation and SetD2recruitment are ex-pected to target more genes,in addition to FGFR-2(Luco et al.,2010).Moreover,in some of these genes they may pro-mote transcriptional elongation by preventing cryptic intragenic transcription,with or without an effect on RNA splicing(Carvalho et al.,2013).Based on these considerations,we propose that IWS1phosphorylation may promote tumor cell proliferation in culture and in animals by regulating RNA splicing,transcriptional elongation,or both on a host of cellular genes.

It has been?rmly established that splicing occurs cotranscrip-tionally and that it is in?uenced by the imprinting of the pre-mRNA,during the RNA synthesis and processing steps that precede splicing(Moore and Proudfoot,2009).To explain how the process of transcription may affect splicing,two models have been proposed:the kinetic model,which suggests that slowing the rate of transcription promotes the inclusion of weak exons into the mature mRNA product,and the chromatin modi?cation model,which proposes that histone and DNA mod-i?cations regulate the assembly of protein complexes that con-trol splicing(Luco et al.,2011),although they may also control nucleosome density and the rate of transcriptional elongation. Our data support the chromatin modi?cation model(Figure5), and they show how the chromatin-regulated RNA splicing machinery is under the control of Akt signals.However,the link between chromatin modi?cations and alternative splicing may be more complex than the model indicates.This is suggested by the following observations.In mesenchymal cells,which ex-press the IIIc isoform of FGFR-2,histone H3trimethylation at K36is accompanied by the downregulation of histone H3K4 and H3K27trimethylation,and by histone H3K4mono-and dime-thylation(Luco et al.,2010).More importantly,overexpression of the histone H3K4methyltransferase ASH2in these cells in-creases the usage of the normally repressed exon IIIb,suggest-ing that H3K4trimethylation may also contribute to the regulation of PTB-dependent alternative splicing(Luco et al.,2010).Other studies provided evidence linking MRG15to the acetylation of histone H4at K16(Conrad et al.,2012)and perhaps K12(Pen?a et al.,2011)during transcriptional elongation.MRG15is a com-ponent of several chromatin-modifying complexes,which could give rise to these chromatin modi?cations.Thus,it has been shown that MRG15bound to the H3K36me3mark in the body of transcribed genes(Zhang et al.,2006)also interacts with the histone H3K4me3/me2demethylase KDM5B(Xie et al.,2011), the histone H4K16acetyltransferase complex NuA4(mammalian Tip60)(Cai et al.,2003),the histone H4K16deacetylase complex Rpd3S(mammalian HDCA2)(Kumar et al.,2011),and VEZF1 (Gowher et al.,2012),a known regulator of alternative splicing. Some of these interactions may take place in the context of larger complexes,such as the LAF and RLAF complexes(Moshkin et al.,2009).It has not been determined yet whether these histone modi?cations are also observed in the context of the Akt3/Akt1-dependent shift in the alternative splicing of FGFR-2.If they do, the system we established will allow us to determine whether they play an obligatory role in this process,and to address the epistatic relationships between them.

Relevance of IWS1Phosphorylation in Lung Cancer

It is now universally accepted that Akt plays a major role in onco-genesis.Experiments,both in culture and in animals,presented in this report revealed that IWS1phosphorylation by Akt3and Akt1regulates RNA splicing and perhaps transcriptional elonga-tion and represents an important event in lung cancer.Analysis of sets of normal lung and lung cancer samples for the expres-sion of FGFR-2revealed that the overall expression is similar in both.However,the expression was shifted toward the IIIc iso-form in the tumor samples.More importantly,the shift toward the IIIc isoform was found to correlate with the stoichiometry of IWS1phosphorylation,which in turn correlates with Akt phos-phorylation and Akt3expression.Overall,this study identi?es perturbations in RNA splicing and perhaps transcriptional elon-gation as a mechanism by which Akt promotes oncogenesis, shows that Akt isoforms contribute to oncogenesis as upstream regulators of FGF-2signaling,and provides direct evidence link-ing IWS1to lung cancer.

In summary,data presented in this report link Akt isoform-spe-ci?c signaling with chromatin modi?cations occurring in the body of the gene encoding FGFR-2,and perhaps other actively tran-scribed target genes.These chromatin modi?cations,in turn, regulate alternative splicing and transcriptional elongation.By regulating these processes,IWS1phosphorylation profoundly alters the biology of tumor cells.Interruption of IWS1phosphor-ylation suppresses the proliferation,migration,and invasiveness of tumor cells both in culture and in animals.Overall,this study provides new insights into the regulation of alternative splicing, a process that plays a critical role in differentiation and develop-ment and in a multitude of human diseases,including cancer. EXPERIMENTAL PROCEDURES

For details,see the Supplemental Information.

Cells,Culture,Growth Factors,and Akt Inhibitors

Mouse lung?broblasts were described previously(Iliopoulos et al.,2009). Culture conditions,cell transfections,and infections are described in the Supplemental Information.

Phosphoproteomics Screen and Data Analysis

The phosphoproteomics screen and data analysis are presented in the Supplemental Information.Data are available at https://tuftsmedicalcenter. https://www.360docs.net/doc/ec10469291.html,/Research-Clinical-Trials/Institutes-Centers-Labs/ Molecular-Oncology-Research-Institute/Labs-Facilities/Tsichlis-Lab/Akt-phopshoproteomics.aspx.

siRNAs,shRNAs,and Expression Constructs,and Cloning and Site-Directed Mutagenesis

The origin of the siRNAs,shRNAs,and expression constructs is described in Table S3.Cloning and site-directed mutagenesis were carried out using standard procedures.

Molecular Cell Chromatin Regulation by Akt and RNA Splicing

Immunoprecipitation,Immunoblotting,and In Vitro Kinase Assays Immunoprecipitation,immunoblotting,and in vitro kinase assays are described in the Supplemental Information.The phosphorylation substrates (IWS1/WT and IWS1S720A/T721A)were expressed as GST fusions in E.coli,BL21.GSK3a/b was purchased from Cell Signaling Technology.

Real-Time RT-PCR

cDNA was synthesized from1.0m g of Trizol-extracted total cell RNA,using oligo-dT priming and the Retroscript reverse transcription kit from Ambion. Gene expression was quanti?ed by real-time RT-PCR.

Chromatin Immunoprecipitation

ChIP assays,using the Millipore kit(catalog number17-295),were done as described in the Supplemental Information.

Cell Proliferation,Migration,and Invasion Assays

Cell proliferation was monitored with the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Nondirectional migration was measured with the wound-healing assay and directional migration with the transwell?lter assay(Kottakis et al.,2011).In vitro invasion was measured using BD BioCoat Matrigel Invasion Chambers(BD Biosciences).

Tumor Xenografts

Nude mice injected subcutaneously with23106shControl,shIWS1,shIWS1/ WT rescue,or shIWS1mut rescue NCI H1299cells were monitored for a total of 4weeks.

Immunohistochemistry

A human lung tumor tissue array and xenograft tumors were stained with the speci?c anti-phospho-IWS1(Ser720)antibody as described in the Supple-mental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six?gures,?ve tables,and Supplemental Experimental Procedures and can be found with this article at http://dx.doi. org/10.1016/j.molcel.2013.12.018.

ACKNOWLEDGMENTS

We thank numerous colleagues,listed in the Supplemental Experimental Pro-cedures,for providing constructs.Animal experiments were carried out at the Dana-Farber Cancer Institute,the former institutional af?liation of C.P.,M.H., and D.I.We thank the Tufts tumor bank for normal and tumor lung specimens. We also thank James Baleja for interesting discussions;Alexandra Tourouto-glou for assisting in the statistical analysis of the tumor data;and Philip Hinds, Claire Moore,and Kevin Struhl for reviewing the manuscript prior to submis-sion.This work was supported by NIH grant RO1CA57436(to P.N.T.).

P.N.T.wishes to dedicate this article to the memory of his mentor and friend, Dr.Jane F.Desforges,a compassionate physician and outstanding teacher,a legendary?gure in the?eld of academic hematology.Dr.Desforges passed away on September7,2013.

Received:July2,2013

Revised:November2,2013

Accepted:December18,2013

Published:January23,2014

REFERENCES

Bild,A.H.,Yao,G.,Chang,J.T.,Wang,Q.,Potti,A.,Chasse,D.,Joshi,M.B., Harpole,D.,Lancaster,J.M.,Berchuck,A.,et al.(2006).Oncogenic pathway signatures in human cancers as a guide to targeted therapies.Nature439, 353–357.

