锂电池中文版

导电剂在磷酸铁锂电池中的应用

导电剂在磷酸铁锂电池中的应用 作为最有希望的电动车用锂离子动力电池,磷酸铁锂动力电池具有安全性极佳,循环寿命很长,能量密度高等优点。但是如何提高它的倍率性能,改善其高低温特性,使之满足混合电动车和纯电动汽车的使用要求,是磷酸铁锂电池制造商面临的重要问题。改进磷酸铁锂动力电池的倍率性能和高低温性能,首要的办法是正负极材料的纳米化、掺杂和碳包覆,其次是合理的选择和使用导电剂,三是选择低温电解液,当然还有合理的结构设计,合理选择隔膜等,本文主要介绍导电剂在磷酸铁锂电池中的应用,介绍如何合理选择导电剂,如何合理使用导电剂,从而提高磷酸铁锂电池的倍率性能和高低温性能,延长磷酸铁锂电池的使用寿命。 一、磷酸铁锂电池的工作原理 磷酸铁锂电池的工作原理如下图-1和下图-2所示: 图-1:磷酸铁锂电池的工作原理图 图-2:磷酸铁锂充放电时的晶格结构示意图

1、电池充电时,Li+从磷酸铁锂晶体的010面迁移到晶体表面,在电场力的作用下,进入电解液,穿过隔膜,再经电解液迁移到石墨晶体的表面,然后嵌入石墨晶格中。与此同时,电子经导电体流向正极的铝箔集电极,经极耳、电池极柱、外电路、负极极柱、负极耳流向负极的铜箔集流体,再经导电体流到石墨负极,使负极的电荷达至平衡。锂离子从磷酸铁锂脱嵌后,磷酸铁锂转化成磷酸铁,其晶格结构变化如上图-2。 2、电池放电时,Li+从石墨晶体中脱嵌出来,进入电解液,穿过隔膜,再经电解液迁移到磷酸铁锂晶体的表面,然后重新经010面嵌入到磷酸铁锂的晶格内。与此同时,电池经导电体流向负极的铜箔集电极,经极耳、电池负极柱、外电路、正极极柱、正极极耳流向电池正极的铝箔集流体,再经导电体流到磷酸铁锂正极,使正极的电荷达至平衡。 从磷酸铁锂电池的工作原理可知,磷酸铁锂电池的充放电过程需要锂离子和电子的共同参与,而且锂离子的迁移速度与电子的迁移速度要达至平衡。这就要求锂离子电池的正负电极必须是离子和电子的混合导体,而且其离子导电能力和电子导电能力必须一致。但是众所周知,磷酸铁锂的导电性能很差。而石墨负极的导电性虽然要好一些,但是要实现大倍率放电时,仍然需要改善负极的导电性,使其的电子导电能力与锂离子从石墨中脱嵌的能力达至平衡。 为了解决磷酸铁锂电池正负极的导电问题,1、必须在电池的正负极中加入导电剂,使之在电池的活性材料中形成如图-3模型和图-4的电镜照片所示的有效的导电网络。2、如果将电池的离子传导能力设为I,电子传导能力设为E,则理论上I=E;3、为了保证电池在充电和放电过程中,电荷保持动态平衡:I正极=I电解液=I隔膜=I电解液=I负极,E正极=E正极集流体=E极耳=E正极柱=E外电路=E负极柱=E负极耳=E负极集流体=E负极。(这三个等式实际上是锂离子动力电池设计的重要原则,但是,在实际设计过程中和实际生产过程中,如何实现上述三个等式,还需要设计一系列的实验来进行验证,建立数学模型或者建立经验公式,然后通过这些模型或者公式来进行锂离子电池的设计) 图-3:导电网络示意图

《锂离子电池应用》word版

国海军对其使用的所有锂电池都要根据NA VSEA指南9310.1b和技术手册S9310-AQ-SAF-010进行安全性评估。描述了对战场准备自主水下航行体(BPAUV)上锂离子电池进行的安全性测试试验;也给出了由海军水面战中心(NSWC)Carderock实验室所做的

LiNi x Co(1-x)O2由LiNiO2材料改性得到,是一种高容量的锂离子正极材料,比容量比LiCoO2高30%左右,具有很好的比功率特性,价格相对低廉。但是由于这种材料的合成相对困难、吸水性较强、与电解液的相容性较差、安全性较差等原因,并未得到广泛的推广。目前世界上应用最好的是SAFT公司,其利用LiNi x Co(1-x)O2正极材料制造的各种型号的锂离子电池已广泛应用于卫星、UUV以及各类便携式电子设备上。 LiNi1/3Co1/3Mn1/3O2是另一种高容量的正极材料,集合LiNiO2、LiCoO2和LiMnO2的优点,可逆比容量可以达到160mAh/g以上,是非常有前途的正极材料。此材料不仅有比容量高的优势,而且安全性也相对较好,价格相对较低,与电解液的相容性好,循环性能优异,是最有可能在小型通讯和小型动力领域同时应用的电池正极材料,甚至有在大型动力领域应用的可能。 LiMn2O4是LiCoO2外研究最早的正极材料,它具有较高的电压平台,较高的安全性和低廉的价格,在大容量动力电池领域有广阔的应用前景;但是其较低的比容量(110mAh/g),较差的循环性能(300次),特别是高温循环性能差使得其应用受到了较大的限制。尽管经过这几年的研究,LiMn2O4的性能得到了较大的提高,但高温循环性能依然是使用的一个瓶颈。目前国内以锰酸锂为正极材料制造锂动力电池最成功的厂家为北京中信国安盟固利公司。其生产的大容量动力型锰酸锂电池经过了两到三年的示范运行,成为配套2008年北京奥运会电动汽车的唯一电池。 LiFePO4是最近两年才快速发展起来的正极材料,其较高的安全性能,良好的耐高温特性,优越的循环性能使得其作为动力电池和备用电源领域有广阔的应用前景。但是其也存在一些缺点,特别是其电压平台较低(3.2V),振实密度低,使其制成的电池比能量较低,而且由于磷酸铁锂制备工艺要求控制严格,批次生产质量一致性差,导致其成本居高不下。同时磷酸铁锂材料的电导率低,低温放电性能差,倍率放电差等问题也需要继续研究和改进。但是近年来在世界范围内的广泛研究已经使这些问题得到了改善,特别是低温放电性能及功率特性。日本三井造船生产的磷酸铁锂动力锂电池能够以20C的

