木质纤维素生物降解机理

木质纤维素生物降解机理
木质纤维素生物降解机理

木质纤维素预处理技术研究进展

木质纤维素预处理技术研究进展 朱跃钊1,卢定强2,万红贵2,贾红华2 Ξ (1 南京工业大学 机械与动力工程学院,南京 210009;2 南京工业大学 制药与生命科学学院,南京 210009) 摘 要:详细评述了木质纤维素的预处理工艺研究进展,特别是浓酸低温水解-酸回收工艺、稀酸二阶段水解工艺、金属离子在稀酸水解过程中的助催化作用以及水蒸汽爆裂、氨纤维爆裂、C O 2爆裂、酶催化水解等方法的研究进展情况。木质纤维素原料预处理技术发展为发酵生产乙醇技术的研究开发奠定了坚实基础。关键词:木质纤维素;乙醇;水解;发酵 中图分类号: Q539+13 文献标识码:A 文章编号:167223678(2004)0420011206 Progresses on treatment of lignocellulosic material ZHU Y ue 2zhao 1,LU Ding 2qiang 2,WAN H ong 2gui 2,J I A H ong 2hua 2 (1 C ollege of Mechanical and P ower Engineering ,Nanjing University of T echnology ,Nanjing 210009,China ; 2 C ollege of Life Science and Pharmacy ,Nanjing University of T echnology ,Nanjing 210009,China )Abstract :Progress of study on technology of pre 2treatment of lignocellulose is reviewed in this paper.With the exhaustion of oil and rising price of oil ,studies on ethanol production from lignocellulosic material were attra 2tive 1Cellulose and hemicellulose in lignocellulosic material can be converted to sugar via s ome suitable treat 2ments ,and then can be used in the production of ethanol by fermentation further 1The progresses on technology of pre 2treatment of lignocellulosic material were reviewed and commented ,especially the hydrolysis processes via concentrated acid ,tw o 2stage diluted acid ,and catalysis of metal ion in diluted acid 1Several different pre 2treatment methods for cellulase hydrolysis ,such as steam explosion ,aminonia fiber explosion ,C O 2explosion ,acid treatment and enzymatic hydrolysis method ,were reviewed 1The advanced pre 2treatments of lignocellulosic material has laid a concrete basis for ethanol production at a large commercial scale 1K ey w ords :lignocellulose ;ethanol ;hydrolysis ;fermentation 随着现代工业的发展和世界人口的激增,能源危机日趋加剧。专家估计,可开采石油储量仅还可供人 类使用大约50年,天然气还可用75年,而煤炭则为200~300年[1]。目前,世界各国纷纷展开新能源,特别是可再生生物能源的研究与开发。生物能源主要有生物乙醇、生物柴油、沼气、氢气和燃料电池等,其 中以生物乙醇的研究与生产最引人注目。生物法生产的乙醇在一些国家和地区正广泛使用。巴西每年 以甘蔗作为原料,生产1100万t 燃料乙醇。美国则每年大约生产550万t 以上的燃料乙醇。目前我国乙醇年产量为300多万t ,仅次于巴西、美国,列世界第三[2]。其中发酵法乙醇占绝对优势,80%左右的乙醇 Ξ收稿日期:2004211201 基金项目:国家重大基础研究项目(2003C B71600)作者简介:朱跃钊,男,副研,研究方向:热能工程。联系人:卢定强,男,副研,研究方向:生物化工。   第2卷第4期2004年11月 生物加工过程 Chinese Journal of Bioprocess Engineering Nov.2004?11 ?

生物法降解秸秆木质素研究进展

生物法降解秸秆木质素研究进展 摘要秸秆中的木质素是潜在的可再生资源。近年来,利用生物法对其进行降解已成为研究热点。从木质素生物降解性出发,对降解木质素微生物、酶系以及降解条件进行介绍,以期为木质素生物降解法的推广应用提供参考。 关键词生物法降解;秸秆;木质素 秸秆是一种丰富的纤维素可再生资源,我国农作物秸秆年产量逾6亿t,除少量被用于造纸、纺织等行业或用作粗饲料、薪柴外,大部分以堆积、荒烧等形式直接倾入环境,造成极大的污染和浪费[1]。能源紧张、粮食短缺及环境污染日趋严重是目前世界各国所面临的难题。而可再生资源的转化利用,能在有利于生态平衡的条件下缓解或解决问题。 木质素又称木素,是植物界中含量仅次于纤维素的一类高分子有机物质,是一种极具潜力的可再生资源[2-4],每年全世

界植物可生长1 500亿t木质素,且木质素总与纤维素伴生,具有无毒、价廉、较好的可热塑和玻璃化特性。木质素是苯丙烷结构单元组成的复杂的、近似球状的芳香族高聚体,对羟基肉桂醇(phydroxy cinamylalcohols)脱氢聚合而成,一般认为木质素共有3种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟苯基结构。木质素结构单元之间以醚键和碳-碳键连接,连接部位可发生在苯环酚羟基之间,或发生在结构单元中3个碳原子之间,或是苯环侧链之间。木质素于分子量大,溶解性差,没有任何规则的重复单元或易被水解的键,因此木质素分子结构复杂而不规则[5,6]。 从20世纪开始,国内外学者一直在寻找降解木质纤维素的最佳途径,研究内容主要包括以下几方面:物理法、化学法、物理化学法、生物降解法[7]。物理法包括辐射、声波、粉碎、整齐爆破等[8,9]。化学法包括无机酸(硫酸、乙酸、盐酸等)、碱(氢氧化钠、氨水等)和有机溶剂(甲醇、

