门式钢框架结构在地震波谱下的响应分析

门式钢框架结构在地震波谱下的响应分析
门式钢框架结构在地震波谱下的响应分析

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

框架结构地震响应时程分析的计算模型

框架结构地震响应时程分析的计算模型 摘要:在结构进行地震响应时程分析时,必须首先确定结构的计算模型,以便确立结构的层间刚度。在地震作用下,结构计算模型是结构进行地震响应时分析的主体,由几何模型和物理模型两部分组成。其中几何模型反映了结构计算模型的几何构成,物理模型反映了材料或构件的力学性能。目前在工程上常用的计算模型主要有层间模型、杆系模型和杆系—层间模型。本文针对这三种模型进行全面的分析,并对它们的优缺点展开论述。 1前言 在求解结构在地震作用下的运动方程时,必须要计算结构的刚度矩阵[k],而要计算结构的刚度矩阵[k],就得确定结构的计算模型。因此,确定结构的计算模型是结构进行动力分析时必不可少的内容。对于多层框架结构,目前应用最广泛的模型是层间模型、杆系模型和杆系—层间模型。 2 层间模型 层间模型是在假定建筑各层楼板在其自身平面内刚度无穷大,水平地震作用下同层各竖向位移相同,以及建筑结构刚度中心和质量中心相重合,水平地震作用下没有绕竖轴扭转发生的基础上建立起来的。在这种模型中,将结构视为一根竖向杆,结构的质量集中于各楼层处,如图1(a)所示。 (a) (b) (c) (d) 图1 层间模型 (a)层间模型一般形式;(b)层间剪切模型;(c)层间弯曲模型;(d) 层间弯剪模型计算时,层间模型取各层为基本计算单元,采用层恢复力模型来表示地震作用过程中层刚度随层剪力的变化关系,而不考虑弹塑性阶段层刚度沿层高的变化。其几何模型相当于串联质点模型,物理模型的重要参数是层间刚度及其非线性变化规律。根据结构形式、构造特点以及结构侧向变形情况不同,层间模型又分为层间剪切模型、层间弯曲模型及层间弯剪模型,如图1(b)—(d)所示。其中,层间弯曲模型主要用于结构侧向变形以弯曲为主的剪力墙结构中。 而在进行框架结构动力分析时,常用的层间模型是层间剪切模型和层间弯剪模型。当框架横梁与柱的线刚度之比较大时,即“强梁弱住”型框架结构,在振动过程中各楼层始终保持水平,结构的变形表现为层间的错动,其侧向变形主要是层间剪切变形,那么应该采用层间剪切模型。 当框架梁对柱的约束相对较弱时,如一些高层框架,即“强柱弱梁”型结构,其侧向变形包含有层间弯曲和剪切两种成分,层间剪切模型已不能完全反映其变形特点,那么应该采用层间弯剪模型。 层间模型的优点在于自由度数较少,动力方程逐步积分所耗时也较少,但方法比较粗糙,计算精度较差,无法求出结构各杆件的时程反应,也不能确定结构各杆单元的内力和变形。因此,在工程实践中,层间模型主要是用于确定结构的层间剪力和层间侧移,以校核结构在地震作用下层间剪力是否超过层间极限承载力和检验结构在地震作用下的薄弱层位置。 3 杆系模型 杆系模型是较为精确的计算模型,它是在假定楼板在其自身平面内为绝对刚性的基础上建立起来的。这种模型将整个框架结构的梁柱构件离散为杆元,以结构的各杆件作为基本计算单元,将结构的质量集中于框架的各个节点,如图2所示。

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

ANSYS地震反应谱SRSS分析共24页

ANSYS地震反应谱SRSS分析 我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y 方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算 结果,命令流如下: !进入PREP7并建模 /PREP7 B=15 !基本尺寸 A1=1000 !第一个面积 A2=1000 !第二个面积 A3=1000 !第三个面积 ET,1,beam4 !二维杆单元 R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参 MP,EX,1,2.0E11 !杨氏模量 mp,PRXY,1,,0.3 mp,dens,1,7.8e3 N,1,-B,0,0 !定义结点 N,2,0,0,0 N,3,-B,0,b