2017071609-各种导电剂的相关性能对比

从价格上看,VGCF>KS-6>乙炔黑>SP>S-O。 从用途上看,VGCF重点用在大倍率大功率动力电池上,分散比较困难。 SP为比较常用的导电剂,价格便宜,实用 KS-6性能要优于SP,只是价格稍贵,一般为高容量电池采用 乙炔黑介于SP和KS-6之间,导电性能也较优,但是由于其体积较为蓬松,可能对材料的压实影响较大 S-O为填充型导电剂,本身导电能力不强,但是其振实密度较大,易于分散均匀,价格便宜,因而许多厂家将此导电剂与其它导电剂混用。 1、SUPER P比乙炔黑贵多了。 2、乙炔炭黑相对油炉法导电炭黑来说,可减少锂电池比容量的损失。(源于《锂离子电池中正极添加剂配比的优化研究》、《粘结剂和乙炔黑含量对石墨电极锂离子电池性能影响》与《锂离子电池导电剂研究进展》) 3、SUPER P等基本上是油炉法导电炭黑,乙炔炭黑是热裂解法导电炭黑。乙炔炭黑的纯净度比油炉法导电炭黑高。 4、乙炔炭黑有许多品种:有常规的0%、25%、50%、75%、100%等粉状压缩品,也有颗粒状炭黑,还有硅橡胶专用粉状炭黑、锂电池专用粉状炭黑、其它特殊订制炭黑等。锂电池行业要选择专用的锂电池专用炭黑,并不是所有的乙炔黑都能在锂电池行业达到最佳效果。上述乙炔黑品种中,除了颗粒炭黑之外,其它粉状炭黑价格差距不大。 导电剂: KS-6:大颗粒石墨粉(6.5μm) S-O:超微细石墨粉(常见为3-4μm) KS-15:大颗粒石墨粉(17.2μm) VGCF:气相生长炭纤维(常见为3-20μm) Super P:小颗粒导电炭黑(30-40nm),以油炉法生产为主。 乙炔炭黑:乙炔高温裂解的导电炭黑(35-40nm)。通常是指用电石制成乙炔,再把净化后的乙炔气在高温下隔绝空气进行热裂解后,冷却收集制得的高性能炭黑,俗称乙炔黑(Acetylene carbon black,简称ACET)。乙炔炭黑可以算是一种超导类炭黑。

温度对于锂电池保护板的影响

郑州正方科技: 锂电池的安全性能依然是人们考虑的主要问题之一,为此,工信部也发布了一条名为《电动自行车锂电池规格尺寸》的声明书,其目的就是为了解决市场上一锂电池鱼龙混杂这一现象,因为电动自行车上的锂电池组是由多节锂电池组成,所以也是增加锂电池安全性的一种手段。 然而决定锂电池安全性的,除了自身的电芯质量就是锂电池保护板了。锂电池保护板是让锂电池安全系数上升的直接方法,也是最有效的手段。锂电池最为忌惮的就是过充过放以及短路还有就是过热。过充和过放直接导致的后果就是使得锂电池本身的损耗加大,其性能以及使用循环周期都会倒退一大步,而且最主要的一点,如果长时间的过充过放很可能会导致锂电池本身发生短路现象。 不管是直接短路还是间接造成短路。短路对于锂电池来讲是一件很可怕的事情,网上发生的一些关于锂电池爆炸的新闻都是因为锂电池本身发生了短路现象,使得锂电池内部瞬间电流急剧增大,最终撑破外壳,发生爆炸。造成了很多人员伤亡。锂电池保护板起初也正是为了解决锂电池的短路问题才被生产出来的。 除了短路,对于锂电池影响很大的则是温度。其实受温度影响最大的是锂电池保护板,如果一节锂电池在高温下工作,先不说自身电芯收到的影响,锂电池保护板中的热敏电阻以及MOS管在长时间的高温下会逐渐忍受不了这种温度,从而受到损坏,一旦保护板中的MOS管以及IC芯片受到损坏,那么锂电池保护板的保护板功能就会

失效,此时高温状态下工作的锂电池发生意外的几率可就大大提高了。而且造成的后果会更严重。 高温状态下的锂电池除了安全性能不能得到保证,最主要的一点就是对于锂电池自身的损耗也是极大的。长时间的在高温状态下工作,会使得锂电池的性能大幅度下降,而且锂电池的容量也会逐渐减小。这也就是为什么我们的手机电池或者笔记本锂电池经常不关机或者使用时间过长,这样工作一点时间后,很多人都发现,自己的电池不耐用了,充满电后,很快就被使用待机,主要原因就是上述所讲的温度。 所以在使用锂电池的时候要时刻注意其工作状态以及工作环境。同时不要长时间的在高温下进行工作,原因在上述内容中已经提到,对锂电池以及锂电池保护板都是有影响的。总之一点,循规蹈矩的使用锂电池就好!

锂离子电池正极材料锰酸锂的合成工艺及性能研究

江西理工大学 开题报告 论文题名: 锂离子电池正极材料Li4Mn5O12的合成工艺及性能研究 申请学位级别:学士学位 专业名称: 无机非金属材料 学号: 1 1 姓名:程雨之 导师姓名、职称:张骞讲师 2012年2月20日

1课题来源 (3) 2选课目的 (3) 3国内外锂离子电池正极材料锰酸锂Li4Mn5O12的研究进展.. 3 3.1 Li4Mn5O12的性能的研究进展 (4) 3.2 Li4Mn5O12的合成工艺研究进展 (5) 4锰酸锂材料的应用 (5) 5锰酸锂材料的合成工艺 (6) 5.1高温固相法 (6) 5.2溶胶-凝胶法 (6) 5.3微波合成法 (7) 5.4水热合成法 (7) 5.6 Li4Mn5O12低热固相合成 (7) 6实验方案 (8) 6.1实验和研究所需器材 (8) 6.2 实验研究方案 (8) 7.可行性分析 (8) 8.工作进度安排 (8) 9. 参考文献 (9)

