§5.2 Laplace方程的边值问题与Green函数

§5.2 Laplace方程的边值问题与Green函数
§5.2 Laplace方程的边值问题与Green函数

格林函数()

§2.4 格林函数法 解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设u (r )和v (r )在区域 T 及其边界 ∑ 上具有连续一阶导数,而在 T 中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分 ??∑ ??S d v u ? 化成体积积分 . )(??????????????+?=???=??∑ T T T vdV u vdV u dV v u S d v u ? (12-1-1) 这叫作第一格林公式。同理,又有 . ???????????+?=??∑ T T vdV u udV v S d u v ? (12-1-2) (12-1-1)与(12-1-2)两式相减,得 , )()(??????-?=??-?∑ T dV u v v u S d u v v u ? 亦即

.)(??????-?=??? ????-??∑T dV u v v u dS n u v n v u (12-1-3) n ?? 表示沿边界 ∑ 的外法向求导数。(12-1-3)叫作第二格林公式。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 )( ),(T r r f u ∈=?? ? (12-1-4) 第一、第二、第三类边界条件可统一地表为 ),( M u n u ?βα=??????+??∑ (12-1-5) 其中 ?(M )是区域边界 ∑ 上的给定函数。α=0,β ≠0为第一类边界条件,α ≠0,β=0是第二类边界条件,α、β 都不等于零是第三类边界条件。泊松方程与第一类边界条件构成的定解问题叫作第一边值问题或狄里希利问题,与第二类边界条件构成的定解问题叫作第二边值问题或诺依曼问题,与第三类边界条件构成的定解问题叫作第三边值问题。 为了研究点源所产生的场,需要找一个能表示点源密度分布的函数。§5.3中介绍的 δ 函数正是描述一个单位正点量的密度分布函数。因此,若以v (r ,r 0)表示位于r 0点的单位强度的正点源在r 点产生的场,即v (r ,r 0)应满足方程 ).() ,(00r r r r v ????-=?δ (12-1-6) 现在,我们利用格林公式导出泊松方程解的积分表示式。以v (r ,r 0)乘(12-1-4),u (r )乘(12-1-6),相减,然后在区域T 中求积分,得 . )( )(0?????????--=?-?T T T dV r r u vfdV dV v u u v ? ?δ (12-1-7) 应用格林公式将上式左边的体积分化成面积分。但是,注意到在r =r 0点,?v 具有δ 函数的奇异性,格林公式不能用。解决的办法是先从区域T 中挖去包含r 0的小体积,例如半径为 ε 的小球K ε(图12-1),∑ε 的边界面为∑ε 。对于剩下的体积,格林公式成立,

函数、方程及其应用(1)

、选择题 1. (上海文)17若x o 是方程式lgx ?x=2的解,贝U x o 属于区间 () (A ) (0, 1) . ( B) (1 , 1.25) . (C) ( 1.25, 1.75) ( D) (1.75, 2) 答案D 7 7 1 【解析】 构造函数 f (x) = lg x ? x -2,由 f(1.75) = f( ) = lg 0 4 4 4 f(2)=lg2 0知 X 。属于区间(1.75,2) 2. (湖南文) 3.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是 A A A. y = _1Ox 200 B. y =10x 200 答案A 3. (陕西文)10.某学校要招开学生代表大会,规定各班每 10人推选一名代表,当各班人数 除以10的余数大.于6时再增选一名代表.那么,各班可推选代表人数 y 与该班人数x 之间的 函数关系用取整函数 y =[x ] ([x ]表示不大于x 的最大整数)可以表示为 x x + 3 x+4 x + 5 (A) y = [ — ] (B) y = [- 3 ] (C) y = [- 4 ] (D) y = [- 5 ] 10 10 10 10 答案B 解析:法一:特殊取值法,若 x=56, y=5,排除C D,若x=57, y=6,排除A 所以选B 当 6 :::〉_9时,仝3 二 m ' 3 = m 1 x 1,所以选 B _ 10 . IL 10 . |l 10 1 3. (浙江文)(9)已知x 是函数f(x)=2x + 的一个零点 若X 1 €( 1, X ° ), 1 —X X 2 €( X 。, +旳),则 (A ) f( x 1) v 0, f( x 2) v 0 ( B ) f( x 1) v 0, f( x 2) > 0 (C ) f( X 1) >0, f( X 2) v 0 ( D ) f( X 1) >0, f( X 2) > 0 A C. y - _10x - A D. y=10x_200 法二:设 x = 10m 11 二(0 _ : - 9), 。》6 时晋…