Cai,Y.,Jin,J.,Tomomori-Sato,C.,Sato,S.,Sorokina,I.,Parmely,T.J., Conaway,R.C.,and Conaway,J.W.(2003).Identi?cation of new subunits of the multiprotein mammalian TRRAP/TIP60-containing histone acetyltransfer-ase complex.J.Biol.Chem.278,42733–42736.

Carstens,R.P.,Wagner,E.J.,and Garcia-Blanco,M.A.(2000).An intronic splicing silencer causes skipping of the IIIb exon of?broblast growth factor receptor2through involvement of polypyrimidine tract binding protein.Mol. Cell.Biol.20,7388–7400.

Carvalho,S.,Raposo,A.C.,Martins,F.B.,Grosso,A.R.,Sridhara,S.C.,Rino, J.,Carmo-Fonseca,M.,and de Almeida,S.F.(2013).Histone methyltransfer-ase SETD2coordinates FACT recruitment with nucleosome dynamics during transcription.Nucleic Acids Res.41,2881–2893.

Chen,M.,and Manley,J.L.(2009).Mechanisms of alternative splicing regula-tion:insights from molecular and genomics approaches.Nat.Rev.Mol.Cell Biol.10,741–754.

Chen,W.S.,Xu,P.Z.,Gottlob,K.,Chen,M.L.,Sokol,K.,Shiyanova,T., Roninson,I.,Weng,W.,Suzuki,R.,Tobe,K.,et al.(2001).Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1gene. Genes Dev.15,2203–2208.

Cho,H.,Mu,J.,Kim,J.K.,Thorvaldsen,J.L.,Chu,Q.,Crenshaw,E.B.,3rd, Kaestner,K.H.,Bartolomei,M.S.,Shulman,G.I.,and Birnbaum,M.J.(2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2(PKB beta).Science292,1728–1731.

Conrad,T.,Cavalli,F.M.,Holz,H.,Hallacli,E.,Kind,J.,Ilik,I.,Vaquerizas,J.M., Luscombe,N.M.,and Akhtar,A.(2012).The MOF chromobarrel domain con-trols genome-wide H4K16acetylation and spreading of the MSL complex. Dev.Cell22,610–624.

Cooper,T.A.,Wan,L.,and Dreyfuss,G.(2009).RNA and disease.Cell136, 777–793.

Duina,A.A.(2011).Histone chaperones Spt6and FACT:similarities and differ-ences in modes of action at transcribed genes.Genet.Res.Int.2011,625210.

Ezell,S.A.,Polytarchou,C.,Hatziapostolou,M.,Guo,A.,Sanidas,I.,Bihani,T., Comb,M.J.,Sourvinos,G.,and Tsichlis,P.N.(2012).The protein kinase Akt1 regulates the interferon response through phosphorylation of the transcrip-tional repressor https://www.360docs.net/doc/ec10469291.html,A109,E613–E621.

Franke,T.F.,Yang,S.I.,Chan,T.O.,Datta,K.,Kazlauskas,A.,Morrison,D.K., Kaplan,D.R.,and Tsichlis,P.N.(1995).The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase.Cell81,727–736.

Gowher,H.,Brick,K.,Camerini-Otero,R.D.,and Felsenfeld,G.(2012).Vezf1 protein binding sites genome-wide are associated with pausing of elongating RNA polymerase https://www.360docs.net/doc/ec10469291.html,A109,2370–2375.

Iliopoulos,D.,Polytarchou,C.,Hatziapostolou,M.,Kottakis,F.,Maroulakou, I.G.,Struhl,K.,and Tsichlis,P.N.(2009).MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells.Sci. Signal.2,ra62.

Kalsotra,A.,and Cooper,T.A.(2011).Functional consequences of develop-mentally regulated alternative splicing.Nat.Rev.Genet.12,715–729.

Kolasinska-Zwierz,P.,Down,T.,Latorre,I.,Liu,T.,Liu,X.S.,and Ahringer,J. (2009).Differential chromatin marking of introns and expressed exons by H3K36me3.Nat.Genet.41,376–381.

Kottakis,F.,Polytarchou,C.,Foltopoulou,P.,Sanidas,I.,Kampranis,S.C., and Tsichlis,P.N.(2011).FGF-2regulates cell proliferation,migration,and angiogenesis through an NDY1/KDM2B-miR-101-EZH2pathway.Mol.Cell 43,285–298.

Krogan,N.J.,Kim,M.,Ahn,S.H.,Zhong,G.,Kobor,M.S.,Cagney,G.,Emili,A., Shilatifard,A.,Buratowski,S.,and Greenblatt,J.F.(2002).RNA polymerase II elongation factors of Saccharomyces cerevisiae:a targeted proteomics approach.Mol.Cell.Biol.22,6979–6992.

Kumar,G.S.,Xie,T.,Zhang,Y.,and Radhakrishnan,I.(2011).Solution struc-ture of the mSin3A PAH2-Pf1SID1complex:a Mad1/Mxd1-like interaction disrupted by MRG15in the Rpd3S/Sin3S complex.J.Mol.Biol.408,987–1000.

Molecular Cell

Chromatin Regulation by Akt and RNA Splicing

Luco,R.F.,Pan,Q.,Tominaga,K.,Blencowe,B.J.,Pereira-Smith,O.M.,and Misteli,T.(2010).Regulation of alternative splicing by histone modi?cations. Science327,996–1000.

Luco,R.F.,Allo,M.,Schor,I.E.,Kornblihtt, A.R.,and Misteli,T.(2011). Epigenetics in alternative pre-mRNA splicing.Cell144,16–26.

Manning,B.D.,and Cantley,L.C.(2007).AKT/PKB signaling:navigating down-stream.Cell129,1261–1274.

Maroulakou,I.G.,Oemler,W.,Naber,S.P.,and Tsichlis,P.N.(2007).Akt1abla-tion inhibits,whereas Akt2ablation accelerates,the development of mammary adenocarcinomas in mouse mammary tumor virus(MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice.Cancer Res.67,167–177.

Miki,T.,Bottaro,D.P.,Fleming,T.P.,Smith,C.L.,Burgess,W.H.,Chan,A.M., and Aaronson,S.A.(1992).Determination of ligand-binding speci?city by alter-native splicing:two distinct growth factor receptors encoded by a single gene. https://www.360docs.net/doc/ec10469291.html,A89,246–250.

Moore,M.J.,and Proudfoot,N.J.(2009).Pre-mRNA processing reaches back to transcription and ahead to translation.Cell136,688–700.

Moshkin,Y.M.,Kan,T.W.,Goodfellow,H.,Bezstarosti,K.,Maeda,R.K., Pilyugin,M.,Karch,F.,Bray,S.J.,Demmers,J.A.,and Verrijzer,C.P.(2009). Histone chaperones ASF1and NAP1differentially modulate removal of active histone marks by LID-RPD3complexes during NOTCH silencing.Mol.Cell35, 782–793.

Orr-Urtreger,A.,Bedford,M.T.,Burakova,T.,Arman,E.,Zimmer,Y.,Yayon, A.,Givol,D.,and Lonai,P.(1993).Developmental localization of the splicing alternatives of?broblast growth factor receptor-2(FGFR2).Dev.Biol.158, 475–486.

Pen?a,A.N.,Tominaga,K.,and Pereira-Smith,O.M.(2011).MRG15activates the cdc2promoter via histone acetylation in human cells.Exp.Cell Res. 317,1534–1540.

Polytarchou,C.,Iliopoulos,D.,Hatziapostolou,M.,Kottakis,F.,Maroulakou,I., Struhl,K.,and Tsichlis,P.N.(2011).Akt2regulates all Akt isoforms and pro-motes resistance to hypoxia through induction of miR-21upon oxygen depri-vation.Cancer Res.71,4720–4731.Thiery,J.P.,and Sleeman,J.P.(2006).Complex networks orchestrate epithe-lial-mesenchymal transitions.Nat.Rev.Mol.Cell Biol.7,131–142. Tschopp,O.,Yang,Z.Z.,Brodbeck, D.,Dummler, B.A.,Hemmings-Mieszczak,M.,Watanabe,T.,Michaelis,T.,Frahm,J.,and Hemmings,B.A. (2005).Essential role of protein kinase B gamma(PKB gamma/Akt3)in post-natal brain development but not in glucose homeostasis.Development132, 2943–2954.