N,4,0,0,b N,5,-B,0,2*b N,6,0,0,2*b N,7,-B,0,3*b N,8,0,0,3*b E,1,3 !定义单元 E,2,4 E,3,5 E,4,6 E,3,4 E,5,6 e,5,7 e,6,8 e,7,8 D,1,ALL,0,,2 FINISH ! !进入求解器,定义载荷和求解 /SOLU D,1,ALL,0,,2 !结点UX=UY=0

sfbeam,1,1,PRES,100000, sfbeam,3,1,PRES,100000, sfbeam,7,1,PRES,100000, SOLVE FINISH allsel NMODE=10 /SOL !* ANTYPE,2 !* MSAVE,0 !* MODOPT,LANB,NMODE EQSLV,SPAR MXPAND,NMODE , , ,1 LUMPM,0 PSTRES,0 !* MODOPT,LANB,NMODE ,0,0, ,OFF

地震工程学心得体会

精心整理《地震工程学》课程总结? 1.对所学内容的综述? 1.1结构地震反应分析的方法? 结构地震反应分析的方法很多,下面主要介绍反应谱理论和时程反应分析法? 绍。 也并不是一次地震动作用下的反应谱,而是不同地震反应的包线。 1.1.2?? 时程分析法? 时程分析法又称作动态分析法。它是将地震波段按时段进行数值化后,输入结构体系的振动微分方程,采用逐步积分法进行结构弹塑性动力反应分析,计算出结构在整个强震时域中的振动状态过程,给出各个时刻各杆件的内力和变形以及各杆

件出现塑性铰的顺序。? 时程分析法计算地震反应需要输入地震动参数,该参数具有概率含义的加速度时程曲线、结构和构件的动力模型考虑了结构的非线性恢复力特性,更接近实际情况,因而时程分析方法具有很多优点。它全面地考虑了强震三要素;比较确切地、具体地和细致地给出了结构弹塑性地震反应。? 1.1.3地震信号频域分析? ???? X(f), 1.2? 1.2.1 (1) ??(2 (3 ?(4 性和有效性;? ?? (5)验证抗震理论、结构地震反应分析方法、结构振动控制算法等的可靠性和适用性。? 1.2.2? 结构抗震试验的实施程序? ??

(1)确定研究目标和试验方法,含试验目的、试验设备和试件的采用、需要测量的物理量等;? ?? (2)荷载施加,含与试验设备相关的荷载施加方式和加载规则等;? ?(3)测点布置和数据采集,含各类传感器和数采设备的采用、测点数量的选择;? ??(4)数据分析,含测试数据的常规处理和特殊分析。? (1 ? (2 ????旨在 (3 ?? 入下结构或构件的地震反应,研究和验证结构地震破坏机理、破坏特征、抗震能力和抗震薄弱环节。 ?(4)振动台试验? ?????振动台试验是利用振动台装置进行的结构强迫振动试验,是地震工程研究中最重要的实验手段之一。?

ANSYS地震分析实例

ANSYS地震分析实例 土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常碰到的题目。结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。 本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。更复杂结构的分析其基本过程也与之类似。 关键知识点: (a) 模态分析 (b) 谱分析 (c) 地震反应谱输进 (d) 地震时程输进 (e) 时程动力分析 (1) 在ANSYS窗口顶部静态菜单,进进Parameters菜单,选择Scalar Parameters选项,在输进窗口中填进DAMPRATIO=0.02,即所有振型的阻尼比为2% (2) ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元 (3) 在Element Types窗口中,选择Beam 188单元,选择Options,进进Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None 改为Max and Min Only。即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变 (4) 在Element Types 窗口中,继续添加Mass 21集中质量单元 (5) 下面输进材料参数,进进ANSYS主菜单Preprocessor->Material Props-> Material Models菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic 属性,输进材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。 (6) 继续给Material Model Number 1添加Density属性,输进密度为7800。 (7) 继续给Material Model Number 1添加Damping属性,采用参数化建模,输进阻尼类型为Constant,数值为DAMPRATIO