1课题来源 本课题来自指导教师的科研课题。 2选课目的 锂离子电池是性能卓越的新一代绿色高能电池,已成为高新技术发展的重点之一。它以其高电压、高容量、低消耗、无记忆效应、无公害以及体积小、内阻小、自放电少、循环次数多等显著特点在众多的电池脱颖而出。而其中正极材料的研究大为热门。 目前商业化的锂离子电池所用的正极材料主要以LiCoO2为主。但为了降低材料成本、充分利用储量大、价格低的自然资源, 开发和生产锰酸锂作为锂离子电池的正极材料显得具有重要的意义。近年来,已经商业化的锂钴氧化物的价格不断攀升和该正极材料对环境的潜在威胁,促使人们加快了锂锰氧化物的研究步伐.尖晶石型锂锰氧化物是其中一个主要研究方向。而其中掺锂的富锂尖晶石Li4Mn5O12的良好循环性能引起了人们的重视[1]。这是由于掺锂不像其它掺杂剂那样,不会在改善样品循环性能的同时减小样品的理论放电容量。而目前对于Li4Mn5O12的研究比较少,研究表明[2],Li4Mn5O12的理论比容量可达到163mAh/g。在充放电过程中,Li4Mn5O12的晶胞膨胀率较小,具有高容量利用率等优点,但合成较困难。对此,在本次论文中,对制备Li4Mn5O12正极材料的工艺进行了深入的探讨。 3国内外锂离子电池正极材料锰酸锂Li4Mn5O12的研究进展随着世界的发展和地球人口的不断增多,人们对能源和天然资源的消费也随之增长了十倍,使得能源和资源面临枯竭。因而如何提高能源利用率,发展新的绿色能源是人类迫在眉睫的大问题。 在研究过程中,锂离子电池是二十世纪末发展起来的一种新型的绿色环电池。它有许多其他电池不可比拟的优点:平均工作电压高,比能量高,体积小,质量轻,可高速率放点,自放电率低,循环寿命长,无毒,无记忆效应等优异性能。但是作为一种尚在发展中的新型化学能源,锂离子电池也存在一些不足之处:锂离子电池的内部阻抗高,工作电压变化打,生产成本高,主要是正极材料的原材料的价格高,锂离子电池中必须有特殊的保护电路,以防止其过充电。与普通电池相比相容性差,由于工作电压高,所以一般要再用3节普通电池的情况下,才可以用一节锂离子电池代替。 而在锂离子电池整个体系的锂源中,以Mn资源在自然界中最为丰富,锰酸锂的尖晶石相结构又相对稳定,制备简单,且对环境友好,因此,制备性能优良的锰酸锂正极材料,对于锂离子电池的进一步商业化有着重要的意义。

动力电池的主要问题与发展方向

首先看我们国家的发展现状。我们的判断第一个是基本掌握了车用动力电池的关键技术,我们国家动力电池的开发,和整车基本同步,十五期间开展了镍氢电池,、锰酸锂氧化物锂离子电池、燃料电池的研发,"十一五"期间加大了磷酸铁锂电池研发与产业化,"十二五"期间推进三元材料电池的研发与产业化。目前是处于这样一个阶段。 从技术上来讲,我们国家开发了镍氢电池,锂离子燃料电池,关键技术指标达到了国外同类产品的一个先进水平,目前我们锂电池可以做到系统的比能量800-1000瓦时,比功率可以做到500-100瓦时,循环寿命也能做到突破一千次,使用寿命大概是可以达到五年,成本大概是说可以低于每瓦时三块钱。 第二个从产品层面来看,磷酸铁锂电池已经趋于成熟了,过往来看,我们国家供应电池支撑了产业的发展,目前在大规模示范这一块用的电池基本上都是国产。根据目前工信部发布的新能源汽车推广目录,我们国家车用电池,绝大多数是磷酸铁锂电池,也就是说近两年来,三元材料的动力电池开始在电动汽车上进行示范应用。大家比较清楚的比亚迪的汽车用的是盐酸铁力电池,像上汽,北汽这些电池系统都是磷酸铁锂。一汽奔腾目前是示范车,他用的电池是168,采用了三元材料。 第三个来说是我们国家建立了比较完善的产业体系,昨天我们听到了2014年我们国家电动汽车的销量大概是8.4万辆左右,如果按照每辆车在20-30,大概应该说我们电池达到了20亿千瓦时以上,销售收入应该超过了50亿元,2015年会超过100亿瓦时。我们国家现在推进动力电池产能建设,估计2015年会超过一百亿千瓦时。第二个我们国家建立了比较完整的产业体系,关键材料、单体电池、电池系统和电池装备、检测仪器等都有一定的生产能力,像北大先行、天津巴莫、北京当省,这是正极材料,负极材料像贝特瑞,杉杉等在国际上还是有一定的竞争力。 从发展趋势上来看,我们全世界的情况来看,第一个是锂离子电池已经成为动力电池的主要方向。目前大家都很清楚,目前日本,美国、欧洲、韩国商业化的电池主要是采用燃料电池。目前混动这一块也是在推动力锂电池的应用。韩国、日本、中国在全球锂电池占主导地位,排序是韩国第一、日本第二,中国第三。 最近三星、LG和SK先后宣布在中国设立合资公司,我们国家主流的车厂也准备在他的自主品牌汽车中采用韩国生产的电池。 第二个特点是我国政府大力支持新一代动力电池的研发,2012年日本实施蓄电战略,提出2020年蓄电池市场要占到世界份额的50%,就是重新夺回世界第一的位置。根据2013年NEDO发布的技术路线图,他的技术路线在2020之前大概还是以先进的锂离子电池为主,达到实用化,系统的比能量达到250瓦每公斤成本达到1.5元以下,2030年叫做革新电池,能量达到500瓦每公斤,成本达到八毛钱以下。 美国在2013年提出来EV蓝图,提出目标是2022年生产的插电式混合动力的电动汽车使用的电力成本与传统汽车相当,根据2013年发布的技术路线图是2022年下一代电池实现实用化,系统的比能量达到250瓦每公斤,成本降到八毛以下,2013年以后锂离子电池实现实用化。 从新一代锂离子电池来讲主要是在我们国家大概一般的叫做新一代动力电池的研发主要围绕新一代锂离子动力电池和新体系电池。新一代锂离子电池和目前现有的体系不一样,正极材料,负极材料,电极都要发生发生变化,电池比能量可以达到三百瓦每公斤,成本可以达到一块钱以下。这个表里面列了两件事,一个是最近日立公司宣布采用镍系的正极和负极单电池的比能量作330每公斤,寿命有50次,另外是福利蒙基,作为正极,归制作为负极,寿命可以达到100。但是目前这一电池体系的成本和安全有待进一步的验证。