北邮数理方程课件-第八章-Green函数法

第八章 Green函数法 8.2 基础训练 8.2.1 例题分析 例1求三维泊松方程的基本解. 解:Green函数满足的方程为 (8。1) 采用球坐标,并将坐标原点放在源点上. 由于区域是无界的,点源所产生的场应与方向无关,而只是r的函数,于是式(8.1)简化为当时,方程化为齐次的,即 易于求得其一般解为 (8。2) 取,不失一般性,得 (8。3) 考虑的情形.为此,对方程(8.1)在以原点为球心、为半径的小球体内作体积分 从而 而由散度定理 为的边界面) 有 故 将式(8.3)的结果代入上式,得 代入式(8.3),于是

例2求二维泊松方程的基本解. 解:格林函数满足的方程为 (8。5) 采用极坐标,并将坐标原点放在源点上,则 与三维问题一样,G应只是r的函数,于是式(8。5)简化为 (8。6) 当时,解式(8。6),得 当时,在以原点为中心、为半径的小圆内对方程(8。.5)两边作面积分,注意到二维情况下的散度定理为 为的边界) 类似于对三维情况的讨论,得 于是 (8.7) 例3求泊松方程在矩形区域内的狄氏问题的格林函数. 解:其格林函数的定解问题为 它是定解问题 当时的特例,而与定解问题(8-10) ~ (8.11)相应的本征值问题为 它的本征值和归一化的本征函数分别是 其中 在式(8.8)中,故根据式(8.7),有

例4求解球的狄氏问题 (8.12) 解:此时方程的非齐次项,故由解的积分公式得定解问题(8.12)的解为 (8.13) 其中为球面,G为球的狄氏格林函数,它满足定解问题 (8.14) 故求u的问题就转化为求边界为球面的三维泊松方程的狄氏格林函数G的问题.而由上面所述的G的物理意义知,求G即要求在点置有正电荷的接地导体球内任意一点M处的电位,亦即要求感应电荷所产生的电位g,它满足 (8.15) 由物理学知识知,倘若在点关于球面的对称点(又称像点)放置一负点电荷,则由于在球外,它对球内电位的贡献必然满足拉氏方程.因此,只要适当选择q的大小,使之对边界面上电位的贡献与点的正电荷对边界面上电位的贡献等值,则对球内任一点电位的贡献即与g等效.为此,如图8-1所示,我们延长到,并记; ,使 即 则为关于球面的像点.显然,当M点在球面上时(如图8-2所示),,故有 (8.16) 从而有 即(8.17) 图8-1 图8-2 由式(8.17)可以看出,只要在点放置一负电荷,则它在球内直到球上任意一点

格林函数法求解场的问题

格林函数法求解稳定场问题 1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: Heat Eq.: ()2222 ,u a u f r t t ?-?=? 表示温度场u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20 u f r ρε?=-=- 表示静电场u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势: () ' '0 4r d V r r ρφπεΩ=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入Green ’s Functions 的概念。 Green ’s Functions :代表一个点源所产生的场。普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 Green ’s Functions. 下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。实际上,只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions 。 2 泊松方程的格林函数 静电场中常遇到的泊松方程的边值问题: ()()()()()201 f s u r r u r u r r n ρεαβ???=-??? ????+=??????? 这里讨论的是静电场()u r , ()f r ρ 代表自由电荷密度。

专题三函数与方程及函数的应用

高三二轮复习专题三 函数与方程及函数的应用 主备教师:xxx 审核:xxx 班级___________ 姓名____________ 【考试要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数2、根据具体函数的图象,能够用二分法求相应方程的近似解;3、了解函数模型的广泛应用。 【高考试题回放】 1、(2011天津理2)函数()23x f x x =+的零点所在的一个区间是( ). A. ()2,1-- B. ()1,0- C. ()0,1 D. ()1,2 2、(2011山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3 ()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为 (A )6 (B )7 (C )8 (D )9 3、(2011湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系: ()30 02 t M t M -=,其中 M 为0=t 时铯137 的含量,已知30=t 时,铯137的含量的变化率是2ln 10-(太贝克/年),则()=60M A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克 4、(2011北京理6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为 ()x A f x x A <=≥(A ,c 为常数)。已知工人组装第4件产品用时30分钟,组装第A 件 产品时用时15分钟,那么c 和A 的值分别是 A. 75,25 B. 75,16 C. 60,25 D. 60,16 【课内探究】探究一、确定函数的零点 例1.设函数1()ln (0)3 f x x x x = ->,则f(x)( ) A .在区间1[,1],(1,)e e 内均有零点 B.在区间1[,1],(1,)e e 内均无零点 C.在区间 1 [,1]e 内有零点,在区间(1,e )内无零点 D .在区间 1 [,1]e 内无零点,在区间(1,e )内有零点