Wan,M.,Leavens,K.F.,Saleh,D.,Easton,R.M.,Guertin,D.A.,Peterson,T.R., Kaestner,K.H.,Sabatini, D.M.,and Birnbaum,M.J.(2011).Postprandial hepatic lipid metabolism requires signaling through Akt2independent of the transcription factors FoxA2,FoxO1,and SREBP1c.Cell Metab.14,516–527. Wang,E.T.,Sandberg,R.,Luo,S.,Khrebtukova,I.,Zhang,L.,Mayr,C., Kingsmore,S.F.,Schroth,G.P.,and Burge,C.B.(2008).Alternative isoform regulation in human tissue transcriptomes.Nature456,470–476. Warzecha,C.C.,Sato,T.K.,Nabet,B.,Hogenesch,J.B.,and Carstens,R.P. (2009).ESRP1and ESRP2are epithelial cell-type-speci?c regulators of FGFR2splicing.Mol.Cell33,591–601.

Xie,L.,Pelz,C.,Wang,W.,Bashar,A.,Varlamova,O.,Shadle,S.,and Impey, S.(2011).KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription.EMBO J.30,1473–1484.

Yoh,S.M.,Cho,H.,Pickle,L.,Evans,R.M.,and Jones,K.A.(2007).The Spt6 SH2domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export.Genes Dev.21,160–174.

Yoh,S.M.,Lucas,J.S.,and Jones,K.A.(2008).The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated his-tone H3K36methylation.Genes Dev.22,3422–3434.

Zhang,P.,Du,J.,Sun,B.,Dong,X.,Xu,G.,Zhou,J.,Huang,Q.,Liu,Q.,Hao, Q.,and Ding,J.(2006).Structure of human MRG15chromo domain and its binding to Lys36-methylated histone H3.Nucleic Acids Res.34,6621–6628. Zhou,Z.,Qiu,J.,Liu,W.,Zhou,Y.,Plocinik,R.M.,Li,H.,Hu,Q.,Ghosh,G., Adams,J.A.,Rosenfeld,M.G.,and Fu,X.D.(2012).The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alterna-tive splicing in the nucleus.Mol.Cell47,422–433.

Molecular Cell Chromatin Regulation by Akt and RNA Splicing

字体读音的辨认

字体读音的辨认 觊觎(读音:jì继yú鱼):非分的希望或企图;例句-亚洲车商“觊觎”美国人才。 耄耋(读音:mào茂di?叠):八九十岁的年龄;饕餮(读音:tāo涛tia帖):古代传说中一种凶恶的兽; 诟(读音:g?u够)耻辱;辱骂:~骂。~病(指责,辱骂)。~谇(辱骂指斥)。~厉。~詈。~辱。囹圄(读音:líng灵yǔ于)古代的监狱;例句:身陷囹圄; 蹇(读音:jiǎn简)人名;正直的样子 桎梏(读音:zhì制gù固)脚镣和手铐,比喻束缚人的东西 攫(读音:ju?绝):掠夺;抓取:~取(掠夺)。~夺。 皈(读音:guī归)原指佛教的入教仪式,后泛指信奉佛教或参加其他宗教组织。皈依佛门 昶(读音:chǎng厂)舒畅,畅通。 谞(读音:xū需)才智;计谋 赍(读音:jī犄)怀着,抱着 儁(读音:jùn俊)才智出众的人 酎(读音:zh?u宙)酎金:古代诸侯给皇帝的贡金,供祭祀之用。 髯(读音:rán然)两腮的胡子 戮(读音:lù录):杀,杀戮 镔(读音:bīn宾)镔铁:精炼的铁 偃(读音:yǎn演)停止;停止:~息。~武修文。仰面倒下,放倒 兖(读音:yǎn演)县名,在山东 桓(读音:huán环)姓 邕(读音:yōng拥)〔~江〕水名,在中国广西壮族自治区;是南宁的简称 蜺(读音:ní尼)寒蝉,寒蝉,一种体形较小的蝉。珪(读音:guī规)同圭,古代帝王诸侯举行仪式时所有的玉器。 藜(读音:lí黎)植物;嫩叶可吃。茎可以做拐杖(亦称“灰条菜”): 顒(读音:y?ng永二音)大,仰慕 颍(读音:yǐng影)颖河,在河南 盱眙(读音:xū需yí怡)县名,在江苏 邳(读音:pī批)邳县,在江苏 鬻(读音:yù驭)卖 喏(读音:nu?懦)叹词 鸾(读音:luán栾)传说中凤凰的一种 槊(读音:shu?硕)矛,古代的一种兵器 鳌(读音:áo獒)传说中的海里面的大鳖傕(读音:qua绝)用于人名 汜(读音:sì四)水名,在河南省 痈(读音:yōng拥)一种毒疮 齑(读音:jī激)捣碎的姜、蒜等的。 擐(读音:huàn换)穿 邙(读音:máng忙)山名,在洛阳北 掾(读音:yuàn愿)古代官署属员的统称 谶(读音:chan趁)迷信的人指将来要应验的预言、预兆 狻猊(读音:suān酸ní霓)传说中的一种猛兽 贲(读音:bēn奔)虎贲:古代称勇士 辔(读音:pai佩)驾驭牲口的嚼子和缰绳 鄠(读音:hù户)户县,在陕西省 隗(读音:kuí奎或wěi委)姓 袅(读音:niǎo鸟)炊烟上升的样子 弑(读音:shì是)古时候指臣杀君、子杀父母的行为 潸(读音:shān珊)流泪的样子 茕(读音:qi?ng穷)没有弟兄 轸(读音:zhěn诊)古代车后面的横木 遽(读音:jù锯)急忙 谯(读音:qiáo桥)谯楼:古代城墙上建筑的楼,可以瞭望 戾(读音:lì利)罪过 馥(读音:fù复)香气 匡(读音:kuāng筐)扶正 玳瑁(读音:dài带mào冒):异种爬行动物,跟龟相似 旄(读音:máo矛)古代用牦牛尾马做成的旗子 钺(读音:yua越)古代的一种兵器,比斧子大些岑(读音:c?n参差的参的读音)小而高的山 搦(读音:nu?懦)挑惹 帻(读音:z?责)古代的一种头巾 酾(读音:shī施)斟酒 飐(读音:zhǎn展)风吹物体使颤动 崤(读音:xiáo淆)山名,在河南省 赀(读音:zī咨)计量(多用于否定);同“资”荥(读音:xíng型)荥阳,地名,在河南省 踅(读音:xu?学)折回 轘(读音:huàn换)古代用车分裂人体的一种酷刑 咥(读音:xī细)大笑 蒯(读音:kuǎi快)姓 谌(读音:ch?n臣)相信 羌(读音:qiāng腔)羌族,少数民族 麴(读音:qū渠)同“曲”

各种字体特点及作用

各种字体特点及作用 方正琥珀简: 字型圆润饱满,新颖活泼,结构错落有序,粗而不重,胖而不臃,适用于书、报、杂志和各类印刷品的标题及装饰用字。 方正胖头鱼简: “胖头鱼”体丰圆柔润,结体端庄,骨络分明,即风格独特,又符合字体构形规律,适合排各类标题及广告设计。方正黄草简: 商品详细信息 虽然是一款草书风格的字体,但尽量保持字体原形,对笔划适当减少,做到易写易识,且融简、繁写法于一体,匠心独具。可用于文章 标题、广告制作、装饰装帧等。 方正报宋简: 笔划纤细,字体清秀工整,结构均匀,印刷效果清晰明快,适用于报 纸、杂志的正文。 方正粗倩简: 精致、华贵、大气、端庄,笔形富于变化,浪漫而又温馨。宜作排版 文章标题,以及一切广告用字。 方正古隶简: 字体神采俊俏,雄浑中流露天真稚拙,典雅中蕴含时代风采,静中寓