了解锂电池导电剂

了解锂电池导电剂 一、锂电池中加入导电剂的目的 锂电池在充放电循环中,正负极极片上有电流通过时,就会有净反应发生,表明电极失去了原有的平衡状态,电极电位将偏离平衡电位,就产生了常说的极化。锂电池极化可以分为欧姆极化、电化学极化和浓差极化。极化电压是反应锂离子电池内部电化学反应的重要参数,如果极化电压长期不合理,则会导致负极锂金属析出加快,严重情况下会刺穿隔膜导致短路。据锂电池初期实验数据,单纯依靠活物质的导电性是不足以满足电子迁移速率要求的,为了使电子能够快速移动归位,出现了导电剂的加入。 导电剂的首要作用是提高电子电导率。导电剂在具活性物质之间、活性物质与集流体之间起到收集微电流的作用以减小电极的接触电阻,提高锂电池中电子的迁移速率,降低电池极化。此外,导电剂也可以提高极片加工性,促进电解液对极片的浸润,从而提高锂电池的使用寿命。 二、常用锂电池导电剂 常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及

其混合导电浆料等)。市面上的导电剂型号有SPUER Li、S-O、KS-6、KS-15、SFG-6、SFG-15、350G、乙炔黑(AB)、科琴黑(KB)、气相生长碳纤维(VGCF)、碳纳米管(CNT)等等。 (1)炭黑 炭黑在扫描电镜下呈链状或葡萄状,单个炭黑颗粒具有非常大的比表面积(700m2/g)。炭黑颗粒的高比表面积、堆积紧密有利于颗粒之间紧密接触在一起,组成了电极中的导电网络。比表面较大带来的工艺问题是分散困难、具有较强的吸油性,这就需要通过改善活物质、导电剂的混料工艺来提高其分散性,并将炭黑量控制在一定范围内(通常是1.5%以下),炭黑形态及其在活物质中混合状态如图1所示。 (2)导电石墨 导电石墨也具有较好的导电性,其本身颗粒较接近活物质颗粒粒径,颗粒与颗粒之间呈点接触的形式,可以构成一定规模的导电网络结构,提高导电速率的同时用于负极时更

磷酸铁锂和锰酸锂的性能比较

技术探讨>>>> 磷酸铁锂和锰酸锂的性能比较 ■<卢建国喻纬冰黄震宇 摘随着世界各国对新能源电池产业的政策倾斜,锂离子动力电池作为21世纪发展的理想能源,越来越受到大家的关注。自锂离子电池在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用以后,最近两三年中,世界一流锂电企业对锂离子动力电池商业化生产的成功,不仅给UPS、移动激光电源、移动照明电源、移动通讯设备、军事领域、航空航天领域的应用带来了实质进展,更给汽车行业以动力电源取代传统能源的愿望带来了希望。 如此广阔的市场前景,使得锂离子动力电池商业化生产成为人们最为关注的焦点。中国锂电行业的相关企业自然不会放过这个机遇,纷纷开始试制或批量生产锂离子动力电池。 生产锂离子动力电池必然要对正极材料进行选择。虽然从理论上讲,可以提供选择的正极材料品种繁多,但是目前真正可以应用商业生产用途的锂离子正极材料很少,归纳下来只有磷酸铁锂、锰酸锂和三元材料。如果考虑电池的安全和循环寿命,那么只有磷酸铁锂和锰酸锂可以胜任。它们之所以能够成为动力锂离子电池正极材料的首选,和它们的结构和性能有着密不可分的联系。通过世界各国材料研究人员不懈的努力,我们对磷酸铁锂和锰酸锂的结构和性能有了下面的一些基本认识。 根据上述研究数据,我们可以了解到磷酸铁锂和锰酸锂各自存在的优势和劣势,具体比较如下表所示 : 真正从事锂电工作的人们对上述表格的结论都很清楚,磷酸铁锂和锰酸锂做为锂离子动力电池的正极材料并不存在着谁优谁劣的巨大差异。但是对行外人士来说,就很容易被磷酸铁锂下列的几个特点所迷惑: 1)常温和较高温度下循环性能极佳。这是因为它具备橄榄石结构,该结构在室温直至80℃的情况下呈现出很好的稳定性。实验室制备的单体电池在进行1C的循环测试时,有创下2000次的记录。 2)用它制备的锂离子动力电池在安全性能上表现良好。尽管这是因为其工作电压平台只有3.3V所致,但是人们往往忽视这一点。 摘要:随着世界各国对新能源电池产业的政策倾斜,锂离子动力电池作为21世纪发展的理想能源,越来越受到大家的关注。作为正极材料磷酸铁锂和锰酸锂各自存在的优势和劣势,本文希望通过对磷酸铁锂和锰酸锂的性能的比较分析,给它们一个公正和客观的评价。 关键词:锂离子动力电池 磷酸铁锂 锰酸锂 倍率 循环 低温 磷酸铁锂结构图锰酸锂结构图

磷酸铁锂动力电池维护手册 整合版

沃特玛电池有限公司 磷酸铁锂动力电池使用手册 电子部 2013-3-15 [为了方面售后服务更好的对OPT管理系统进行维护,特此制定本手册,希望对售后服务有所帮助]

前言 为应对日益突出的燃油供求矛盾和环境污染问题,世界主要汽车生产国纷纷加快部署,将发展新能源汽车作为国家战略,加快推进技术研发和产业化,同时大力发展和推广应用汽车节能技术。节能与新能源汽车已成为国际汽车产业的发展方向。新能源客车,目前正在飞速发展。 当新能源客车穿行于街市,走进人们的生活时,对它的了解和认知也就成我们的必修课。然而,在这新能源之风势在必行之际,谈到动力电池,我们中大多数的人对其都知之甚少,这其中包括很多从事纯电动客车工作的相关从业人员,也正因为如此,才给你们的工作和和生活到来了诸多的困难和疑惑。 为解决这些问题,让从事纯电动客车工作的相关从业人员对动力电池有一些初步的了解和认识,本手册将通过重点介绍磷酸铁锂动力电池和管理系统的运用与维护来让大家了解动力电池的相关知识。为了更好服务客户,让相关从业人员熟悉和掌握我公司的纯电动客车动力电池,也为更好的发挥磷酸铁锂动力电池优越的性能,做好相关的维护保养工作,特制定本手册。希望此举能为大家避免在使用或维护我公司产品时造成不必要的困扰和预防产生一些不可挽回的损失。 烦请在使用或维护沃特玛公司纯电动客车动力电池之前,详细阅读本手册!