木质纤维素处理转化为乙醇的研究进展

木质纤维素处理转化为乙醇的研究进展 潘春雷081143020 生科制药班摘要:木质纤维素是廉价易得,来源广泛的生物质,将其转化为生物无污染的,可再生的乙醇燃料具有很好发展前景。本文介绍了对木质纤维素的物理处理,物理化学处理,化学水解处理,生物处理的方法。 关键词:木质纤维素,乙醇,处理方法。 研究背景:目前世界温室效应及能源危机日益上升,人们在不断地寻找一种可再生的污染小的能源。各国将焦点放在乙醇的生产上。乙醇可以从粮食以及木质纤维素的发酵中得到,但由于全球仍然面临粮食危机,所以研究的焦点转到了对纤维素的处理上。纤维素原料是地球上产出量很大的可再生资源,其来源包括树木的枝叶、农作物的秸秆等, 据估计木质纤维素原料占世界生物质量(100 亿~500 亿t)的50 %【1】在整个生态系统的能量循环中有重要地位。在近几年的生态环境调查中表明农作物秸秆大多被焚烧,以获得钾肥,但此做法不仅污染了环境,而且浪费了资源,开发以木质纤维素为原料制备乙醇的工艺是未来工业燃料生产的发展方向。 1、木质纤维素生物质的主要成分 木质纤维素物质的主要组成是纤维素、半纤维素和木质素,纤维素和半纤维素可通过处理得到糖类。纤维素是由葡萄糖分子通过高度脱水缩合连接而成的高分子聚合物,纤维素的水解产物是葡萄糖单体。半维素也是生物高聚物,是由各种不同糖基组成的,主要是六碳糖和五碳糖,在特定条件下可以水解成单糖。木质素是由苯丙烷结构单体组成的天然高分子化合物,在细胞壁中起支撑和把纤维素和半纤维素结合起来的作用,但是木质素不能水解为单糖。 2、木质纤维素的预处理技术 (1) 物理处理方法 常见处理方法是机械破碎法、液相热水处理法等。其优点在于处理方便,装置简单,且处理过程中产生的污染小,但物理法处理要很高的能量, 如电能和热能,所以会增加生产成本。 机械破碎法:通常木质纤维素经碾碎处理后的原料大小通常为10~30 mm, 而经粉碎、研磨之后的原料颗粒大小一般为0.2~2 mm。粉碎处理的方法中, 以研磨中的球磨尤其是振荡球磨的效率高【2】。但是粉碎法耗能大, 粉碎处理耗能占整个过程总耗能的一半以上。而且该方法也不能适合所有的物质处理【3】所以此种物理处理方法不是很常用。 液相热水处理法:水在强的外界压力下能够渗透到木质纤维素的细胞结构中,从而达到水解纤维素和消除半纤维素的目的。原因是水使得离子化合物电离并溶解半纤维素。相对于化学预处理法, 液态热水法具有以下优点:①不使用酸碱类化学物质, 所以不需使用化学药品进行各种复杂 耗时的准备阶段的处理, 对于反应设备无特别严格的抗碱耐酸要求,从而降低了成本,获得更高的经济利益。②在进行液相热水处理法之前, 无需对物料进行降低颗粒大小的粉碎处理,相对于机械破碎法,反应能耗较少③水解产物中中性残余物数量极少, 几乎不产生对发酵有抑制作用的副产品, 对纤维素和半纤维素的下一步化学或生物水解处理不会产生不良的影响【4】。 (2)物理化学法 物理化学法预处理主要包括蒸汽爆裂、氨纤维爆裂、CO2 爆裂等。蒸汽爆裂法是使高温蒸汽与生物质混合,经计算预定好的时间后迅速打开阀门降压,水蒸气提供了一个强有力的热量载体,可使原料快速升温而不至于使生成的糖受到太强的稀释作用。在减压时,喷射出的蒸汽和液化物质由于压力降低而迅速放热,温度降低。该预处理方法可以使高压蒸汽可渗入纤维内部,最终以气体的形态从封闭的细胞膜和细胞壁中爆发出来,使纤维发生一定的物理断裂,于此同时,高温高压加剧了纤维素内部氢键的破坏和顺序构型的变化,得到了可以构成糖的官能团,促进半纤维素和