动、稳中求险、巧拙相生、变化自然,结体严谨,笔法古朴典雅,又极富装饰意趣。适用于书、报、杂志的各类标题字和装饰、宣传用字。 方正美黑简: 字体修长端正,庄重大方,适于书、报刊的大标题。 方正卡通简: 在字形设计上采用了“黑体”的基本笔形,参以行书的笔意、形态,婉转有度,斜正相倚,于传统美中见时代气息。主要用于“卡通”书和一 些儿童出版物上的新型印刷字体。 方正粗宋简: 粗壮浑厚、庄重严肃,表现力强。宜用于文章、报刊的大标题,也可 作广告用字。 方正康体简: 又称“康有为碑体”,是一款以古贤传统书法艺术为基础的印刷字体,风格上突出“重、拙、大”的特点,流畅洒脱,气势雄健,用于书、报刊印刷以及广告宣传、包装装饰和匾额招牌等效果都很好,横排竖列 俱佳,体现出传统书法艺术韵味。 方正超粗黑简: 字型方正饱满,笔划粗重坚实,壮重醒目,号召力强,适用于报纸及 书籍、画报的标题及宣传用字

如何区别、形声字、象形字、会意字、指事字

象形文字 象形文字(Hieroglyphic)来自于图画文字,是一种最原始的造字方法,图画性质减弱,象征性质增强。因为有些实体事物和抽象事物是画不出来的,它的局限性很大。埃及的象形文字、苏美尔文、古印度文以及中国的甲骨文,都是独立地从原始社会最简单的图画和花纹产生出来的。约5000 年前,古埃及人发明了象形文字。这种字写起来既慢又很难看懂。 会意字 会意是用两个或两个以上的独体字根据意义之间的关系合成一个字,综合表示这些构字成分合成的意义,这种造字法叫会 意。用会意法造出的字是会意字。 类型 异体会意字 用不同的字组成。如“武”,从戈从止。止是趾本字,戈下有脚,表示人拿着武器走,有征伐或显示武力的意思。 同体会意字 用相同的字组成。如“从”字是一个人跟着另一个人向前走,表示跟从。“比”,表示两人接近并立。 简介

指事字 指事字是一种抽象的造字方法,也就是当没有、或不方便用 指事字 具体形象画出来时,就用一种抽象的符号来表示,例如「上」、 下」、「凶」……等等。「上」、「下」两个字是用横线「一」为 界,在横线上用一点或较短的短线指出上方的位置,写成「二」, 也就是「上」字;而在横线下面画符号为「」,则是「下」字。 凶」字是指地上有一个深坑,走路的人没看见而踏空掉进 坑里,「ㄩ」代表深坑,中间的「×」符号就是象征在陷阱里放置 的致命的危险物(交叉而置的箭)。 说文解字》“指事者,视而可识,察而现意,上下是也。” 说文解字》释字9353 个,除了在对“上”、“下”二字诠释 时,明确其为指事外,其他即便是后世公认的指事字,均以象形、 会意例释之,再加上其《叙》中关于指事字之界说,言辞简约, 语焉不详,故导致了古今对指事字结构类型认识上的分歧。如段

各种字体的不同特点

1/宋体:客观、雅致、大 F70DCEC1F6AF7B68A35800C16238E541E455A09B9D3A37E9FB7EA8195AD41CDBAD气、通用。宋体是与印刷术同龄的出版字体,最适用于包括电视字幕在内的任何媒体。当你不知道选择哪种字体的时候,就选择宋体。西方拼音文字印刷体都沿用了中文宋体的韵味并公认为是国际化字体。这种最普通、最平淡的字体其实是最美、最永恒的字体。宋体细分当中书宋和报宋尤为常用,跟拉丁字母的印刷体风格完全一致;大标宋古风犹存,给人古色古香的视觉效果。 2/黑体:厚重、抢眼。多用于 6B58FEB4E5E5A8935AEE649EEB8D718361AE1926B56C094C1A132AB17996BC17D2 标题制作,有强调的效果。但电影、电视唱词字幕字号较小,用宋体有时容易让人看了眼花,用清瘦型的黑体做唱词已被普遍接受。 3/楷体:清秀、平和,带书卷味。它是近、现代印刷品中追求书卷味的产物,多用于启蒙教材。在专业书籍中多用于主观文字当中。唱词制作也可接受。 4/仿宋:权威、古板。是早期中文打字机的专用字体,由于那种打字机多用于国家机关,因此仿宋体至今仍是红头文件的专用字体。印刷品中使用仿宋体给人某种权威的感觉,一般用于观点提示性阐述,电视字幕不多用。 5/圆体:小资、势利、商业味。这种字体最初出现在海外商业场合,也称线性。内地版本的圆体字比较僵硬,缺乏美感,电视屏幕上还经常笔画粘在一起,变成一块一块的,看了费劲,不用也罢。 6/综艺:艺术、专业、现代感。一种设计味较浓的字体,少用可表现一种艺术的时尚,滥用则嫌矫揉造作。 7/魏碑:刚劲、正气、强硬。电视字幕中顶多适用于法律节目的标题制作。喜欢魏碑体的同学最好拿书法作品来欣赏,电视节目还是多表现客观,不宜用魏碑。 8/行楷:粗俗。作为手写文书,行楷本来是最常用,也是最能出彩的字体,但电脑中的行楷字体书法功底欠佳,书法最讲究变化,电脑却同一个字千篇一律,犯了书法的一大忌。行楷在上世纪八九十年代末的报刊标题中风行一时,现在已逐渐被抛弃,降格为县级以下报刊或一些单位内部刊物中使用。电视节目中如果一定要用的话,一个片子最多使用一两个字就够了,用在一句话以上就要考虑会不会影响片子的品味了。 9/隶书:好的书法作品中,隶书含中有露、刚柔并济,是很雅的一种,表现力十分丰富,可惜在中国内地活字印刷年代制造的隶书字圆润有余、力度和变化不足,电脑排版时代的隶书字体完全沿用了那种隶书,后来才出现的毛隶、隶变(小隶)等隶书字体书法韵味有所改进,但仍缺乏变化。不适合大篇幅使用。 10/舒体:软弱、猥琐、轻浮。由于其制作与舒同的书法韵味有很大出入,电脑打出来便过于柔弱,失去了它原有的韧劲,少用为妙。 计算机字库汉字体系风格论 【摘要】汉字,是一个阵容庞大的媒体体系。它的字体字型多种多样,但使用起来往往容易择选不当或陷入盲目。本文以科学的态度和严谨的理论,较系统全面地论述了汉字媒体的字体造型特点与艺术风格。以鲜明的观点和新颖的思路,提出了五种风格体系论,认真强调和积极倡导发挥汉字字体形象艺术感染力的必要性,对正确、全面、合理地使用汉字字体,具有积极意义。 【关键词】字体体系、字体艺术风格(审美特征)、汉字使用

【免费下载】各种字体的不同特点

1/宋体:客观、雅致、大气、通用。宋体是与印刷术同龄的出版字体,最适用于包括电视字幕在内的任何 媒体。当你不知道选择哪种字体的时候,就选择宋体。西方拼音文字印刷体都沿用了中文宋体的韵味并公认为是国际化字体。这种最普通、最平淡的字体其实是最美、最永恒的字体。宋体细分当中书宋和报宋尤为常用,跟拉丁字母的印刷体风格完全一致;大标宋古风犹存,给人古色古香的视觉效果。 2/黑体:厚重、抢眼。多用于标题制作,有强调的效果。但电影、电视唱词字幕字号较小,用宋体有时容 易让人看了眼花,用清瘦型的黑体做唱词已被普遍接受。 3/楷体:清秀、平和,带书卷味。它是近、现代印刷品中追求书卷味的产物,多用于启蒙教材。在专业书 籍中多用于主观文字当中。唱词制作也可接受。 4/仿宋:权威、古板。是早期中文打字机的专用字体,由于那种打字机多用于国家机关,因此仿宋体至今 仍是红头文件的专用字体。印刷品中使用仿宋体给人某种权威的感觉,一般用于观点提示性阐述,电视字幕不多用。 5/圆体:小资、势利、商业味。这种字体最初出现在海外商业场合,也称线性。内地版本的圆体字比较僵硬,缺乏美感,电视屏幕上还经常笔画粘在一起,变成一块一块的,看了费劲,不用也罢。 6/综艺:艺术、专业、现代感。一种设计味较浓的字体,少用可表现一种艺术的时尚,滥用则嫌矫揉造作。 7/魏碑:刚劲、正气、强硬。电视字幕中顶多适用于法律节目的标题制作。喜欢魏碑体的同学最好拿书法 作品来欣赏,电视节目还是多表现客观,不宜用魏碑。 8/行楷:粗俗。作为手写文书,行楷本来是最常用,也是最能出彩的字体,但电脑中的行楷字体书法功底 欠佳,书法最讲究变化,电脑却同一个字千篇一律,犯了书法的一大忌。行楷在上世纪八九十年代末的报刊标题中风行一时,现在已逐渐被抛弃,降格为县级以下报刊或一些单位内部刊物中使用。电视节目中如果一定要用的话,一个片子最多使用一两个字就够了,用在一句话以上就要考虑会不会影响片子的品味了。 9/隶书:好的书法作品中,隶书含中有露、刚柔并济,是很雅的一种,表现力十分丰富,可惜在中国内地 活字印刷年代制造的隶书字圆润有余、力度和变化不足,电脑排版时代的隶书字体完全沿用了那种隶书,后来才出现的毛隶、隶变(小隶)等隶书字体书法韵味有所改进,但仍缺乏变化。不适合大篇幅使用。 10/舒体:软弱、猥琐、轻浮。由于其制作与舒同的书法韵味有很大出入,电脑打出来便过于柔弱,失去 了它原有的韧劲,少用为妙。 计算机字库汉字体系风格论 【摘要】汉字,是一个阵容庞大的媒体体系。它的字体字型多种多样,但使用起来往往容易择选不当或陷入盲目。本文以科学的态度和严谨的理论,较系统全面地论述了汉字媒体的字体造型特点与艺术风格。以鲜明的观点和新颖的思路,提出了五种风格体系论,认真强调和积极倡导发挥汉字字体形象艺术感染力的必要性,对正确、全面、合理地使用汉字字体,具有积极意义。 【关键词】字体体系、字体艺术风格(审美特征)、汉字使用