结构地震反应谱分析实例

在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X 与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0<T<=0.04 秒 0.4853*(0.10/T)^(-0.686) 0.04<T<=0.1 秒 0.4853 0.1<T<=1.2 秒 0.4853*(1.2/T)^1.5 1.2<T<=4 秒 以下是命令流程序 ---------------------------------------------------------------------------------------------------- /filname,SPEC,1 /PREP7 !定义单元类型及材料特性 ET,1,45 MP,EX,1,2.8E10 MP,DENS,1,2.4E3 MP,NUXY,1,0.18 !建立模型 BLOCK,0,1,0,1,0,5 !网格剖分 ESIZE,0.5 VMESH,all /VIEW,,-0.3,-1,1 EPLOT FINISH /SOLU !施加底部约束 ASEL,,LOC,Z,0 DA,ALL,ALL ALLSEL !施加自重荷载 ACEL,0,0,10 !进行模态求解

ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom lcwrite,11

简支梁的地震响应分析

简支梁的地震响应分析 /PREP7 !进入前处理模块 /TITLE, EX 8.4(3) by Zeng P, Lei L P, Fang G ET,1,BEAM3 !设定1号单元 L=240 $A=273.9726 $H=14 $I=1000/3 !设定几何参数 R,1,273.9726,(1000/3),14 !设定1号实常数(梁单元) MP,EX,1,3E7 $MP,PRXY,1,0.3 $MP,DENS,1,73E-5 !设定弹性模量, 泊松比, 密度 K,1,0,0 $K,2,L,0 !生成两个关键点 L,1,2 !由关键点生成线 ESIZE,,8 !设定单元网格划分的分段数 LMESH,1 !对1号线划分单元网格 NSEL,S,LOC,X,0 !选择位置x=0的节点 D,ALL,UY !对所选择的节点施加位移约束UY=0 NSEL,S,LOC,X,L !选择位置x=L的节点 D,ALL,UX,,,,,UY !对所选择的节点施加位移约束UX=UY=0 NSEL,ALL !选择所有节点 FINISH !结束前处理模块 /SOLU !进入求解模块 ANTYPE,MODAL !设定模态分析方式 MODOPT,REDUC,,,,3 !设置缩减算法,提取3阶模态 MXPAND,1,,,YES ! 设定模态扩展的阶数为1,并计算单元及支反力结果 M,ALL,UY !对所有节点定义主自由度UY OUTPR,BASIC,1 !设置输出结果的方式 SOLVE !进行求解 *GET,F1,MODE,1,FREQ !提取第一阶模态频率,赋给F1 FINISH !结束 /SOLU !进入求解模块 ANTYPE,SPECTR !设定谱分析方式 SPOPT,SPRS !设定单点激励谱分析 SED,,1, !设定单点激励的方向为Y轴 SVTYP,3 !指定单点响应谱类型为地震位移谱 FREQ,.1,10 !设定频率数据表格的频率点 SV,,.44,.44 !设定频率数据表格的对应于频率点的激励值SOLVE !进行求解 *GET,F1_COEF,MODE,1,MCOEF !提取模态1的谱分析结果的模态系数FINISH !结束求解 /POST1 !进入一般性后处理模块 SET,1,1,F1_COEF !调出第1阶模态的结果,并乘以模态系数PRNSOL,DOF !打印节点结果 PRESOL,ELEM !打印单元结果 PRRSOL,F !打印支反力结果

地震反应谱的绘制

地震时程曲线与反应谱的绘制 ①地震反应谱的意义 地震反应谱表示的是在一定的地震动下结构的最大反应,是结构进行抗震分析与设计的重要工具。 由于同一结构在遭遇不同的地震作用时的反应并不相同,单独一个地震记录的反应谱不能用于结构设计。但是地震记录的反应谱又有一定的相似性,我们可以将具有普遍特性记录的反应谱进行平均和平滑处理,以用于抗震设计。现在,地震反应谱不但是工程抗震学中最重要的概念之一,还是整个地震工程学中最重要的概念之一。 ②地震反应谱的计算方法 反应谱的计算方法涉及到时域分析方法和频域分析方法。 时域分析方法中的Duhamel 积分,是现在公认精度最高的方法。 绝对加速度反应谱公式如下:(推导略) 但由于实际结构系统的阻尼比ξ通常都小于0.1,所以有阻尼系统和无阻尼系统的自振 周期ω近似相等即由ωζω21-=d (精确度≥99.5%)简化成ωω=d ,实际计算中通常按无阻尼系统的自振周期确定。 从而上式可以简化为 ()()()max 00max sin )(?-==--t t a d t e x t a S ττωτωτζω ③用matlab 画地震时程曲线与绝对加速度反应谱: 所需准备软件: excel ,notepad2,matlab 以NINGHE 地震波为例 Code : %NINGHE 地震波时程曲线 % 加载前用excel 和notepad 对数据进行规整