木质纤维素糖化关键技术

木质纤维素糖化关键技术 木质纤维素是一种重要的可再生资源,目前主要应用于高蛋白饲料的原料、为生物燃料及化学原料三个领域。但是由于天然木质纤维素的化学成分及结构都十分复杂,使其转化为工业发酵可利用的小分子糖类,需通过有效的预处理工艺及利用大量的多种糖苷水解酶共同作用,才能对其进行有效地生物降解。。因此,一直以来木质纤维素生物转化利用中,所遇到的主要瓶颈是水解过程中糖苷水解酶的种类和用量的高需求及降解方式的低效率,这也是造成纤维素生物转化利用高成本的主要原因。 基于上述原因,本实验室主要开展一下关键技术研究并取得一定进展: 一、纤维素酶高产菌种开发: ①B -葡萄糖苷酶菌种:通过筛选及一次DNS诱变获得H16桧状青霉菌种邙- 葡萄糖苷酶酶活达100IU/ml (纤维二糖底物)以上,远远高于里氏木霉和黑曲霉的B-葡萄糖苷酶酶活力,且其Km是已经报道的真菌胞外B -葡萄糖苷酶最低的,表示具有高纤维二糖 结合能力。 ②全酶系高产纤维素酶菌种:基于组合诱变及基因工程技术具有独立知识产权、兼具木霉青霉特性全酶系纤维素酶高产菌株,目前完成了两种菌种的原生质体融合,最终创制纤维素水解平衡酶系高产菌种。 二、底物特异性高效水解酶系制备: ①酶系制备:基于里氏木霉诱变菌种DES-15 (自RUT-C30诱变获得,表 现菌丝分支多且短的优异发酵性状)及多尺度数学模型控制下的发酵工艺(建立养分消耗、菌丝生长及纤维素水解等模型进而优化发酵工艺),目前在200L 罐发酵原液滤纸酶活达到25FPU 以上;

②酶系复配:利用上述酶系,基于木质纤维素组成成分以及结构的差异,调整不同酶及非酶组分组成及用量,制备底物专一性高效复配酶系。目前通过酶系平衡配比以及部分添加剂的使用,滤纸酶活达到35FPU/ml 以上。 三、新型预处理技术: 基于桧状青霉小分子蛋白木质纤维素改性机理解析基础上,建立了藻类类生物预处理技术以及气爆玉米秸秆生物与物理化学预处理相结合的新型工艺。其中利用自由基对藻类细胞壁瞬间预处理后,其转化成还原糖的能力提高了70%,效果显著优于酸碱等预处理工艺,因此可以用于藻类生物炼制以及能源化利用。该预处理方式具有用时短,反应条件温和,成本低,不存在抑制物等优点。

木质纤维素生物炼制

实验名称:木质纤维素生物炼制 一、摘要 生物炼制是利用农业废弃物、植物基淀粉和木质纤维素材料为原料,生产各种化学品、燃料和生物基材料。根据近来研究开发的不同情况,生物炼制分为木质纤维素炼制、全谷物炼制和绿色炼制。本实验属木质纤维素炼制,这是利用自然界中干燥的原材料如含纤维素的生物质和废弃物作原料进行的生物炼制。生物炼制大幅扩展可再生植物基原材料的应用,使其成为环境可持续发展的化学和能源经济转变的手段。纤维素生物转化燃料乙醇对解决当前世界能源危机、粮食短缺和环境污染等问题具有重要意义,已成为当前研究的热点。 二、实验目的、原理 2.1实验目的 本课程的目的是在生物反应器工程国家重点实验室生物炼制微型工厂公共平台实验室通过进行以类似工厂化的木质纤维素生物炼制流程操作,以玉米秸秆为起始原料经过典型的生物炼制过程生产燃料乙醇。通过对玉米秸秆的预处理和预处理效果评价以及玉米芯残渣的酶解制糖过程,使学生理解生物炼制工程的基本原理在科学研究和工业生产上的应用,掌握生物炼制工程的基本实验流程和技能,学会正确使用生物炼制专用仪器,观察记录实验数据,并对实验结果进行分析讨论。 2.2实验原理 高温稀酸预处理原理:玉米秸秆主要由大分子聚合物纤维素、半纤维素和木质素组成,而且在长期进化过程中演化出了对周围环境、生物酶、病虫害等具有极强生物抵抗性的致密结构。在高温的酸性环境中,可以促使半纤维素快速降解,破坏木质素的结构和纤维素的晶体结构,提高玉米秸秆中纤维素的酶解转化率。 预处理效果评价及玉米芯残渣糖化原理:在纤维素酶的作用下,将预处理后玉米秸秆中的纤维素/玉米芯残渣中的纤维素组分酶解生成葡萄糖。 三、实验材料、方法 3.1原材料与纤维素酶 原料:含有木质纤维素的生物质样品:外地产农作物玉米秸秆,用烘箱烘干后备用,采