宋体、仿宋体、楷体字的辨认

一、仿宋体 仿宋体是一种采用宋体结构、楷书笔画的较为清秀挺拔的字体,笔画横竖粗细均匀,常用于排印副标题、诗词短文、批注、引文等,在一些读物中也用来排印正文部分。 仿宋体的书写比宋体和黑体都方便快捷,因为只要计算好字格就可以用钢笔或毛笔(需用较硬的狼毫笔)直接书写。另一方面,仿宋体注重结构造型,与楷书比较接近,多练习仿宋体有利于准确地掌握汉字的基本结构,在此基础上再学习其它美术字体就更为方便快速。因而,有的同志主张学习美术字先从学习仿宋体开始,这也是很有道理的。 仿宋体是由楷体发展演变而来,我国宋代经济有了一定的发展,我们的祖先首先发明了印刷术。为适应雕版印刷的需要,刻工们要求有一种比楷书更为整齐规范的字体,他们经过不断探索,创造了一种横平竖直,较为规范的雕版字体它很接近楷体,横坚笔画也没有太大的差别。到了明代,这种雕版字体发展得更为规范,成为横轻竖重,略带棱角的字体,后人称之为老宋体。二十世纪初,钱塘丁辅之,丁善之等人集宋代刻本字体,仿刻了一种印刷活字字体,这种字体横竖粗细相等,笔画秀丽,字形呈长方(上下比左右长),清秀美观。 二、宋体 宋体,是为适应印刷术而出现的一种汉字字体。笔画有粗细变化,而且一般是横细竖粗,末端有装饰部分(即「字脚」或「衬线」),点、撇、捺、钩等笔画有尖端,属于衬线字体(serif),常用于书籍、杂志、报纸印刷的正文排版。 宋朝文化兴盛,印刷业有了巨大发展,从南宋时期,在临安等地的印刷作坊里就开始出现了类似印刷体的字体,后世称之为仿宋体。明朝时期,文人追捧宋刻本书籍,于是刻匠们加粗仿宋体的竖线和壁画的端点以抵抗刻版磨损,却依旧称之"宋体"。现代的所谓宋体基本上就是这样成型的。 宋体是中国明代木版印刷中出现的字体。最初是在复刻临安书棚本时将笔划加以直线化,呈现出硬朗表情的一种字体。嘉靖三十二(1553年)刊刻的《墨子》中宋体的基础已经成型。明朝后期的万历年间刊本数量急速增加,促进了书籍制作的分工化。[1] 清人蒲松龄说:「隆、万时有书工专写肤郭字样,谓之宋体。刊本有宋体字,盖盼于此」。钱泳则云:「有明中叶写书匠改为方笔,非颜非欧,已不成字」。钱大镛的《明文在》凡例中有言:「古书俱系能书之士,各随其字体书之,无所谓『宋字』也,明季始有书工,专写肤廓字样谓之宋体」。由清人的言语可知宋体字并非源于宋代

如何区别、形声字、象形字、会意字、指事字知识讲解

如何区别、形声字、象形字、会意字、指 事字

象形文字 象形文字(Hieroglyphic)来自于图画文字,是一种最原始的造字方法,图画性质减弱,象征性质增强。因为有些实体事物和抽象事物是画不出来的,它的局限性很大。埃及的象形文字、苏美尔文、古印度文以及中国的甲骨文,都是独立地从原始社会最简单的图画和花纹产生出来的。约5000年前,古埃及人发明了象形文字。这种字写起来既慢又很难看懂。 会意字 会意是用两个或两个以上的独体字根据意义之间的关系合成一个字,综合表示这些构字成分合成的意义,这种造字法叫会意。用会意法造出的字是会意字。 类型 异体会意字 用不同的字组成。如“武”,从戈从止。止是趾本字,戈下有脚,表示人拿着武器走,有征伐或显示武力的意思。 同体会意字 用相同的字组成。如“从”字是一个人跟着另一个人向前走,表示跟从。“比”,表示两人接近并立。 简介

指事字 指事字是一种抽象的造字方法,也就是当没有、或不方便用 指事字 具体形象画出来时,就用一种抽象的符号来表示,例如「上」、「下」、「凶」……等等。「上」、「下」两个字是用横线「一」为界,在横线上用一点或较短的短线指出上方的位置,写成「二」,也就是「上」字;而在横线下面画符号为「」,则是「下」字。 「凶」字是指地上有一个深坑,走路的人没看见而踏空掉进坑里,「ㄩ」代表深坑,中间的「×」符号就是象征在陷阱里放置的致命的危险物(交叉而置的箭)。 《说文解字》“指事者,视而可识,察而现意,上下是也。” 《说文解字》释字 9353个,除了在对“上”、“下”二字诠释时,明确其为指事外,其他即便是后世公认的指事字,均以象形、会意例释之,再加上其《叙》中关于指事字之界说,言辞简约,语焉不详,故导致了古今对指事字结构类型认识上的分歧。如段玉裁《说文解字·叙》注云:“指事之别与

各种字体特点

小篆 小篆又名秦篆,指秦始皇帝统一文字所用的书体,汉代沿用。后世称篆书,一般皆指小篆 文字已规范化,偏旁都有固定的形式和位置,形体竖长方,其空虚不足之处尽量用笔画填满 这也是我国历史上第一次运用行政手段大规模地规范文字的产物。秦王朝使用经过整理的小篆统一全国文字,不但基本上消灭了各地文字异行的现象,也使古文字体异众多的情况有了很大的改变,在中国文字发展史上有著重要的角色。 除了小篆,包含甲骨文、金文,被统称为中国字的古文字 隶书 隶书也叫“隶字”、“古书”。是在篆书基础上,为适应书写便捷的需要产生的字体。就小篆加以简化,又把小篆匀圆的线条变成平直方正的笔画,便于书写。分“秦隶”(也叫“古隶”)和“汉隶”(也叫“今隶”),隶书的出现,是古代文字与书法的一大变革。 隶书是汉字中常见的一种庄重的字体,书写效果略微宽扁,横画长而直画短,讲究“蚕头雁尾”、“一波三折”。它起源于秦朝,在东汉时期达到顶峰,书法界有“汉隶唐楷”之称。也有说法称隶书起源于战国时期。 草书 草书的特点是“缩减笔画、多加萦带、笔断意连,自然天成。书的特点是“缩减笔画、多加萦带、笔断意连,自然天成。 形成于汉代,是为书写简便在隶书基础上演变出来的。有章草、今草、狂草之分。 行书 行书在楷书的基础上产生,是介于楷书、草书之间的一种字体,是为了弥补楷书的书写速度太慢和草书的难于辨认而产生。“行”是“行走”的意思,因此它不像草书那样潦草,也不像楷书那样端正。实质上它是楷书的草化或草书的楷化。楷法多于草法的叫“行楷”,草法多于楷法的叫“行草”。 ?十九世纪末,学者们发现并认识了甲骨文。甲骨文的发现,象璀璨的群星,把学者们目光集聚到了甲骨文的研究方面来。这种古老而系统的文字,与埃及的纸草文字、巴比伦的楔形文字和印度的哈拉伯文字并称为世界四大文字体系。 甲骨文经过搜集、整理之后,在罗振玉、王国维的大力宣传与精心研究下,一时成为国内外学术界高度重视的学问。 在罗、王的极力倡导下,逐渐成长起来以甲骨文来研究中国古代文化的甲骨学派。甲骨学的发展与深入,为中国古代史的研究奠定了基础。 关于甲骨文的发现最为流行的说法