目录第一章 第二章

第一章为何选择磷酸铁锂电池作为动力电池 电池的概念 1.1.1什么是电池 化学电源俗称为电池,是一种利用物质的化学反应所释放出来的能量直接转化为电能的装置。顾名思义,电池是装电的池子,尤如水池,电池的电压及容量类似于水池的水位高低和蓄

磷酸铁锂电池和锰酸锂电池的比较

磷酸铁锂电池和锰酸锂电池的比较(1) 2012-07-05 23:23:49 来源:维库电子 关键字:磷酸铁锂电池锰酸锂电池 随着世界各国对新能源电池产业的政策倾斜,锂离子动力电池作为21世纪发展的理想能源,越来越受到大家的关注。自锂电池在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用以后,最近两三年中,世界一流锂电企业对锂离子动力电池商业化生产的成功,不仅给UPS、移动激光电源、移动照明电源、移动通讯设备、军事领域、航空航天领域的应用带来了实质进展,更给汽车行业以动力电源取代传统能源的愿望带来了希望。 如此广阔的市场前景,使得锂离子动力电池商业化生产成为人们最为关注的焦点。中国锂电行业的相关企业自然不会放过这个机遇,纷纷开始试制或批量生产锂离子动力电池。 生产锂离子动力电池必然要对正极材料进行选择。虽然从理论上讲,可以提供选择的正极材料品种繁多,但是目前真正可以应用商业生产用途的锂离子正极材料很少,归纳下来只有磷酸铁锂、锰酸锂和三元材料。如果考虑电池的安全和循环寿命,那么只有磷酸铁锂和锰酸锂可以胜任。它们之所以能够成为动力锂离子电池正极材料的首选,和它们的结构和性能有着密不可分的联系。通过世界各国材料研究人员不懈的努力,我们对磷酸铁锂和锰酸锂的结构和性能有了下面的一些基本认识。 磷酸铁锂结构图

锰酸锂结构图 磷酸铁锂和锰酸锂性能一览表 根据上述研究数据,我们可以了解到磷酸铁锂电池和锰酸锂电池各自存在的优势和劣势,具体比较如下表所示: 真正从事锂电工作的人们对上述表格的结论都很清楚,磷酸铁锂和锰酸锂做为锂离子动力电池的正极材料并不存在着谁优谁劣的巨大差异。但是对行外人士来说,就很容易被磷酸铁锂下列的几个特点所迷惑: 1)常温和较高温度下循环性能极佳。 这是因为它具备橄榄石结构,该结构在室温直至80℃的情况下呈现出很好的稳定性。实验室制备的单体电池在进行1C的循环测试时,有创下2000次的记录。 2)用它制备的锂离子动力电池在安全性能上表现良好。 尽管这是因为其工作电压平台只有3.3V所致,但是人们往往忽视这一点。 3)原材料丰富。 这一点很容易让人们联想到磷酸铁锂制备简单和低成本。

动力电池材料(锰酸锂,磷酸铁锂,三元材料)

动力电池材料(锰酸锂,磷酸铁锂,三元材料) 文夕 电梯直达 1# 发表于2012-4-7 11:20:24 |只看该作者|| 1、锰酸锂 锰酸锂是较有前景的锂离子正极材料之一,相比估酸锂等传统正极 材料,锰酸锂具有资源丰富、成本低、无污染、安全性好、倍率性能好 等优点,是理想的动力电池正极材料,但其较差的循环性能及电化学 稳定性却大大限制了其产业化。锰酸锂主要包括尖晶石型锰酸锂和层状 结构锰酸锂,其中尖晶石型锰酸锂结构稳定,易于实现工业化生产, 目前市场产品均为此种结构。 目前市场上主要的锰酸锂有AB两类,A类是指动力电池用的材料, 其特点主要是考虑安全性及循环性。B类是指手机电池类的替代品,其 特点主要是高容量。 目前,传统认为锰酸锂能量密度低、循环性能差的缺点已经有了很 大改观(万力新能典型值:123mAh/g,400次,高循环型典型值107mAh /g ,2000次)。表面修饰和掺杂能有效改性其电化学性能,表面修饰 可有效地抑制锰的溶解和电解液分解。掺杂可有效抑制充放电过程中的 Jahn- Teller效应。将表面修饰与掺杂结合无疑能进一步提高材料的电化 学性能,相信会成为今后对尖晶石型锰酸锂进行改性研究的方向之一。 锰酸锂的生产主要以EMD和碳酸锂为原料,配合相应的添加物, 经过混料,烧成,后期处理等步骤而生产的。从原材料及生产工艺的特 点来考虑,生产本身无毒害,对环境友好。不产生废水废气,生产中 的粉末可以回收利用。因此对环境没有影响。目前A类材料的主要 指标为:可逆容量在100~115之间,循环性可达到500次以上仍保持80% 的容量。(1C充放);B类材料容量较高,一般要求在120左右,但对 于循环性相对要求较低,300次~500次不等,容量保持率可达60%以上 即可。当然,A类的价格与B类的价格上还有一定的距离。 2、磷酸铁锂 磷酸铁锂电极材料主要用于各种锂离子电池. 磷酸铁锂是一种新型锂离子电池电极材料。其特点是放电容量大, 价格低廉,无毒性,不造成环境污染。世界各国正竞相实现产业化生产。 但是其振实密度低,影响电容量,目前主要的生产方法为高温固相合成 法,产品指标比较稳定。 自1996年日本的NTT首次揭露AyMPO4(A为碱金属,M为CoFe 两者之组合:LiFeCOPO4)的橄榄石结构的锂电池正极材料之后, 1997年 美国德克萨斯州立大学John. B. Goodenough等研究群,也接着报导了 LiFePO4的可逆性地迁入脱出锂的特性,美国与日本不约而同地发表橄 榄石结构(LiMPO4), 使得该材料受到了极大的重视,并引起广泛的研究 和迅速的发展。与传统的锂离子二次电池正极材料,尖晶石结构的