白蚁及共生微生物木质纤维素水解酶的种类

白蚁及共生微生物木质纤维素水解酶的种类 3 相 辉 周志华 33 (中国科学院上海植物生理生态研究所 上海 200032) Lignocellulolytic enzymes in termite and its symbiotic microbes .XI ANG Hui ,ZH OU Zhi 2Hua 33 (Shanghai Institute o f Plant Physiology and Ecology Chinese Academy o f Sciences ,Shanghai 200032,China ) Abstract T ermites are im portant decom posers of lignocellulose in tropical ecosystems.They com prise a com plex assemblage of diverse species ,roughly divided into s o 2called lower and higher termites with different phag ous characters.T ermites can produce their own endoglucanases (EG )of G HF9,as well as glucosidase.Protistan symbiotic system of lower termite degrades cellulosic com pounds with high efficiency.Diverse lignocellulolytic enzymes are found in this system including G HF5,7and 45.Other related functional genes may include xylanase and pectinolytic related enzymes.Higher termites don ’t harbor flagellate.Fungus 2growing termites efficiently decom pose lignocellulose through their symbiotic relationship with basidiomycete fungi of the genus T ermitomyces.The symbiotic fungi produce cellulose ,xylanase and putative pectinolytic enzymes.They als o produce laccase which might be related to lignin degradation.H owever ,on m olecular level ,studies on lignocellulolytic emzymes of symbiotic fungi are relatively few.Many lignocellulolytic bacteria strains were is olated from termite guts ,divers cellulose genes were als o found recently.Lignocellulolytic enzymes in termite and its symbiotic systems may have potentials for the idea of cellulosic ethanol production by biological process. K ey w ords termite ,symbiotic flagellate ,fungi ,bacteria ,lignocellulolytic enzymes 摘 要 白蚁是热带生态系统重要的木质纤维素降解者。白蚁种类丰富,可分成高等白蚁和低等白蚁,食性也具有各自特点。白蚁自身可以产生纤维素酶,主要是G HF9的内切葡聚糖酶(EG ),也有β-葡萄糖苷酶(G B )。低等白蚁共生的原虫中已发现丰富的纤维素酶基因,属于G HF5,7和45。同时还有其他相关功能基因,如木聚糖酶和果胶类物质水解酶。高等白蚁肠道中没有共生原虫。高等培菌白蚁可以利用共生蚁巢伞属真菌促进木质纤维素降解,真菌可以产生纤维素酶,果胶质水解酶类、木聚糖酶,同时还产生可能与木质素分解相关的一种漆酶,但是从分子水平,关于共生真菌纤维素水解酶的研究还较少。白蚁肠道已分离出许多具有木质纤维素降解能力的菌株,最近的研究也发现了大量细菌纤维素酶基因。白蚁-共生系统丰富的木质纤维素水解酶类为发展生物方法开发纤维素乙醇这一思路提供有价值的资源。 关键词 白蚁,原生动物,真菌,细菌,纤维素水解酶 3中国科学院知识创新工程重要方向项目(K SCX22Y W 2G 2 022);中科院上海生命科学院优秀青年人才领域前沿项目(2007KIP501)。 33通讯作者,E 2mail :zhouzhihua @https://www.360docs.net/doc/e610531322.html, 收稿日期:2007212229,修回日期:2008203213 地球上的生物质资源主要来自光合生物,其中90%以上为木质纤维素类物质,它们代表了生态系统中营养金子塔的最庞大的基层 [1] 。 天然的木质纤维素材料含有纤维素、半纤维素和木质素等。其中纤维素是地球上最丰富的多糖物质,这类物质是植物细胞壁的主要成分,也是地球上最廉价的可再生资源。纤维素是葡萄 糖分子通过β-葡萄糖苷键连接而成的大分子多糖类物质。天然的纤维素是由多条纤维素分 子链所组成的聚合物,有着复杂的超分子结构。 半纤维素是一种碱溶性的多糖,包括木聚糖、木葡聚糖和愈创葡聚糖,其中木聚糖是最丰富、分布最广的一类。木质素是一种复杂的不溶性酚

木质纤维素预处理方法的研究进展

木质纤维素预处理方法的研究进展 摘要:概述了几种比较实用的木质纤维素预处理技术,总结了各种预处理技术的方法?原理以及优缺点,进而对木质纤维素预处理方法的发展前景进行了展望? 关键词:木质纤维素;预处理方法;研究进展 Research Advances of Pretreatment Technology of Lignocellulose Abstract: Some practical pretreatment technologies of lignocellulose were briefly introduced, including the main methods, principles, advantages and disadventages. And the development prospect of pretreatment technology of lignocellulose was put forward. Key words: lignocellulose; pretreatment method; research progress 随着世界经济的不断发展和石油资源的日益消耗,开发更加长久有效的能源是各国面临的一个巨大难题?作为一种可再生能源,生物质能源是中国能源可持续发展的必然战略选择之一?利用木质纤维素生产生物乙醇?丁醇等生物质燃料是生物质能源开发的重要内容?我国天然纤维素原料非常丰富(包括农作物秸秆?林业副产品?城市垃圾和工业废弃物等),利用生物技术分解和转化木质纤维素既是资源利用的有效途径,对于解决环境污染?食品短缺和能源危机又具有重大的现实意义? 1 木质纤维素的结构 木质纤维素是指以纤维素?半纤维素和木质素为主要成分的原料,3种成分在植物原料中的含量分别为35%~50%?15%~25%和15%~30%?纤维素是聚合度在 1 000~10 000的葡萄糖的线性直链聚合物,由结晶相和非结晶相交错形成,结晶相结构致密,阻碍纤维素的分解?半纤维素结构较纤维素简单,主要是由木糖?阿拉伯糖等戊糖及少量的葡萄糖?甘露糖和半乳糖等己糖形成的直链或支链聚合物,在适宜的温度下易于溶解在稀酸溶液中并降解成单糖?木质素是一种由苯丙烷结构单体组成的具有复杂三维结构的芳香族高聚物,在植物结构中发挥胶粘作用,将纤维素和半纤维素紧密结合在一起,增大茎秆的机械强度,起到木质化作用,阻碍微生物对植物细胞的攻击,同时减小了细胞壁的透水性?纤维素和半纤维素作为可酵解糖类,占原料总重的65%~75%[1]? 2 预处理的目的 木质纤维素的转化利用可分为原料预处理?酶水解和糖发酵3个阶段,主要的技