各种字体的不同特点

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 各种字体的不同特点 1/宋体: 客观、雅致、大气、通用。 宋体是与印刷术同龄的出版字体,最适用于包括电视字幕在内的任何媒体。 当你不知道选择哪种字体的时候,就选择宋体。 西方拼音文字印刷体都沿用了中文宋体的韵味并公认为是国际化字体。 这种最普通、最平淡的字体其实是最美、最永恒的字体。 宋体细分当中书宋和报宋尤为常用,跟拉丁字母的印刷体风格完全一致;大标宋古风犹存,给人古色古香的视觉效果。 2/黑体: 厚重、抢眼。 多用于标题制作,有强调的效果。 吨但电影、电视唱词字幕字号吨较小,用宋体有时容易让人吨看了眼花,用清瘦型的黑体吨做唱词已被普遍接受。 3 吨 /楷体: 清秀、平和,带书吨卷味。 它是近、现代印刷品吨中追求书卷味的产物,多用吨于启蒙教材。 在专业书籍中吨多用于主观文字当中。 1 / 15

唱词吨制作也可接受。 4/仿宋吨: 权威、古板。 是早期中文吨打字机的专用字体,由于那吨种打字机多用于国家机关,吨因此仿宋体至今仍是红头文吨件的专用字体。 印刷品中使吨用仿宋体给人某种权威的感吨觉,一般用于观点提示性阐吨述,电视字幕不多用。 5 吨 /圆体: 小资、势利、商业吨味。 这种字体最初出现在海吨外商业场合,也称线性。 内吨地版本的圆体字比较僵硬,吨缺乏美感,电视屏幕上还经吨常笔画粘在一起,变成一块吨一块的,看了费劲,不用也吨罢。 6/综艺: 艺术、专吨业、现代感。 一种设计味较吨浓的字体,少用可表现一种吨艺术的时尚,滥用则嫌矫揉吨造作。 7/魏碑: 刚劲、吨正气、强硬。 电视字幕中顶吨多适用于法律节目的标题制吨作。 喜欢魏碑体的同学最好吨拿书法作品来欣赏,电视节吨目还是多表现客观,不宜用吨魏碑。

常用会意字辨认

常用会意字辨认: 有趣的会意字1 出: 出去一看,山外有山。尖: 上小下大,形似山尖。采: 手在树上,采摘东西。众: 三人团结,众志成城。尘: 小土为尘,尘土飞扬。裕: 有衣有谷,富裕之家。掰: 用手分物,掰为两截。功: 出工有力,就会成功。明:日月齐照,大放光明。休: 一人倚树,立足休息。林: 乔木丛生,成为树林。艳: 色彩丰富,鲜艳美丽。灾: 室中失火,酿成火灾。苗: 田间长草,植物幼苗。泪:眼睛流水,泪水汪汪。歪: 不端不正,东倒西歪。 会意字是由两个或两个以上的独体字组合在一起,产生一个具有新意义的 字。下面举一些例字,让大家读一读,想一想。 尖,上小下大,形成尖形;尘,细小的土形成尘埃;劣,少出力,偷工造成劣品;夯,大力,打地基、筑堤坝夯土都要用大力气。这些字的字义一想便知,很有道理。 吠,犬叫;咩,羊叫;鸣,鸟叫。用“口”与不同的动物组合,以表示它们的叫声,多么巧妙。 岩,山石;嵩,山高;岐,山的分支;岚,山风、山雾。用“山”与不同的字组合,构成不同意义的字。 仙,山中隐居的人;佃,田中耕作的人;休,靠着树歇息的人;伐,拿斧头砍树的人;戎,扛着武器守卫边疆的人。用“人”与其他字组合,构成字义比较抽象的字。 信,人言,一个人说话要讲诚信,不骗人;诬,巫言,巫婆说的话都是骗人的,怎么能相信呢?这些字都含有做人的道德规范。 最有趣的要推“忐忑”二字了,心上上下下,表示心神不定的意思,正像俗话所说:心

里像十五只吊桶七上八下的。 有趣的会意字2 汉字有四种造字方法。一是象形,画出实物的形状,如“人”字和“木”字。二是指事,少数指事字只用符号,如“一”字和“五”字。多数指事字是在象形字上加符号,如“本”字,是在“木”字下边加上符号“-”表示“根”的意思;“刃”字,是在“刀” 字上加一个“、”,表示刀“刃”的意思。三是会意,由两个或两个以上的象形字、指事字合成一个新的意思。四是形声,由“形旁”声“旁”构成。如木材的“材”,“木” 是形旁,表示这个字和“木”字有关;“才”是声旁,表示这个字的读音。汉字大多数是形声字。会意字比形声字少,但比象形字、指事字多。 会意字十分有趣。比如,“家”字上边的“宀”是屋子,下边的“豕”是猪,古时候人们家中大都养猪,所以就用“宀”下有“豕”表示“家”。“看”字是把手搭在目(眼睛)的上边,向远处望。“明”字由“日”和“月”组成,表示明亮。“好”字本来是“美” 的意思,由“女”子“”组成。“男”由“田”力“”组成,表示男人,因为过去男人主要在田里劳动。“休”由“人”木“”组成,一个人靠着树,表示休息。另外,还有“不”正“” 组成“歪”字,“小”土“”组成“尘”字,“两”人“”组成“俩”字,等等。 有一些会意字是用相同的字组成的。如林、森、晶、双、多、炎、品。两个“木”组成“林”字,表示树林;三个“木”组成“森”字,表示树多。“从”字是一个人跟着另一个人向前走,表示跟从。“晶”由三个“日”组成,和“明”一样,都表示明亮。 从字形上了解会意字的意思,很像猜字谜。下边三个会意字表示什么意思,请你猜一猜:众、仨、苗。 有趣的会意字 双木并生为林三人相聚为众江边落鸟为鸿

各种字体的不同特点1

各种字体的不同特点 1/宋体:客观、雅致、大气、通用。宋体是与印刷术同龄的出版字体,最适用于包括电视字幕在内的任何媒体。当你不知道选择哪种字体的时候,就选择宋体。西方拼音文字印刷体都沿用了中文宋体的韵味并公认为是国际化字体。这种最普通、最平淡的字体其实是最美、最永恒的字体。宋体细分当中书宋和报宋尤为常用,跟拉丁字母的印刷体风格完全一致;大标宋古风犹存,给人古色古香的视觉效果。 2/黑体:厚重、抢眼。多用于标题制作,有强调的效果。但电影、电视唱词字幕字号较小,用宋体有时容易让人看了眼花,用清瘦型的黑体做唱词已被普遍接受。 3/楷体:清秀、平和,带书卷味。它是近、现代印刷品中追求书卷味的产物,多用于启蒙教材。在专业书籍中多用于主观文字当中。唱词制作也可接受。 4/仿宋:权威、古板。是早期中文打字机的专用字体,由于那种打字机多用于国家机关,因此仿宋体至今仍是红头文件的专用字体。印刷品中使用仿宋体给人某种权威的感觉,一般用于观点提示性阐述,电视字幕不多用。 5/圆体:小资、势利、商业味。这种字体最初出现在海外商业场合,也称线性。内地版本的圆体字比较僵硬,缺乏美感,电视屏幕上还经常笔画粘在一起,变成一块一块的,看了费劲,不用也罢。 6/综艺:艺术、专业、现代感。一种设计味较浓的字体,少用可表现一种艺术的时尚,滥用则嫌矫揉造作。 7/魏碑:刚劲、正气、强硬。电视字幕中顶多适用于法律节目的标题制作。喜欢魏碑体的同学最好拿书法作品来欣赏,电视节目还是多表现客观,不宜用魏碑。 8/行楷:粗俗。作为手写文书,行楷本来是最常用,也是最能出彩的字体,但电脑中的行楷字体书法功底欠佳,书法最讲究变化,电脑却同一个字千篇一律,犯了书法的一大忌。行楷在上世纪八九十年代末的报刊标题中风行一时,现在已逐渐被抛弃,降格为县级以下报刊或一些单位内部刊物中使用。电视节目中如果一定要用的话,一个片子最多使用一两个字就够了,用在一句话以上就要考虑会不会影响片子的品味了。