温度对电池性能的影响及系统产热分析

温度对电池性能的影响 2012-11-17 10:37:43 来源:本站评论:0点击:474[收藏] 温度是电动汽车动力电源系统中控制的最主要的参数之一,也是影响电池性能的最主要的参数,在电池的所有检测制度中,必须注明温度,原因就是温度对电池性能影响比较大,包括电池的内阻、充电性能、放电性能、... 温度是电动汽车动力电源系统中控制的最主要的参数之一,也是影响电池性能的最主要的参数,在电池的所有检测制度中,必须注明温度,原因就是温度对电池性能影响比较大,包括电池的内阻、充电性能、放电性能、安全性、寿命等。 温度对放电性能的影响 温度对放电性能的影响直接反应到放电容量和放电电压上。温度降低,电池内阻加大,电化学反应速度放慢,极化内阻迅速增加,电池放电容量和放电平台下降,影响电池功率和能量的输出。 以80A·h的镍氢电池放电为例,常温下将电动汽车电池充满电,在不同温度下以1C电流放电,容量与温度的关系如图5-1所示。在一20℃,放电容量比较低,在20℃时,放电容量最大,再随着温度升高,放电容量降低,但中高温的放电容量明显比低温时放电容量大,说明中高温放电性能强于低温放电性能。这是因为温度高,有利于合金中氢原子的扩散,提高了合金动力学性能,同时电解液KOH的导电率随温度升高而增加,在高温下电解质导电率大,电流迁移能力强,迁移内阻减小,电流充放电性能增强。 温度对过电势的影响较为显著,温度越高,过电势越小,电极反应越容易进行。这是因为电极放电反应过电势由两个因素决定:①合金与电解液接触面上的电荷转移阻力;②氢原子从合金本体到表面的扩散阻力。温度升高使氢原子扩散和电荷转移速度加快,促进电极反应的进行,反应过电势减小,因而电池的放电容量升高,同样,在高温情况下,电池的放电

锂电池配料基础知识

锂电池配料基础知识 一、电极的组成: 1、正极组成: a、钴酸锂:正极活性物质,锂离子源,为电池提高锂源。 b、导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。 提高正极片的电解液的吸液量,增加反应界面,减少极化。 c、 PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。 d、正极引线:由铝箔或铝带制成。 2、负极组成: a、石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造 石墨两大类。 b、导电剂:提高负极片的导电性,补偿负极活性物质的电子导电性。 提高反应深度及利用率。 防止枝晶的产生。 利用导电材料的吸液能力,提高反应界面,减少极化。 (可根据石墨粒度分布选择加或不加)。 c、添加剂:降低不可逆反应,提高粘附力,提高浆料黏度,防止浆料沉淀。 d、水性粘合剂:将石墨、导电剂、添加剂和铜箔或铜网粘合在一起。 e、负极引线:由铜箔或镍带制成。 二、配料目的: 配料过程实际上是将浆料中的各种组成按标准比例混合在一起,调制成浆料,以利于均匀涂布,保证极片的一致性。配料大致包括五个过程,即:原料的预处理、掺和、浸湿、分散和絮凝。 三、配料原理: (一)、正极配料原理 1、原料的理化性能。 (1)钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。 锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。 (2)导电剂:非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为 2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。 (3) PVDF粘合剂:非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。 (4) NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。 2、原料的预处理 (1)钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。 (2)导电剂:脱水。一般用200 oC常压烘烤2小时左右。 (3)粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。 (4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。

最佳动力搭档——锰酸锂混合三元

锰酸锂+三元动力路线 众所周知,日韩的动力电池在全球范围内是最具实力的;毋庸置疑,日韩主流的动力路线为锰系,或者说镍锰系。 这里所说的锰系或者镍锰系都是以锰酸锂为主题,部分混合其他高能量密度的正极活性材料。由于工艺路线的不同,选用的高能量密度正极材料有所不同,比如目前公认的最好的纯电动汽车——日产聆风(leaf),其正极活性材料应该是89%的动力型锰酸锂混合11%镍酸锂,美国通用的沃蓝达(VOLT)所混合的高能量密度正极活性物质为22%的三元材料。此外,我也了解到国内某很牛的厂家使用锰酸锂时习惯性的混合一些NCA,其性能我也见识过,倍率型18650中60摄氏度可以循环600周以上(以80%为界)。 无论是镍酸锂还是NCA,其在国内的发展情况和使用情况很不理想,尽管这两种材料的能量密度很高,但是目前在国内无论是从材料还是电池两方面来看,对于工艺控制的严格要求以及材料本身稳定性不佳的缺陷短期内很难克服。 所以在这里重点说一下最有希望的一条路线:锰酸锂+三元。 之前和山东一家电池厂的技术部长谈到这条路线的时候,他说,“大家做锰酸锂+三元这条路线几乎是不约而同的。”但是从道理上来说,很多人其实并不理解。 乍一看,动力型锰酸锂的克容量由于材料本身的限制,全电池中超过100,使用难度会提高很多,至少我们认为,是不能够单独用于电动汽车动力电池的。为了满足能量密度要求,混合一些能量密度很高的其他正极材料活性物质可以提高其能量密度。其实这也是大所数厂家选择这一路线最直接的理由。 其实锰酸锂+三元的路线的优势不仅仅如此。 1.对于锰酸锂而言,添加适量的三元材料,可以达到上述提高能密度的效果。此外,另一个非常重要的原因就是,三元材料本身的PH较高,能够为锰酸锂提供一个偏碱性的环境,一直锰的溶解。有一位电池技术人员解释说,碱性的正极活性材料,可以中和电池使用中由于副反应产生的微量氢氟酸,从而减少对于锰酸锂结构的侵蚀。从使用中来看,确实如此,混合之后高温性能的提高不仅仅是因为所混合的正极材料本身具有极佳高温的稳定性,更重要的是可以使正极的主体——锰酸锂的高温性能得到明显的提高,经过彻底改性的锰酸锂的高温性能本身就已经到了一个相当的水平,辅以三元后,其高温性能完全不会逊色于其他任何正极材料。 2.对于三元而言,混合锰酸锂后,可以解决其在大容量动力产品中最大的缺陷——很难通过针刺和过冲测试。 所以说,二者的使用更显得相得益彰。 但是锰酸锂+三元也有一些弊端,还是应该注意的。 其实如果从提升能量密度的角度来看,混合越多的三元,其能量密度就会有越多的提高,但是三元的量过多的话,第一,可能是安全性能会受到影响;第二,也是很多人不知道的,如果混合三元过多的话,在放电截止电压过低时,一部分三元中的锂离子可能进入锰酸锂的 3V平台,导致锰酸锂结构受到破坏,严重影响电池性能。 我们认为,锰酸锂+三元不一定是最好的,但是无论从材料角度还是电池角度来看,无论是对于工艺的要求程度还是适合中国国情的角度来看,我们认为可能是最佳的动力路线。 谨希望本文对您有所帮助。 新正锂业吴皓