2 函数与方程及函数的实际应用

1.函数f (x )=-1x +log 2x 的一个零点落在下列哪个区间( ). A .(0,1) B .(1,2) C .(2,3) D .(3,4) 2.在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内, 则下一步可断定该根所在的区间为( ). A .(1.4,2) B .(1.1,4) C.? ????1,32 D.? ?? ??32,2 3.设函数f (x )=13 x -ln x ,则函数f (x )( ). A .在区间? ?? ??1e ,1,(1,e)内均有零点 B .在区间? ?? ??1e ,1,(1,e)内均无零点 C .在区间? ?? ??1e ,1内有零点,在(1,e)内无零点 D .在区间? ?? ??1e ,1内无零点,在(1,e)内有零点 4.已知f (x )=????? x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为( ). A .1 B .2 C .3 D .4 5.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ). A .60件 B .80件 C .100件 D .120件 6.已知0<a <1,函数f (x )=a x -|log a x |的零点个数为________. 7.已知函数f (x )=? ?? ??15x -log 3x ,若x 0是函数y =f (x )的零点,且0<x 1<x 0,则f (x 1)________0(填“>”、“<”、“≥”、“≤”).

方程应用题与函数应用

2015方程应用题与函数应用 1(2015?聊城)在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花 的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元? 2(2015?威海)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为:; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用. 3(2015?滨州)一种进价为每件40克的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大? 4(2015?济宁)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件. (1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件?? (2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?

5(2015?潍坊)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元. (1)求A、B两种型号家用净水器各购进了多少台; (2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价) 6为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本. (1)问符合题意的组建方案有几种?请你帮学校设计出来; (2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元? 7(2014?威海)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个? 8(2014年山东烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%. (1)今年A型车每辆售价多少元?(用列方程的方法解答) (2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?

方程、不等式与一次函数专题(实际应用)

方程、不等式与一次函数专题练习(实际应用) 题型一:方程、不等式的直接应用 典型例题1:(2009,株洲)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知: 在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分.... 每份可得0.2元. (1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份. (2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内. 典型例题2:(2007,福州,10分)李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息: 假设月销售件数为x 件,月总收入为y 元,销售1件奖励a 元,营业员月基本工资 为b 元. (1)求a ,b 的值; (2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件? 配套练习: 3、(2009,益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元 买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运 会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出. 4、(2009,济南)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五 月份的工资情况信息: (1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元? (2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品? 5、(2009,青岛)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=?利润成本 ) 题型二:方案设计 典型例题6、(2009,深圳)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元? 典型例题7:(2008、湖北咸宁)“5、12”四川汶川大地震的灾情牵动全国人民的心,某市A 、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区。已知A 蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点。从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元。设从地运往处的蔬菜为x 吨。 x 的值; ⑵、设A 、B 两个蔬菜基地的总运费为w 元,写出w 与x 之间的函数关系式,并求总运费最小的调运方案; ⑶、经过抢修,从B 地到C 地的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线的运费不变,试讨论总运费最小的调运方案。

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。 拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。 通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程。 在数理方程中

拉普拉斯方程拉普拉斯方程为:Δ u=d^2u/dx^2+d^2u/dy^2=0,其中Δ为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ:其中Δ称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator或简称作Laplacian。 狄利克雷问题 拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。