各种字体特点及作用

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 各种字体特点及作用 方正琥珀简: 字型圆润饱满,新颖活泼,结构错落有序,粗而不重,胖而不臃,适用于书、报、杂志和各类印刷品的标题及装饰用字。 方正胖头鱼简: “胖头鱼”体丰圆柔润,结体端庄,骨络分明,即风格独特,又符合字体构形规律,适合排各类标题及广告设计。方正黄草简: 商品详细信息 虽然是一款草书风格的字体,但尽量保持字体原形,对笔划适当减少,做到易写易识,且融简、繁写法于一体,匠心独具。可用于文章标题、广告制作、装饰装帧等。 方正报宋简: 笔划纤细,字体清秀工整,结构均匀,印刷效果清晰明快,适用 于报纸、杂志的正文。

方正粗倩简: 精致、华贵、大气、端庄,笔形富于变化,浪漫而又温馨。宜作排版文章标题,以及一切广告用字。 方正古隶简: 字体神采俊俏,雄浑中流露天真稚拙,典雅中蕴含时代风采,静中寓动、稳中求险、巧拙相生、变化自然,结体严谨,笔法古朴典雅,又极富装饰意趣。适用于书、报、杂志的各类标题字和装 饰、宣传用字。 方正美黑简: 字体修长端正,庄重大方,适于书、报刊的大标题。 方正卡通简: 在字形设计上采用了“黑体”的基本笔形,参以行书的笔意、形态,婉转有度,斜正相倚,于传统美中见时代气息。主要用于“卡通” 书和一些儿童出版物上的新型印刷字体。 方正粗宋简: 粗壮浑厚、庄重严肃,表现力强。宜用于文章、报刊的大标题, 也可作广告用字。 方正康体简: 又称“康有为碑体”,是一款以古贤传统书法艺术为基础的印刷字体,风格上突出“重、拙、大”的特点,流畅洒脱,气势雄健,用

于书、报刊印刷以及广告宣传、包装装饰和匾额招牌等效果都很好,横排竖列俱佳,体现出传统书法艺术韵味。 方正超粗黑简: 字型方正饱满,笔划粗重坚实,壮重醒目,号召力强,适用于报纸及书籍、画报的标题及宣传用字

欧颜柳三种字体区别

转自:知乎——田吉顺《不懂书法的人怎样判断一张书页的字体是欧阳询、颜真卿还是柳公权的?》 欧颜柳三种字体还是很好辨认的,完全可以零基础区分。但是要区分欧阳询和虞世南,或者区分苏东坡和黄庭坚,相对就需要点基础,好在问题只是区分欧颜柳,那么就说点窍门。 先来个大体印象: 这是欧阳询: 这是颜真卿:

这是柳公权: 历代关于这三个人字体的评价有很多,这里就不多引用了,主要说些窍门。 先说笔画。 从左向右依次为欧颜柳的“点”。典型的欧体的点,有点像个钝角三角形;颜体的点像个半圆,上半部的圆弧很圆滑;柳体的点则是个类似梯形的四边形,上半部有角有楞。

再看横划的不同。典型欧体横划,起笔是大约45°倾斜,然后很缓的过渡;颜体起笔也是倾斜,45°或者更小角度,而且非常突然的过渡,就是起笔比较重,中间行笔的时候突然变细,过渡比较突然;柳体的起笔几乎是直的,像刀切的一样90°,行笔过渡也很缓。最终落笔的地方,欧体横划也很缓,成一个圆弧头;颜体顿的很重,都向下耷拉了,不过是个圆弧疙瘩;柳体落笔也重,也是个疙瘩,但是有角有楞,它的起笔和落笔都像是刀切出来的。 再说钩的不同。欧体的钩很有特点,就是含羞带臊,欲出还羞的感觉,钩出来的很小,很克制;颜体就是一个粗壮树干上的一个小细枝桠;而柳体的钩是最奔放的,形成一个很锐利的

等腰直角三角形。 再看捺的不同。欧体的捺脚是最平滑的,而且开头细最后粗的很明显;颜体捺脚有个窝,最不平坦,像是一个脚心;柳体也不平坦,但是脚心的凹度比颜体小,而且上细下粗的不明显,粗细比较一致。 竖划的对比。欧体的起笔是45°斜入,边角锐利;颜体也是45°斜入,但是圆滑,是个圆头;柳体竖的起笔是个棱形,像是个鸟嘴样。三者区别很明显。 再说说一些典型的结构不同。颜体的横细竖粗非常典型,某些偏旁的特点也很分明。

各种字体

各种字体: 1甲骨文 秦统一文字前,中国的汉字,不论从字体、应用角度而言,还是混乱的。古文广义而言,其包括大篆在内的小篆以前的文字;狭义的讲,指中国文字史上大篆以前的文字。这里采用狭义的古文概念。古文包含甲骨文与金文;其中,前者被人们视为中国最早的定型文字。 甲骨文字:为商朝后期用写或刻的方式,在龟甲、兽骨上所留下的文字,其内容多为"卜辞",也有少数为"记事辞"。甲骨文大部分符合象形、会意的造字原则,形声字只占20%。其文字有刀刻的,有的填满朱砂,也有直接朱书墨书的。因文字多为图画文字中演变而成的,象形程度高,且一字多体,笔画不定。这说明中国的文字在殷商时期尚未统一。

殷代图像金文: 先秦称铜为金,故铸刻在青铜器上的文字叫做金文,又叫钟鼎文、彝器款识。与甲骨文相比,金文象形程度更高,显示了更古的文字面貌。金文填实的写法,使形象生动逼真,浑厚自然。 甲骨文是商代书写的俗体,金文才是正体,显示了正体多繁,俗体趋简的印迹(如表二)。 (表二:甲骨、金文对照表) 甲骨文因多为刀刻在龟甲兽骨上,故其文字带有坚硬的笔法(如图3)。这种如刀刻的笔法,亦有被运用在现代平面设计上(如图4)。

2大篆 在中国文字史上,夏、商、周三代,就其对文字学的贡献而言,以史籀为最。史籀是周宣王的史官,他别创新体,以趋简便。大篆又有籀文、籀篆、籀书、史书之称。因其为史籀所作,故世称"籀文"。大篆散见于《说文解字》和后人所收集的各种钟鼎彝器中。其中以周宣王时所作石鼓文最为著名。 3小篆 小篆又名秦篆,为秦朝丞相李斯等人所整理出的标准字体。由大篆简化而成。又名玉筋篆,因其具有笔力遒劲之意。小篆之形体结构规正协调,笔势匀圆整齐,

各种字体介绍

草书:特点是结构简省、笔画连绵。形成于汉代,是为书写简便在隶书基础上演变出来的。有章草、今草、狂草之分。 隶书,亦称汉隶,是汉字中常见的一种庄重的字体,书写效果略微宽扁,横画长而直画短,呈长方形状,讲究“蚕头雁尾”、“一波三折”。隶书起源于秦朝,由程邈形理而成,在东汉时期达到顶峰,书法界有“汉隶唐楷”之称。行书是在楷书的基础上发展起源的,介于楷书、草书之间的一种字体,是为了弥补楷书的书写速度太慢和草书的难于辨认而产生的。“行”是“行走”的意思,因此它不像草书那样潦草,也不像楷书那样端正。实质上它是楷书的草化或草书的楷化。楷法多于草法的叫“行楷”,草法多于楷法的叫“行草”。 楷书,又称正楷、楷体、正书或真书,是汉字书法中常见的一种字体。其字形较为正方,不像隶书写成扁形。楷书仍是现代汉字手写体的参考标准,也发展出另一种手写体——钢笔字。 篆书是大篆、小篆的统称。大篆指甲骨文、金文、籀文、六国文字,它们保存着古代象形文字的明显特点。小篆也称“秦篆”,是秦国的通用文字,大篆的简化字体,其特点是形体匀逼齐整、字体较籀文容易书写。在汉文字发展史上,它是大篆由隶、楷之间的过渡。 黑体字又称方体或等线体,没有衬线装饰,字形端庄,笔画横平竖直,笔迹全部一样粗细。汉字的黑体是在现代印刷术传入东方后依据西文无衬线体中的黑体所创造的。由于汉字笔划多,小字黑体清晰度较差,所以一开始主要用于文章标题。但随著制字技术的精进,已有许多适用于正文的黑体字型。在中文中,没有衬线的字体通常称为黑体,这时这个词的范畴和无衬线字体(Sans-serif)是类似的。所以在中文字体中常用“黑体”,在西文中常用“无衬线体”的称呼。而宋体就可以被称作衬线字体。“黑体”在日文中被称为Goshikku-tai(直译即“哥特体”)。 宋体,是在中国宋朝发明的一种汉字印刷字体。笔画有粗细变化,而且一般是横细竖粗,末端有装饰部分(即“字脚”或“衬线”),点、撇、捺、钩等笔画有尖端,属于白体,常用于书籍、杂志、报纸印刷的正文排版。因从明朝传入日本,而又称为明体、明朝体。 篆书草书行书隶书 楷书宋体黑体