木质素的测定方法研究进展

本文由dylan_may贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 41 卷 3 期第 2007 年 6 月 河南农业大学学报 Journal of Henan A gricultural U niversity Vol 41 No. 3 . Jun. 2007 文章编号 : 1000 - 2340 ( 2007 ) 03 - 0356 - 07 木质素的测定方法研究进展 苏同福 ,高玉珍 ,刘 ,周 ,宫长荣霞斌 1 1 1 2 1 ( 1. 河南农业大学 ,河南郑州 450002; 2. 黄河中心医院药剂科 ,河南 郑州 450003 ) 摘要 : 对木质素的制备、总量的测定及其结构和分子量的测定等进行了综述 , 并分析了这些测定方法存在的问题 ,指出了将太赫兹技术应 用于木质素测定的前景 . 关键词 : 木质素 ; 降解 ; 太赫兹中图分类号 : Q 539; O 636. 2 文献标识码 : A Rev iew of D eterm ina tion of L ign in SU Tong2fu , GAO Yu 2zhen , L I Xia , ZHOU B in , GONG Chang2rong U ( 1. Henan Agricultural University, Zhengzhou 450002, China; 1 1 1 2 1 2. Pharmacy of yellow R iver Central Hosp ital, Zhengzhou 450003, China ) Abstract: Testing methods for total lignin, p reparation of lignin, structures and molecular weight, are introduced in this article. Problem s existing in these testing methods are analysed and the p rospects of the terahertz technology app lication to lignin analysis are pointed out . Key words: lignin; decompose; terahertz 木质素 ,又称为木素 , 广泛地存在于木材与禾本植物体内 , 通常认为是植物体在次生代谢合成的 ,在植物体内具有机械支持、防止生物降解、输送水分等功能 . 木质素的化学组成是苯丙烷类物质 (包括对羟基苯丙烷、—邻甲氧基苯丙烷以及 4 —羟基—3, 5 —二甲氧

木质纤维素预处理技术

木质纤维素预处理技术 单独某一种预处理方法并非对任何原料都有较好的效果。目前的木质纤维素预处理方法有很多种,可分为物理法、化学法、物理化学法、分步组合法和生物法几大类。 1物理方法 物理方法预处理主要是增大比表面积、孔径,降低纤维素的结晶度和聚合度。常用的物理方法包括机械粉碎、机械挤出、高能辐射等[1]。 1.1机械粉碎 机械粉碎即将物料切碎、碾磨处理成10~30mm或0.2~2mm的颗粒,比表面积增高,结晶度、聚合度降低,可及度增加,有利于提高基质浓度和酶解效率,但不能去除木质素及半纤维素。 粉碎分为干粉碎、湿粉碎,包括球磨、盘磨、辊磨、锤磨、胶体磨、机械挤出等,胶体磨适用湿物料,而球磨对干、湿物料都适合。 由于粒径与能耗相关,经济性不高,效果单一,故粉碎常与其他方法相互补充[2]。研究表明,甘蔗渣、麦秆经球磨与盘磨粉碎后酶解率及乙醇得率均显著提高;经宽角X射线衍射分析,球磨主要通过降低结晶度改善酶解,而盘磨则主要依靠去纤维化。机械挤出是一种应用前景良好的预处理新技术,处理效果受到设备尺寸及参数的影响。物料通过挤出器时在热、混合和剪切作用下引起物理、化学性质的改变,依靠螺旋挤出转速及温度打破木质纤维结构,引发去纤维化、纤维化效应,缩短纤维长度,改善了酶对底物的可及性[1]。 1.2高能辐射 高能辐射是用高能射线如电子射线、γ射线对原料进行预处理,可使纤维素聚合度下降,降解为小纤维片段、寡葡聚糖甚至纤维二糖,使结构松散,打破纤维素晶体结构,增加反应活性。 采用γ射线辐照处理秸秆,可使纤维素酶解转化率提高至88.7%。KIM等[3]证明电子束照射确实能增加纤维素的酶解率:稻秆用80kGy、0.12mA、1MeV的电子束照射后酶解葡萄糖得率达52.1%,比直接酶解的22.6%增加近30%。 2化学方法 2.1酸预处理 酸法是研究得最早、最深入的化学预处理方法,分为低温浓酸法和高温稀酸法。低温浓酸(如72%H2SO4、41%HCl、100%TFA)处理效果通常优于高温稀酸,能溶解大部分纤维素和半纤维素,但是其毒性、腐蚀性及危害大,需要特殊的防腐反应器,酸回收难度较大,后期中和需消耗大量的碱,因此应用受到限制[2]。稀酸法是目前较常用而成熟的方法之一,生物质在较高温度(如140~190℃)和低浓度酸(如0.1%~1%硫酸)作用下,可实现较高的反应速率,半纤维素组分几乎100%除去,纤维素的平均聚合度下降,反应能力增大,酶水解率显著提高,但去除木质素不很有效。稀酸法因其效果好、污染少成为研究的热点并获得了较大进展,如美国国家可再生能源实验室(NREL)开发了比较成熟的稀硫酸预处理—酶解发酵工艺并建成了中试装置。稀酸法最大的缺点是产生副产物如甲酸、乙酸、糠醛、羟甲基糠醛、糖醛酸、己糖酸等,即影响酶解又抑制微生物生长和发酵。稀酸法可在较高温度(180℃)处理较短时间(5min)也可在较低温度(120℃)处理较长时间(30~90min),温度和酸浓度越剧烈预处理效果越好,但抑制产物会增加。 CHEN等[4]提出“半纤维素/纤维素分离-分步发酵”(XCFSF)工艺路线,玉米芯经稀硫酸预处理后木糖得率为78.4%,纤维素回收率为96.81%,水解木糖和纤维素残渣酶解后的糖液发酵乙醇,酶解残渣同步糖化发酵(SSF),最终将70.4%的半纤维素和89.77%的纤维素转化为乙醇。酸可以用硫酸、硝酸、盐酸、磷酸、碳酸等无机酸,也可用乙酸、丙酸、草酸等有机酸。将蔗渣在高于160℃条件下经稀磷酸预处理,可有效水解半纤维素为单糖,且副反应少[5]。用80%乙酸、0.92%硝酸在120℃处理麦秆20min,81%的半纤维素和92%的木质素被水解或