load NINGHE.txt; % 数据放在安装文件的work目录下 NUMERIC=transpose(NINGHE); % matlab read the data by column, ni=reshape(NUMERIC,numel(NUMERIC),1);% make the date one column t_ni=0:0.002:(length(ni)-1)*0.002; % determine the time plot(t_ni,ni); ylabel('Acceleration'); xlabel('time'); title('NINGHE') %NINGHE绝对加速度反应谱 load NINGHE.txt; NUMERIC=transpose(NINGHE); ni=reshape(NUMERIC,numel(NUMERIC),1);%make the date one column d=0;%d is damping ratio for k=1:600; t(k)=0.01*k;%规范的加速度反应谱只关心前6秒的值 w=6.283185/t(k); t_ni=0:0.02:(length(ni)-1)*0.02; Hw=exp(-1*d*w*t_ni).*sin(w*t_ni); y1=conv(ni,Hw).*(0.02*w);y1=max(abs(y1));%卷积积分 c(k)=y1*10; end;plot(t,c,'black')

结构抗震课后习题答案解析

《建筑结构抗震设计》课后习题解答建筑结构抗震设计》第 1 章绪论 1、震级和烈度有什么区别和联系?震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为 6 度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50 年年限,被超越概率为63.2%;中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。

三 设计地震动反应谱确定的规范方法

三设计地震动反应谱确定的规范方法 设计地震动是通过对地震环境和场地环境的分析判断和分类方法确定。工程勘察单位至少提供: 设计基本地震加速度和设计特征周期 场地环境:覆盖层厚度、剪切波速、土层钻孔资料 1.设计基本地震加速度和设计特征周期 根据场地在中国地震动参数区划图上的位置判断确定。

土层剪切波速的测量应符合下列要求: 1 在场地初步勘察阶段对大面积的同一地质单元测量土层剪切波速的钻孔数量不宜少于3。 2 在场地详细勘察阶段对单幢建筑测量土层剪切波速的钻孔数量不宜少于2 个数据变化较大时可适量增加对小区中处于同一地质单元的密集高层建筑群测量土层剪切波速的钻孔数量可适量减少但每幢高层建筑下不得少于一个。 3 对丁类建筑及层数不超过10 层且高度不超过30m 的丙类建筑当无实测剪切波速时可根据岩土名称和性状按表 4.1.3 划分土的类型再利用当地经验在下表的剪切波速范围内估计各土层的剪切波速.

建筑场地覆盖层厚度的确定应符合下列要求: 1 一般情况下应按地面至剪切波速大于500m/s 的土层顶面的距离确定(且其下卧层沿途的剪切波速均不小于500m/s)。 2 当地面5m 以下存在剪切波速大于(其上部各土层)相邻上层土剪切波速2.5 倍的土层且其下卧岩土的剪切波速均不小于400m/s 时可按地面至该土层顶面的距离确定 3 剪切波速大于500m/s 的孤石、透镜体应视同周围土层 4.土层中的火山岩硬夹层应视为刚体其厚度应从覆盖土层中扣除

例题:某类建筑场地位于7度烈度区,设计地震分组为第一组,设计基本地震加速度为0.1g,建筑结构自振周期T=1.4s,阻尼比为0.08,该场地在建筑多遇地震条件下地震影响系数a为多少。 同一个场地上甲乙两座建筑物的结构自震周期分别为T甲=0.25sT乙=0.60s,一建筑场地类别为Ⅱ类,设计地震分组为第一组,若两座建筑的阻尼比都取0.05,问在抗震验算时甲、乙两座建筑的地震影响系数之比最接近下列那个选项。 A 1.6 B 1.2 C 0.6 D 条件不足无法计算 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s (3)12-24m粗砂土=230 =310m/s (4) 24-45m硬塑粘土=260 =300m/s (5)45-60m泥岩=500 =520m/s 建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时 (1)进行第一阶段设计时,地震影响系数应取多少 (2)进行第二阶段设计时,地震影响系数应取多少 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s