如何正确无误的区分形声字

如何正确无误的区分形声字? 汉字是形、音、义的结合体。从形体看,汉字可以分为两大类,一类是独体字,一类是合体字。 独体字就是只有一个组成部分的字,像“人、手、口、目、日、月、山、水”等。合体字则是由两个或两个以上的部分组合而成的,像“江、打、花、晨、闻、圆。梦、辫”等。大部分合体字都属于形声字。据统计,现代汉字中有90%都属于形声字。 组成形声字的两个部分,一部分表示字的意义,叫形旁(也叫义符);另一个部分表示字的读音,叫声旁(也叫音符)。同一个形旁和不同的声旁结合,可以构成许多意义相关的字。例如用“木”作形旁,可以组成“桃、梅、梨、枝、株、棵”等与树木有关的形声字。同一个声旁和不同的形旁结合,又可以构成许多声音相同或相近而意义不同的字,例如用“冈”做声旁,可以组成“刚、钢、纲”等读gāng的形声字。 形声字的形旁和声旁结合的方式是多种多样的:有的形旁在左,声旁在右;有的形旁在右,声旁在左;有的形旁在上,声旁在下;有的形旁在下,声旁在上;有的形旁在外,声旁在内,或者形旁在内,声旁在外。例如: 左形右声:材偏铜冻证骑秧破 右形左声:攻颈削瓢放鹉雌故 上形下声:管露爸芳崖宵界字

下形上声:架案慈斧贡膏凳赏 外形内声:固病庭阀园匾裹衷 内形外声:闷问闻辫 懂得形声字的特点,可以帮助我们识记汉字。汉字的结构比较复杂,有些字的笔画很多,一笔一画地记很困难。如果是形声字,只要知道它是由什么形旁和什么声旁组成的,记起来就方便多了。比如“鱼鳞”的“鳞”字,只要记住是由形旁“鱼”和声 旁“辩”组成的,掌握起来就容易多了。因此,用形声法简化出来的简化字受到普遍欢迎。如“娜、腥、诺、肉、盏”等繁体字,笔画大多,又不起标音作用,简化成“邮、胶、惊、肤、护”等形声字,大家便于记忆,乐于使用。 学习形声字,还可以利用形旁和声旁辨别一些形似字和同音字,避免写成别字,比如“货物”的“货”和“贷款”的“贷”,它们都是上声下形结构,形旁又都是“贝”,但二者的声旁不同,因此读音也不一样。这样就可以利用声旁把两个字区别开来,而不至于把“贷款”写成“货款”,或把“货物”写成“贷物”了。又比如“根”和“跟”是同音字,声旁都是“良”。但“根”的形旁是“本”,表示这个字的意义与植物有关;“跟”的形旁是“足”,表示这个字的意义与脚或脚的动作有关。利用这两个字的形旁可以区别它们的意义,而不至于把“根本”写成“跟本”,或把“跟随”写成“根随”。

各种字体特点及作用完整版

各种字体特点及作用标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

各种字体特点及作用 方正琥珀简: 字型圆润饱满,新颖活泼,结构错落有序,粗而不重,胖而不臃,适用于书、报、杂志和各类印刷品的标题及装饰用字。 方正胖头鱼简: “胖头鱼”体丰圆柔润,结体端庄,骨络分明,即风格独特,又符合字体构形规律,适合排各类标题及广告设计。方正黄草简: 商品详细信息 虽然是一款草书风格的字体,但尽量保持字体原形,对笔划适当减少,做到易写易识,且融简、繁写法于一体,匠心独具。可用于文章标题、广告制 作、装饰装帧等。 方正报宋简:笔划纤细,字体清秀工整,结构均匀,印刷效果清晰明快,适用 于报纸、杂志的正文。 方正粗倩简:精致、华贵、大气、端庄,笔形富于变化,浪漫而又温馨。宜作 排版文章标题,以及一切广告用字。 方正古隶简:字体神采俊俏,雄浑中流露天真稚拙,典雅中蕴含时代风采,静中寓动、稳中求险、巧拙相生、变化自然,结体严谨,笔法古朴典雅,又极富装饰意趣。适用于书、 报、杂志的各类标题字和装饰、宣传用字。 方正美黑简:字体修长端正,庄重大方,适于书、报刊的大标题。

方正卡通简:在字形设计上采用了“黑体”的基本笔形,参以行书的笔意、形态,婉转有度,斜正相倚,于传统美中见时代气息。主要用于“卡通”书和一些儿童出版物上的新型 印刷字体。 方正粗宋简: 粗壮浑厚、庄重严肃,表现力强。宜用于文章、报刊的大标题,也可作广告用字。 方正康体简:又称“康有为碑体”,是一款以古贤传统书法艺术为基础的印刷字体,风格上突出“重、拙、大”的特点,流畅洒脱,气势雄健,用于书、报刊印刷以及广告宣传、包装装饰和匾额招牌等效果都很好,横排竖列俱佳,体现出传统书法艺术韵味。 方正超粗黑简:字型方正饱满,笔划粗重坚实,壮重醒目,号召力强,适用于报纸及书 籍、画报的标题及宣传用字

各种字体特点与作用

各种字体特点及作用 方正琥珀简 : 字型圆润饱满,新颖活泼,结构错落有序,粗而不重,胖而不臃,适用于书、报、杂志和各类印刷品的标题及装饰用字。 方正胖头鱼简 : “胖头鱼”体丰圆柔润,结体端庄,骨络分明,即风格独特,又符合字体构形规律,适合排各类标题及广告设计。方正黄草简 : 商品详细信息 虽然是一款草书风格的字体,但尽量保持字体原形,对笔划适当减少,做到易写易识,且融简、繁写法于一体,匠心独具。可用于文章标题、 广告制作、装饰装帧等。 方正报宋简 : 笔划纤细,字体清秀工整,结构均匀,印刷效果清晰明快,适用于 报纸、杂志的正文。 方正粗倩简 : 精致、华贵、大气、端庄,笔形富于变化,浪漫而又温馨。宜作排版 文章标题,以及一切广告用字。 方正古隶简 : 字体神采俊俏,雄浑中流露天真稚拙,典雅中蕴含时代风采,静中寓

动、稳中求险、巧拙相生、变化自然,结体严谨,笔法古朴典雅,又 极富装饰意趣。适用于书、报、杂志的各类标题字和装饰、宣传用字。 方正美黑简 : 字体修长端正,庄重大方,适于书、报刊的大标题。 方正卡通简 : 在字形设计上采用了“黑体”的基本笔形,参以行书的笔意、形态,婉转有度,斜正相倚,于传统美中见时代气息。主要用于“卡通”书和一 些儿童出版物上的新型印刷字体。 方正粗宋简 : 粗壮浑厚、庄重严肃,表现力强。宜用于文章、报刊的大标题,也 可作广告用字。 方正康体简 : 又称“康有为碑体”,是一款以古贤传统书法艺术为基础的印刷字体,风格上突出“重、拙、大”的特点,流畅洒脱,气势雄健,用 于书、报刊印刷以及广告宣传、包装装饰和匾额招牌等效果都很好,横排竖列俱佳 ,体现出传统书法艺术韵味。 方正超粗黑简 : 字型方正饱满,笔划粗重坚实,壮重醒目,号召力强,适用于报纸及 书籍、画报的标题及宣传用字

相关文档
最新文档