工艺参数对电池性能的影响

工艺参数对单晶硅太阳能电池性能的影响 1.1 硅片的表面处理 不管是硅片的前期加工,留下的损伤层。还是在原硅片制作为太阳能电池的生产工艺中,都需要对硅片表面进行处理,其中是主要的包括表面去损伤层和硅表面制绒。 1.1.1 表面损伤层 在切割、研磨和抛光过程中,均使晶片表面产生一层损伤层。尤其在切割和研磨过程中,晶片表面形成一个晶格高度扭曲层和一个较深的弹性变形层。迟火或扩散加热时,弹性应力消失,但产生高密度位错层。切、磨、抛过程中引进的二次缺陷,比生长单晶时产生的缺陷有时多达4 个数量级。表面损伤层里有无穷多的载流子复合中心,使光生载流子的寿命大大降低,不可能被P-N 结静电场分离。最后致使生产出的成品太阳能电池片中的漏电流过大,影响硅电池片最后整体的转换效率。 因此在单晶硅材料进行太阳能电池片加工前,必须把原始硅片切割过程中引入的损伤层尽可能的减少至最低。 主要用高浓度酸或是碱溶液对硅片表面进行近似抛光地腐蚀。将硅片在切割、研磨和抛光过程中所产生的机械损伤层去除掉。 1.1.2 表面织构化 如何提高硅片转换效率是太阳电池研究的重点,而有效地减少太阳光在硅片表面的反射损失是提高太阳电池转换效率的一个重要方法。在晶体硅太阳能电池表面沉积减反射膜或制作绒面是常用的两种方法,其中在硅片表面制作绒面的方法以其工艺简单、快捷有效而备受青睐。化学腐蚀单晶硅片是根据碱溶液对硅片的[100]和[111] 晶向的各向异性腐蚀特性,通过在单晶硅表面形成随机分布的金字塔结构绒面,增加光在硅片表面的反射吸收次数, 从而达到在硅片表面形成陷光的效果有效地降低太阳电池的表面反射率,从

而提高光生电流密度。在工业生产领域,单晶硅表面腐蚀采用的是氢氧化钠和异丙醇溶液体系,表面反射率可以控制在12%以下。 对于既可获得低的表面反射率,又有利于太阳电池的后续制作工艺的绒面,应该是金字塔大小均匀,单体尺寸在2~10微米之间,相邻金字塔之间 没有空隙,即覆盖率达到100%。理想质量绒面的形成,受到了诸多因素 的影响,例如硅片被腐蚀前的表面状态、制绒液的组成、各组分的含量、温度、反应时间等。而在工业生产中,对这一工艺过程的影响因素更加复杂,例如加工硅片的数量、醇类的挥发、反应产物在溶液中的积聚、制绒液中各组分的变化等。为了维持生产良好的可重复性,并获得高的生产效率,要求我们比较透彻的了解金字塔绒面的形成机理,控制对制绒过程影响较大的因素,在较短的时间内形成质量较好的金字塔绒面。 目前已经有许多的研究小组对单晶硅片的各向异性腐蚀过程进行了细致 深入的研究,各自给出了制备金字塔绒面的优化工艺条件。在国外的研究和 生产中,大部分的制绒液是碱(NaOH,KOH,Na2CO3,23 (CH3)NOH)与异丙醇的混合溶液。在中国,考虑到生产成本,太阳电池制造商大4 多使用价格相对较低的乙醇来替代异丙醇,与氢氧化钠的水溶液混合而成制 绒液。目前针对单晶硅片在(氢氧化钠+乙醇)的混合体系中形成金字塔绒 面的过程,尚未见详细的研究报道。 在参考已经报道的实验数据的基础上,经过大量的实验,总结出了(氢氧化钠+乙醇)的混合体系对单晶硅片进行制绒的适宜参数,从而在较短时间内(30分钟)获得色泽均匀、反射率低的绒面单晶硅片。然而当将实验室的条件下得到参数应用在生产线上时,往往在开始的几个批次,可以加工出较理想的绒面,但随着产量的增加,绒面质量急剧变差,称之为制绒液的“失效”。这种失效是由于制绒液中的主要成分一NaO和乙醇的含量,与最初的设置值已相去甚远。另外, 在绒面质量开始变差的时候,如果延长反应时间,可以加以改善。因而,我们仔细观察了随着NaO的浓度、乙醇的浓度和反应时间的变化,绒面的微观形貌和硅片表面反射率的变化情况。从本质上来讲,绒面形成的过程,就是金字塔的成核和生长的过程,一切表观参数对绒面质量的影响,究其根本就是影响了金字塔的成核或者生长。接下来从这