ANSYS地震响应分析讨论

地震响应分析 1模态组合就是根据模态分析中的几阶振型(也可以少于这几阶,看你要求的精度)进行组合(类似于结构最不利组合),从而求出地震响应的最大值。 2组合各振型反应的最大值,求得结构地震响应的最大值。 这个问题在论坛上已经有很多人问过,也有各种各样的回答,但是至今没有令人满意的解答。我自己试过很多种方法,加上论坛上其他人提到的方法,大致归类如下: 1.先做静力恒载工况分析,打开预应力pstres开关;然后转到时程分析。 结果:恒载对后面的时程计算不起作用,时程计算依然从0开始。 2.直接在antype,trans中考虑恒载:先把timint,off加acel,,9.81,打开应力刚化,sstif,on,lswrite,1,然后timint,on开始时程计算。 结果:恒载9.81起作用了,但结果是错的,它被积分了。 3.不用什么前处理,直接把9.81加在地震波上acel,9.81+ac(i)。 结果,同2,9.81带入了积分,这个9.81相当于阶跃荷载,而不是产生恒载。 4.ansys帮助中施加初始加速度的方法(篇幅限制请自己看帮助)。 结果,同2、3,9.81还是带进时间积分。 5.这种是我受到别人的启发,通过结构受ramp荷载的特点施加的,可以近似的解决问题。 即1)求出结构的自振一阶频率w 2)令tr=1/w 3) 定义ramp荷载为从0到tr加到9.81,然后在整个时间积分中保持不变 4)antype,trans中分几个荷载步将荷载从0加到9.81 5) 在随后的荷载步中acel,,9.81+ac(i) 这种做法虽然也是将9.81++加到地震波中,但是因为满足TR的要求,所以这个动力效应被削弱到了静力效应,它作用在结构上就像静载一样。对于单自由度结构理论上跟静载是完全一样的,但是多自由度会子静力效应上下很小的范围内波动,所以可以认为相当于静载的作用,这样我们就可以达到考虑恒载的目的了。 第5种是我至今为止考虑恒载的做法,我也很想知道还有没有更简单精确的方法,或者在前4种方法中就有只是我使用不正确,希望大家能一起来讨论,彻底解决这个问题。谢谢! 地震反应怎么考虑重力 SOLU ANTYPE, TRANS TRNOPT,FULL TIMINT,OFF !*先关闭时间积分效应 TIME,1E-8 !*设一个极短的积分时间 acel,,9.8 NSUBST,2 !有时候子步数要增大 KBC,1 LSWR,1 !*把这个写入第一步 TIMINT,ON !*然后再时间积分效应开关,以后就正常写载荷步了 这种方法应该是对的,ANSYS帮助文件中也有提到, 可是,有一个问题:由于是阶跃荷载,就会产生动力效应,整个结构的变形大于实际的情况吧?这样与实际结构在重力下受到的变形就不一样了!

ABAQUS地震反应谱分析

ABAQUS反应谱法计算地震反应的简单实例 Fan.hj 2010年4月4日 清明小长假,琢磨了下ABAQUS如何进行地震反应谱计算。现通过一小算例说明。 问题描述: (本例的问题引用《有限元法及其应用》一书中陆新征博士ANSYS算例的问题) 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg的集中质量。反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。 图1 计算对象 几点说明: ●本例建模过程使用CAE; ●添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; ●*Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入; ●ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。 (2)进入Part模块,点击create part,命名为column,3D、deformation、wire。OK (3)Create lines:connected,分别输入0,0;0,3;0,6;0,9;0,12。OK。退出sketch。(4)进入property模块,create material,name:steel,general-->>density,mass density:7800,mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio: 0.3.OK

基于Matlab求解建筑结构地震响应的时程分析法_孟宪萍 (1)