函数和方程及函数的实际应用

个性化教学设计教案 授课时间: 2011 年 7 月 20 日( 8:00--10:15 )备课时间:2011 年 7月 18 日年级:高二学科:数学课时:3 学生姓名: 课题名称第三讲函数与方程及函数的实际应用授课教师:曾先兵 教学目标 1.函数与方程 (1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。 (2)根据具体函数的图象,能够用二分法求相应方程的近似解。 2.函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 教学过程 一、函数的零点 1.三个等价关系:方程f(x)=0有实根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 2.函数零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. (尤其注意,f(a)f(b)<0是“函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,那么函数y=f(x)在区间(a,b)内有零点”的充分不必要条件) 二、二分法 1.二分法的条件:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)f(b)<0. 2.二分法的思想:通过二等分,无限逼近. 3.二分法的步骤:其中给定精确度ε的含义是区间(a,b)长度|a-b|<ε,不能认为是函数零点近似值的精度. 三、函数模型及其应用 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是: 1.阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题. 2.数学建模:弄清题目中的已知条件和数量关系,建立函数关系式. 3.解函数模型:利用数学方法得出函数模型的数学结果. 4.实际问题作答:将数学问题的结果转译成实际问题作出解答. 四、二次函数、二次方程、二次不等式的关系 二次函数、二次方程、二次不等式是最基本的知识点,“三个二次型”是一个有机的整体,其中二次函数的图象是联系三者的桥梁和纽带. 一:函数零点问题

拉普拉斯方程

拉普拉斯方程应该和泊松方程是同胞兄弟了,都是扩散方程,用来描述散度场的。只不过拉普拉斯方程是无源场,泊松方程是有源场。预备内容:梯度、旋度、散度和拉普拉斯算子在曲线坐标下的表达式: 如果在某个曲线坐标系内位移微元(其中是坐标),那么便有: 梯度:散度:旋度:拉普拉斯算符: 对于直角坐标系、球坐标系和柱坐标系来说,的值为: 于是,我们便可以轻松地默写球坐标下拉普拉斯算符的表达式\^o^/ 下面进入正题 1.直角坐标系 当出现金属平板之类的边界条件时,使用直角坐标系较为方便。 在直角坐标系下,拉普拉斯方程的表达式为: i)二维问题 假设沿z轴平移V保持不变,于是方程便简化为二维形式: 我们假设V可以写成两个函数相乘的形式: (乍看之下这不是一个很合理的假设。但是我们很快可以看到为什么可以这样做)

代入原方程并在两边除以V: 因为两部分之和为0,因此我们可以假设一个是正数另一部分是负数:(这里以含x的部分为正含y的部分为负为例) 很显然,这两个方程的解就是: 注记:这里决定哪一部分是正数哪一部分是负数要由边界条件来确定。比如说,沿x方向到达无限远时电势为零,x就应该含有指数衰减项,因此令含x的部分为正数。 于是,方程的一个解是 对所有可能的k求和,可以得到通解: 常数A,B,C,D的值需要由边界条件来确定。通常情况下,通过边界条件可以把k化成含有正整数的式子。将求和号改成对n求和,可以看到,第二个括号里的项便是傅里叶级数。狄利克雷定理保证了这个级数可以拟合任何边界条件。傅里叶系数可以由积分来确定。 ii)三维问题 三维问题的处理方法与二维的情形类似。 同样,假设是这种形式: 同样,代入方程并在两边同除以V:

函数方程思想的应用举例.

函数方程思想的应用举例 函数方程思想是中学数学中最基本、最重要的数学思想,也是历年高考的重点。 函数的思想就是用运动和变化的观点,分析和研究数学问题。具体来说,即先构造函数,把给定问题转化为研究辅助函数的性质(单调性、奇偶性、周期性、图象的交点个数、最值、极值等)问题,研究后得出所需要的结论。函数方程思想就是将数学问题转化为方程或方程组问题。通过解方程(或方程组)或者运 用方程的性质来分析、转化问题,使问题得以解决。函数与方程思想是密切相关的,函数,当 时,就转化为方程或看作方程;而方程的解是函数图象与x 轴交点的横坐标。函数与不等式也可以相互转化,对函数,当时,就是不等式, 而求的解则可比较函数图象位置而得到。 一.构造函数思想 例1.证明不等式 分析:由所证不等式很容易想到比商法,但a、b的正负无法确定,即使分类后,当a、b都为正数时,其 商也无法与1比大小,思路受阻。再观察不等式两边形式类似,稍加变形即为,即可联想到函数 解:令 ,就只需证了,利用函数单调性,问题得以巧妙解决。 在 则则所以在 上, 上为增函数 ,即 。 点评:应用函数性质证明不等式,关键在于构造一个适当的函数,且能方便地判断函数的有关性质。例2.已知 恒成立,求x的范围。 ,对于值域内的所有实数m,不等式