木质素生物降解过程中木质素介体反应系统的研究进展

综述评论 木质素生物降解过程中木质素-介体反应 系统的研究进展 YA N W C 闫文超,黄 峰*,高培基 (山东大学微生物技术国家重点实验室,山东济南250100) 摘 要: 对木质素降解酶作用过程中介体物质研究进展进行评述,包括漆酶/介体系统(L M S)在生物漂白、脱木质素、和环境污染治理方面的研究应用情况及其动力学研究进展。 关键词: 木质素酶系统;漆酶/介体系统;生物漂白;木质素降解 中图分类号:T Q 351.013;O 636.2 文献标识码:A 文章编号:0253-2417(2003)01-0083-06 ADV ANCES OF CU RRENT IN V EST IGAT IONS ON MEDIAT OR SYST EM FOR LIGN IN BIO -DEGRA DAT ION OF LIGN IN YAN Wen -chao,H UANG Feng,GAO Pe -i ji (State key Lab o f M icrobial Technology ,Shandong Univer sity ,Ji nan 250100,China) Abstract:Advances of current inv estigations on mediator systems for bio -degradation of lignin are reviewed,includ - ing application researches of laccase -mediator -system (L M S)on bio -bleaching ,bio -delignification,pollution tr eat - ment,and kinetic studies o f L M S. Key words:lignolytic systems;laccase mediator system(LM S);bio -bleaching ;delignification 木质素是一种具有复杂而不规则的三维网状结构的高聚物。它的结构基本单元是苯基丙烷,靠多种不同的碳-碳键和醚键连接而形成一种生物大分子物质,它是水不溶性的。植物木质化组织中含木质素20%~30%。木质素与纤维素和半纤维素之间具有物理或化学结合,使植物的机械强度提高。白腐真菌以及某些细菌可将木质素彻底降解,使有机碳变成无机碳返回自然界碳循环圈。木质素的含量仅次于纤维素,到目前为止尚未被很好的利用。很久以来人们对于用真菌在制浆造纸工业中进行木质素降解和生物漂白方面做了许多实验和努力,然而要想得到令人满意的木质素降解,必须经过长时间的培养,这与现有的制浆和漂白工艺不相容。而且,与传统的化学漂白或酶处理比较起来,对活的有机体的控制也很不方便。使用木质素酶系统替代真菌培养进行制浆漂白,被认为是技术上可行的,它的应用不需要对现有的工艺流程做大的改动。 收稿日期:2001-07-26 作者简介:闫文超(1979-),男,贵州贵阳人,硕士研究生,从事木质素降解机理研究。*通讯联系人第23卷第1期 2003年3月林 产 化 学 与 工 业Chemistry and Industry of Forest Products Vol.23No.1 M ar.2003

去除木质素

目前利用木质纤维素生物质的方法主要是在纤维素转化阶段之前利用溶剂或化学品脱除木质素的方法,秸秆等木质纤维素原料的利用思路如下: 利用溶剂或化学品溶解木质素的过程往往需要高温处理,一旦降温,木质素即沉淀析出,易造成浆液浓稠,设备结垢的难题。超临界方法作为一种绿色化学的处理工艺,目前已经在木质纤维素的预处理过程中有所应用,主要原理是在超临界状态下利用CO2等溶剂及改性剂的作用破坏纤维素与半纤维素、木质素的链接,达到提高木质纤维素产糖率的目的。可以查询到的专利有:一种以棉籽壳为原料制备纤维素类化合物的方法(CN103122034A,2013年5月公布);一种玉米秸秆预处理方法(CN101565725A,2009年10月);从木质纤维素生物质生产木质素(CN103502320A,2014年1月公布);从木质纤维素生物质生产木质素(CN103502383A,2014年1月公布)等。综合以上处理方法,其主要工艺流程可归纳如下: (a)样品处理; 粉碎机处理样品,使样品的表面积尽可能增加。 (b)木质素去除; 利用醇(甲醇,乙醇,丁醇,戊醇)、超临界CO2(31度,1072 psig)、亚临界水(250-280度)、超临界水(>374度,>221 bar)的一种或多种作为反应萃取溶剂。采用间歇式或连续式的方法处理木质纤维素样品。有报道采用流量20g/min CO2,33%的戊醇水溶液作为萃取剂,在180度,15MPa的条件下处理秸秆后,其最终产糖率由8%提高到93%,木质素去除率达到90%。 为了防止木质素沉降聚集,制备木质素微粒(粒度范围50-500微米),在脱除木质素的过程中有专利提出了采用多级降温降压的措施。