2008年第6期总第120期 福 建 建 筑 F u j i a nA r c h i t e c t u r e &C o n s t r u c t i o n N o 6·2008 V o l ·120 基于M a t l a b 求解建筑结构地震响应的时程分析法 孟宪萍 (开封市供水总公司 475004) 摘 要:本文基于m a t l a b 阐述了我国《建筑抗震设计规范》(G B 50011-2001)规定的求解建筑结构地震响应的时程分析法,应用m a t l a b 语言编制了时程分析法求解建筑结构地震响应的计算程序,并以一三层钢筋混凝土结构为工程算例,应用基于m a t l a b 的时程分析法进行结构的地震响应计算。结果表明,基于m a t l a b 的时程分析计算效率较高。关键词:M A T L A B 地震响应 时程分析法 中图分类号:T U 312+.1 文献标识码:A 文章编号:1004-6135(2008)06-0038-03 T h e t i m e -h i s t o r y m e t h o db a s e d o nm a t l a b o f r e s o l v i n g t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s M e n g X i a n p i n g (K a i f e n g Wa t e r S u p p l y C o m p a n y 475004) A b s t r a c t :I nt h i s p a p e r ,t h e t i m e -h i s t o r y m e t h o dw h i c h i s m e n t i o n e d i n t h e c o d e f o r s e i s m i c d e s i g n o f b u i l d i n g s (G B 50011-2001)t o r e s o l v e t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s i s d i s c u s s e d b a s e d o nm a t l a b .T h e c a l c u l a t i o np r o g r a m s o f t h et i m e -h i s t o r y m e t h o da r e w o r k e do u t u s i n g t h e l a n g u a g e m a t l a b .T a k i n g a t h r e es t o r y r e i n f o r c e d c o n c r e t e f r a m e s t r u c t u r e a s a ne x a m p l e ,t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e i s r e s o l v e d b y u s i n g t h e c a l c u l a t i o n p r o g r a m s o f t h e t i m e -h i s t o r y m e t h o d .T h e r e s u l t i n d i c a t e s t h a t T h e t i m e -h i s t o r y m e t h o d b a s e do n m a t l a bo f r e s o l v i n gt h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s i s e f f i c i e n t .K e y w o r d s : M A T L A B e a r t h q u a k e r e s p o n s e t i m e -h i s t o r y a n a l y s i s m e t h o d 作者简介:孟宪萍,女,1966年出生,主要从事建筑结构设 计及建筑咨询。 收稿日期:2008-03-25 1 引言 我国《建筑抗震设计规范》(G B 50011-2001)第5章对时程分析法的使用情况作出了规定。时程分析法又称为直接动力法或逐步积分法。采用时程分析法可以计算出结构在地震过程中每一瞬时的反应,可用来求解建筑结构的几何及物理线性与非线性动力响应。与经典的反应谱方法相比,有很多的优点,但是它也存在许多不足,主要有计算模型的合理选择困难;地震波输入的不确定性;在计算过程中要进行刚度矩阵等的不断修正,每一时刻的结果都受到此刻之前的结果的影响等,导致计算分析工作量较大。虽然目前在结构弹塑性时程分析时,结构动力增量微分方程已有较为成熟的算法以及相关的大型分析软件可以利用,但是其计算分析工作量仍然十分繁重,不但耗费机时,结果处理复杂,而且同计算者本身的经验和对结构在地震作用下的损伤形态和破坏顺序的 假定相关,这些都带有一定的主观性。但是随着计算机的普及,时程分析法正逐步被抗震规范接受。本文在详细阐述了时程分析法基本原理基础上,结合m a t -l a b 语言编制了时程分析法求解建筑结构地震响应的计算程序,并以一三层钢筋混凝土结构为例进行验证。 2 时程分析法基本原理 2.1 结构在地震作用下的动力微分方程 多自由度体系建筑结构在地震作用下的运动运动微分方程为 [M ]{x ·· }+[C ]{x · }+[K ]{x }=-[M ]{x ·· g } (1) 其中,[M ],[C ],[K ]分别为建筑结构质量、阻尼和刚度矩阵,{x ·· g }为地面运动加速度。2.2 建筑结构的计算模型 建筑结构计算模型一般应根据结构形式及构造特点、分析精度以及计算机容量等情况确定。用时程分析法求解时,由于计算工作量大,在尽量真实再现结构动力反应特点的前提下,尽可能对结构予以简化。对于传统的多层房屋结构,最简单且应用最广的模型是层间剪切模型,如图1所示,在这种模型中,房