国内外锂离子动力电池发展概况

1 引言 锂离子动力电池具有比能量高、重量轻、绿色环保无污染等优点,应用范围广泛,其应用领域包括数码产品、家用电器、电动工具、电动汽车、航空、航天和武器装备等。随着技术的不断进步,锂动力电池安全性不断提高,锂电池单体容量越来越大,其应用于潜艇等大型军事装备的可行性也不断提高。 2 锂离子电池发展历程 二十世纪六十、七十年代发生的石油危机促使人们寻找新的替代能源。1962 年,美国军方的“锂非水电解质体系”研究报告,最早提出了把活泼金属锂引入到电池设计中的构想。1973 年,氟化碳锂原电池在日本松下电器公司实现量产,商品化锂电池面世。1978 年,日本三洋公司的锂/二氧化锰电池实现量产,锂电池价格下降,市场占有率上升。锂一次电池的成功刺激了锂二次电池的研究热潮。80 年代末,加拿大MoLi 能源公司研发的Li/Mo2 锂金属二次电池面世,第一块商品化锂二次电池诞生。1991 年6 月,日本索尼公司将液态电解液锂离子电池成功实现了商品化。自此之后,锂离子电池在便携式电源领域的市场份额不断扩展。近年来,随着一些无人电子装备(如无人水下航行器、无人机)、电动工具、电动汽车等发展的需要,锂离子电池以其高比能、长寿命、自放电小、无记忆效应和绿色环保等优点备受青睐,在动力电源领域得到迅速发展。 3 国外锂离子动力电池发展概况 日本索尼公司对锂离子电池的研究开展较早,生产的锂离子电池在性能上和品种上已经具备相当高的水平。该公司生产的圆柱型单体电池分为高能型和高功率型。其中高能型电池的比能量为110 Wh/kg,80%DOD 的比功率300 W/kg,充放电次数1200 次。高功率型的圆柱电池80%DOD 的比功率高达800 W/kg。日本三井造船生产的磷酸铁锂动力电池能以20C 的倍率放电,10C 左右的倍率进行快速充电,在3C 充放电条件下循环500 次,容量保持90%以上。日本汤潜公司(YAUSA)生产的锰酸锂电池,比能量是铅酸电池的3 倍,计划取代潜艇用铅酸电池。装有该公司锂离子电池的无人试验小潜艇已于1999年10 月完成了水下试验。法国SAFT 公司是世界著名的锂电池生产公司,其各种型号锂离子电池已广泛应用于卫星、UUV(无人水下航行器)以及各类便携式电子设备上。据美国能源杂志报道,上世纪末,SAFT英国分公司就曾与英军合作研制过一款24 V,12Ah 容量的锂电池。目前该公司生产的圆柱型单体锂离子电池比能量达到143 Wh/kg,80%DOD 的比功率为345 W/kg,为装备潜艇而制造的锂离子动力电池,单体容量为3000 Ah 级。德国瓦尔塔公司也在研制高能量密度型和高功率密度型电池。其高能密度型电池为方型,容量为60 Ah,比能量为115 Wh/kg,使用寿命达900 次(100%DOD)。在上世纪末,美军也在商品化的锂离子电池基础上展开了军事化应用。据美国能源杂志介绍,美国YARDNEY 公司已为水下军事装备研制了三款锂离子动力电池,包括:①水下无人作战平台(UUV)电池系统,总能量10 kWh,360 块单体容量8 Ah(4 并90 串),电压324 V。②全电动鱼雷高功率锂离子电池系统,由100 块单体容量25 Ah 的锂动力电池组成电池组,最大功率密度650 W/kg。③袖珍潜艇装置(ASDS-1)的高能量锂离子电池系统,2005 年首次安装于ASDS-1 艇,锂离子电池总能量1.2 MWh,单体电池能量密度170 ~200 Wh/kg[1] 。美军在水下自动航行器(AUV)中已应用锂离子电池,其功率密度达到100 Wh/kg[2]。据美国能源杂志介绍,HUGIN1000型AUV 的电池系统为聚合物锂离子电池与燃料电池组合而成[3],该系统性能先进,HUGIN1000型AUV 总

锰酸锂小知识

锰酸锂是较有前景的锂离子正极材料之一,相比钴酸锂等传统正极材料,锰酸锂具有资源丰富、成本低、无污染、安全性好、倍率性能好等优点,是理想的动力电池正极材料,但其较差的循环性能及电化学稳定性却大大限制了其产业化。锰酸锂主要包括尖晶石型锰酸锂和层状结构锰酸锂,其中尖晶石型锰酸锂结构稳定,易于实现工业化生产,目前市场产品均为此种结构。尖晶石型锰酸锂属于立方晶系,Fd3m空间群,理论比容量为 148mAh/g,由于具有三维隧道结构,锂离子可以可逆地从尖晶石晶格中脱嵌,不会引起结构的塌陷,因而具有优异的倍率性能和稳定性。 目前,传统认为锰酸锂能量密度低、循环性能差的缺点已经有了很大改观(万力新能典型值:123mAh/g,400次,高循环型典型值107mAh/g ,2000次)。表面修饰和掺杂能有效改性其电化学性能,表面修饰可有效地抑制锰的溶解和电解液分解。掺杂可有效抑制充放电过程中的Jahn-Teller 效应。将表面修饰与掺杂结合无疑能进一步提高材料的电化学性能,相信会成为今后对尖晶石型锰酸锂进行改性研究的方向之一。 LiMn2O4是一种典型的离子晶体,并有正、反两种构型。XRD分析知正常尖晶石LiMn2O4是具有Fd3m对称性的立方晶体,晶胞常数a=0.8245nm,晶胞体积V=0.5609nm3。氧离子为面心立方密堆积(ABCABC….,相邻氧八面体采取共棱相联),锂占据1/8氧四面体间隙(V4)位置(Li0.5Mn2O4结构中锂作有序排列:锂有序占据1/16氧四面体间隙),锰占据氧1/2八面体间隙(V8)位置。单位晶格中含有56个原子:8个锂原子,16个锰原子,32个氧原子,其中Mn3+和Mn4+各占50%。由于尖晶石结构的晶胞边长是普通面心立方结构(fcc)型的两倍,因此,每个晶胞实际上由8个立方单元组成。这八个立方单元可分为甲、乙两种类型。每两个共面的立方单元属于不同类型的结构,每两个共棱的立方单元属于同类结构。每个小立方单元有四个氧离子,它们均位于体对角线中点至顶点的中心即体对角线1/4与3/4处。其结构可简单描述为8个四面体8a位置由锂离子占据,16个八面体位置(16d)由锰离子占据,16d位置的锰是Mn3+和Mn4+按1:1比例占据,八面体的16c位置全部空位,氧离子占据八面体32e位置。该结构中MnO6氧八面体采取共棱相联,形成了一个连续的三维立方排列,即[M2]O4尖晶石结构网络为锂离子的扩散提供了一个由四面体晶格8a、48f和八面体晶格16c共面形成的三维空道。当锂离子在该结构中扩散时,按8a-16c-8a 顺序路径直线扩散(四面体8a位置的能垒低于氧八面体16c或16d位置的能垒),扩散路径的夹角为107°,这是作为二次锂离子电池正极材料使用的理论基础。 锰酸锂的生产 目前市场上主要的锰酸锂有AB两类,A类是指动力电池用的材料,其特点主要是考虑安全性及循环性。B类是指手机电池类的替代品,其特点主要是高容量。

相关文档
最新文档