农作物秸秆木质素的生物降解性能研究

农作物秸秆木质素的生物降解性能研究 摘要:通过正交试验l16(54)分配表(采用5因素4水平进行设计),根据各因素及水平的不同组合,采用固态发酵的方法探索出更加简单、高效的降解木质素的最优化组合方式。并考虑经过一定的生物学方法,探索使其变成一种生物型清洁能源的可行性。 关键词:正交试验固态发酵降解最优化 1 前言 木质素也称木素,是一类高分子有机物质,其在植物界中含量仅次于纤维素,是一种极具潜力的可再生资源。其总与纤维素伴生,具有价廉、无毒、较好的可热塑和玻璃化特性,具有一定的应用前景。秸秆是一种含有丰富纤维素的可再生资源,基本组织是纤维素、半纤维素和木质素。我国农作物秸秆年产量超过6亿吨,除少部分被用于造纸、纺织等行业或用作粗饲料、薪柴外,大部分以堆积、荒烧等形式直接倾入环境,造成极大的污染和浪费。目前为止,超过95 %的木质素仍以“黑液”直接排入江河或浓缩后烧掉,很少得到有效利用。因此,对秸秆木质素的研究和利用显得尤为重要。从20世纪初开始,国内外学者一直在寻找降解木质纤维素的最佳途径,涉及的研究方法主要包括:化学法、物理法、物理化学法、生物降解法。而利用微生物降解木质素具有作用条件温和、专一性强、处理成本低等优点,不仅可以有效缓解环境污染,还可以变废为宝,实现资源再利用,已引起了国内外学者的关注。

2 材料与方法 2.1 材料与设备 (1)实验菌种 实验选用的菌种为白腐菌的典型种黄孢原毛平革菌 (p.chrysosporium),购于广东省微生物菌种保藏中心。 (2)实验材料 土豆(市售);pda培养基;溶壁微球菌;木质素;玻璃容器或瓷器;ph试纸;细纱布;胶头滴管;烧杯(50ml,100ml,500ml,1l);玻璃棒;普通漏斗;定性快速滤纸;量筒 (5ml,100ml,500ml,1l);坩埚;称量瓶;kh2po4(2.0mg·ml-1);mgso4·7h2o(0.5mg·ml-1);酒石酸铵(0.2mg·ml-1);微量元素液(70ml·l-1)。其中微量元素液的成分为nacl(1.0mg·ml-1),cocl2·6h2o(0.18mg·ml-1),na2moo4·2h2o(0.01mg·ml-1), znso4·7h2o(0.1mg·ml-1),cacl2(0.1mg·ml-1),cuso4·5h2o(0.01mg·ml-1), mnso4·h2o(0.5mg·ml-1),feso4·7h2o(0.1mg·ml-1), alk(so4)2·12h2o(0.01mg·ml-1),mgso4·7h2o(3.0mg·ml-1),hbo3(0.01mg·ml-1),nta(115mg·ml-1)。 (3)实验仪器 恒温箱;无菌操作台;恒温磁力搅拌加热器;烘箱;抽滤装置;高压蒸汽灭菌锅;粉碎机;电炉;分析天平;电子天平。 2.2 实验方法

生物质中纤维素、半纤维素和木质素含量的测定

生物质中纤维素、半纤维素和木质素含量的测定 一实验目的 1.掌握生物质中主要化学成分含量的经典分析方法和原理。 2.了解纤维素、半纤维素以及木质素这三种主要化学成分在生物质热裂解中的作用。 二实验原理 植物的主要化学成分是纤维素、半纤维素和木质素这三部分。它们是构成植物细胞壁的主要组分。其中,纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素是填充在纤维和微细纤维之间的“粘合剂”和“填充剂”。 1.纤维素 生物质粉末在加热的情况下用醋酸和硝酸的混合液处理,在这种情况下,细胞间的物质被溶解,纤维素也分解成单个的纤维,木质素、半纤维素和其它的物质也被除去。淀粉、多缩戊糖和其它物质受到了水解。用水洗涤除去杂质以后,纤维素在硫酸存在下被重铬酸钾氧化成二氧化碳和水。 C6H10O5 + 4K2Cr2O7 + 16H2SO4 = 6CO2 + 4Cr2(SO4)3 + 4K2SO4 + 21H2O 过剩的重铬酸钾用硫酸亚铁铵溶液滴定,再用硫酸亚铁铵滴定同量的但是未与纤维素反应的重铬酸钾,根据差值可以求得纤维素的含量。 K2Cr2O7 + 6FeSO4+ 7H2SO4 = 3 Fe2(SO4)3 + Cr2(SO4)3 + K2SO4 + 7H2O 2.半纤维素 用沸腾的80%硝酸钙溶液使淀粉溶解,同时将干扰测定半纤维素的溶于水的其它碳水化合物除掉。将沉淀用蒸馏水冲洗以后,用较高浓度的盐酸,大大缩短半纤维素的水解时间,水解得到的糖溶液,稀释到一定体积,用氢氧化钠溶液中和,其中的总糖量用铜碘法测定。 铜碘法原理:半纤维素水解后生成的糖在碱性环境和加热的情况下将二价铜还原成一价铜,一价铜以Cu2O的形式沉淀出来。用碘量法测定Cu2O的量,从而计算出半纤维素的含量。 测定还原性糖的铜碱试剂中含有KIO3和KI,它们在酸性条件下会发生反应,也不会干扰糖和铜离子的反应。加入酸以后,会发生反应释放出碘: KIO3 + 5KI +3H2SO4 = 3I2 + 3K2SO4 +3H2O 加入草酸以后,碘与氧化亚铜发生反应: Cu2O + I2 + H2C2O4 = CuC2O4 + CuI2 + H2O 过剩的碘用Na2S2O3溶液滴定:2Na2S2O3 + I2 = Na2S4O6 + 2NaI 3.木质素 先用1%的醋酸处理以分离出糖、有机酸和其它可溶性化合物。然后用丙酮处理,分离叶绿素、拟脂、脂肪和其它脂溶性化合物。将沉淀用蒸馏水洗涤以后,在硫酸存在下,用重铬酸钾氧化水解产物中的木质素: C11H12O4 + 8K2Cr2O7 + 32H2SO4 = 11CO2 + 8K2SO4 + 8Cr2(SO4)3 + 32H2O 过量的重铬酸钾用硫酸亚铁铵溶液滴定。方法和测定纤维素相同。 三实验所需试剂和仪器 1. 实验试剂 硫酸亚铁铵分析纯,重铬酸钾分析纯,硫代硫酸钠分析纯, 硝酸钙分析纯,硫酸铜分析纯,碘化钾分析纯, 可溶性淀粉分析纯,氯化钡分析纯,邻菲啰啉分析纯,