浅析土木工程结构地震反应分析方法

2012Vol.44No.1林业科技情报 浅析土木工程结构地震反应分析方法 王亚芝 (黑龙江省林业设计研究院) [摘要]近年来世界范围内频繁发生特大地震,其中包括我国2008年的汶川大地震,日本2011年的大地震,其震害及其次生灾害造成了巨大的人员伤亡和国民经济损失。笔者针对土木工程结构抗震一直是当今研究的热门课题这一重点主线,详细介绍了土木工程抗震领域的主要研究方法。 [关键词]土木工程结构;地震反应;反应谱法;非线性时程分析;Pushover;IDA Earthquake Reaction Analysis Method Of Civil Engineering Structure Wang Yazhi (Forest Design And Research Institute Of Heilongjiang Province) Abstract:There are especially big earthquakes in the world frequently in recent years,including the earthquake of 2008in China and2011in Japan.They caused large casualties and national economy loss.Civil engineering struc-ture anti-seismic is a hot task.This paper introduces the main research method in the anti-seismic field of civil engineering structure. Key words:civil engineering structure;earthquake reaction;response spectrum method;non-linear time-histo-ries;Pushover;IDA 地震作用理论是研究地震时地面运动对结构物产生的动态效应,结构的地震反应取决于地震动力和结构动力特性两个方面,因此,地震反应分析方法的发展是随着人们对这两方面的认识逐渐深入而提高的。目前世界各国的土木工程结构抗震设计规范中普遍采用的是确定性地震反应分析方法,本文就目前普遍采用的以下四种地震反应分析方法进行详细的阐述。 1动力反应谱分析方法 动力反应谱理论是目前土木工程结构抗震设计中比较常用的一种分析方法。采用动力反应谱方法计算土木工程结构动力响应包括以下几个方面:第一,是确定抗震设计的反应谱,第二,将结构震动方程进行振型分解,根据场地土的平均剪切模量或场地土的剪切波速、质量密度和分层厚度实测反应谱求得每个自由的振子在各个阶段求得振型反应最大值。第三,动力反应谱分析在土木工程结构反应中的最大值可以通过SRSS或者CQC方法将各个不同的振型反应的最大值进行组合,在实际分析中所要考虑的自由度数和振型模态数要确保在纵向和横向获得90%的振型参与系数。 2非线性时程分析方法 时程分析法是20世纪60年代逐步发展起来的一种抗震分析方法。用于进行超高层建筑结构的抗震分析和工程抗震研究等。到80年代,已经成为很多国家抗震设计规范和抗震研究工作的分析方法之一。动态时程分析法是结构在地震动作用下的响应时程,可详细了解结构在整个地震持续时间内的结构响应过程,同时反应出地震动的振幅、频谱及持续时间内对结构的影响。时程分析通过结构构件内力的变化及构件逐步开裂可求出弹性和非弹性阶段的结构的内力与变形。这时结构的薄弱部位的位移即将达到最大值,从而造成结构的最终破坏,直至倒塌的全过程。 动态时程分析方法是随着强震记录的增多和计算机技术的广泛应用而迅速发展起来的以研究结构抗震的一种分析方法。动态时程分析理论考虑了反应谱不能计算结构和结构构件在每个时刻的地震反应包括内力和变形等。对于复杂结构体系,振型密集以及结构受到强烈地震时发生非线性反应的情况下,能够更真实地反映出结构的地震反应,从而能更精确细致地反映出结构的薄弱部位。因此采用动态时程分析理论进行地震反应分析和抗震设计成为在抗震领域比较常用的一种分析方法。但是,动态时程分析方法计算量比较大、耗时多、建立模型复杂,而且需要对计算结果进行整理做统计分析等。3静力弹塑性分析方法(Pushover) Pushover方法是目前常用的一种静力非线性分析方法,国内外学者都对其进行了广泛的研究。Pushover分析的基本思路是用一个单自由度体系来等效实际结构,代替多自由度体系,通过研究等效单自由度体系的地震弹塑性反应来预测实际结构的 · 36 ·

相关文档
最新文档