堆肥中纤维素和木质素的生物降解研究现状

堆肥中纤维素和木质素的生物降解研究现状 Ξ 席北斗1 刘鸿亮2 白庆中1 黄国和3 曾光明3 李英军1  (1.清华大学环境科学与工程系,北京100084;2.中国环境科学研究院,北京100012; 31湖南大学环境科学与工程学院,长沙410082) 摘 要 堆肥是垃圾处理的主要方法之一,厨房垃圾、园林垃圾、农村秸秆和日常生活中的废弃纤维产品均可作为堆肥原料,这些原料中含有一定量的纤维素和木质素,而纤维素和木质素在堆肥过程中较难生物降解。因此,国内外学者致力于研究能加速纤维素和木质素降解的高效微生物。研究发现,对纤维素和木质素有降解能力的微生物主要是高温放线菌和高温真菌,其中有独特降解机制的白腐菌在木质素降解中起着重要作用。 关键词 堆肥 纤维素 木质素 生物降解 高温放线菌 高温真菌 白腐菌 Study on current status of lignin and cellulose biodegradation in composting process Xi Beidou 1 Liu Hongliang 2 Bai Qingzhong 1 Huang Guohe 3 Zeng Guangming 3 Li Y ingjun 1 (1.Department of Environmental Engineering ,Tsinghua University ,Beijing 100084; 2.Chinese Research Academy of Environmental Science ,Beijing 100012; 3.Department of Environmental Engineering ,Hunan University ,Changsha 410082) Abstract Composting is nowadays a general treatment method for solid https://www.360docs.net/doc/e610531322.html,postable wastes in 2clude household ,garden waste ,straw etc.These materials contain lignin and cellulose which are difficult for biodegradation.Thus ,efficient degradation lignin and cellulose in composting process is https://www.360docs.net/doc/e610531322.html,plex or 2ganic compounds like lignin and cellulose are mainly degraded by thermophilic microfungi and actinomycetes.Due to its special enzyme system ,white 2rot fungi play a significant role in lignin degradation K ey w ords composting ;cellulose ;lignin ;biodegradation ;thermophilic actinomycetes ;thermophilic microfungi ;white 2rot fungi 1 前 言 随着人口的不断膨胀,农业废弃物,包括稻草、谷物秸秆、水稻壳、甘蔗渣、动物粪便,日常生活的废弃纤维产品,如废纸及其他废纸产品等,越来越多,这些原料用于生产肥料或土壤改良剂,越来越受到人们的关注。好氧堆肥处理是依靠垃圾中各类微生物(细菌、真菌和放线菌)在分解有机物中交替出现,使堆温上升、下降,从分解水溶性有机物开始,逐渐分解难分解有机物(如纤维素和木质素),并转化为腐殖质的生物化学过程。但传统堆肥法存在发酵时间长、肥效低(腐殖质转化不完全)等问题,因此,加 速腐殖化进程可提高堆肥效率和堆肥质量。由于废弃物中含有大量木质纤维素,加强木质纤维转化为腐殖质便成为堆肥充分腐熟的关键[1]。近几十年 来,国内外学者一直在寻找降解木质纤维素的最佳途径,研究主要包括以下几个方面:(1)将秸秆等含木质纤维素的物质进行理化处理,如辐射、蒸气爆破、膨化、碾磨等[1—4];(2)酶解、生物发酵和生物堆肥[5,6];(3)将上述两个方面综合考虑[1,2]。理化处理约可以去掉50%的木质素,并使纤维成为非结晶态[7],但成本较高,易产生二次污染。利用微生物降解木质纤维素国内研究报道不多,特别是在木质纤维作为堆肥原料,其生物可降解性方面研究也较 少[8,9]。 本文研究了堆肥中利用微生物分解木质素和纤 Ξ国家863高技术资助项目(No.2001AA644020) 第3卷第3期环境污染治理技术与设备 Vol .3,No .32002年3月Techniques and Equipment for Environmental Pollution Control Mar .,2002

相关文档
最新文档