,则 分析:我们习惯上把 x 当作自变量,构造函数 ,于是问题转化为:当 时, 恒成立,求 x 范围,但要解决这个问题要用到二次函数以及二次方程的区间根原 理。相当复杂。而如果把 m 看作自变量,x 视为参数,原不等式化为 ,构造函数 解:因为 , 所以 , 即 原不等式可化为 所以 ,令 的问题。 为 m 的一次函数,在 上恒大于 0,这样就非常简单。 恒成立,又 为 m 的一次函数,问题转化为 在 上恒大于 0 则只需 解得 或 即 。 点评:注意到本题有两个变量 x 、m ,且 x 本来为主元,但为了解题方便,把原不等式看为 m 的一次函数, 大大简化了运算。在多字母的关系式中,应对参数的策略常常是“反客为主、变更主元”,重新构造函数。 二. 构造方程思想 例 3. 已知 ,则有( ) A. C. B. D. 分析:原式变为 是实系数一元二次方程 的一个实根,故 ,故选 C 。 点评:通过简单转化,敏锐地抓住了数与式的特点,运用方程思想使问题迎刃而解。

拉普拉斯方程

拉普拉斯方程,也称为谐波方程和势方程,是一种偏微分方程,最早由法国数学家拉普拉斯提出。 拉普拉斯方程是液体表面曲率和液体表面压力之间关系的公式。 曲面称为曲面。通常,使用两个相应的曲率半径来描述表面,即在表面上的某个点处绘制垂直于该表面的直线,然后通过该线制作一个平面。平面和表面的截面是曲线,并且在该点与曲线相切的圆的半径称为曲线的曲率半径R1。第二剖面线及其曲率半径R2可以通过使第二平面垂直于第一平面并与表面相交来获得。液面的弯曲可以用R1和R2表示。如果液体表面弯曲,则液体P1内部的压力将与液体外部的压力P2不同,并且液体表面的两侧之间将存在压力差△P = P1-P2,这称为附加压力。压力。其值与液体表面的曲率有关,可以表示为:其中γ是液体的表面张力系数,称为拉普拉斯方程。 在数学公式中 拉普拉斯方程是:其中∥是拉普拉斯算子,而这里的拉普拉斯方程是二阶偏微分方程。在三维情况下,拉普拉斯方程可按以下形式描述。可以将问题简化为求解对于实变量X,y和Z可二阶微分的实函数φ ?2称为拉普拉斯算子。 拉普拉斯方程的解称为谐波函数。 如果在等号右边是给定的函数f(x,y,z),即: 然后将该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆偏微分方程。偏微分算子(可以在任何维空间中定义)称为拉

普拉斯算子。 方程解 它称为谐波函数,可以在建立方程的区域进行分析。如果任何两个函数满足拉普拉斯方程(或任何线性微分方程),则这两个函数的总和(或它们的任何线性组合)也满足上述方程。这种非常有用的特性称为叠加原理。根据这一原理,可以将已知的复杂问题的简单特殊解组合起来,以构建具有更广泛适用性的一般解。

1函数与方程的综合应用

函数与方程的综合应用 例2 (1)(2018·烟台二模)已知[x ]表示不超过x 的最大整数,当x ∈R 时,称y =[x ]为取整函数,例如[1.6]=1,[-3.3]=-4,若f (x )=[x ],g (x )的图象关于y 轴对称,且当x ≤0时,g (x )=-x 2-2x ,则方程f (f (x ))=g (x )解的个数为( D ) A .1 B .2 C .3 D .4 [解析] 根据已知条件可知,当x >0时,-x <0,又函数g (x )的图象关于y 轴对称,故 g (x )为偶函数,所以g (x )=g (-x )=-(-x +1)2+1=-(x -1)2+1.由f (x )=[x ],得f (f (x )) =[x ].在同一平面直角坐标系中画出y =f (f (x ))与y =g (x )的图象如图所示,由图象知,两个图象有4个交点,交点的纵坐标分别为1,0,-3,-4,当x ≥0时,方程f (f (x ))=g (x )的解是0和1;当x <0时,g (x )=-(x +1)2+1=-3得x =-3,由g (x )=-(x +1)2+1=-4得x =-1- 5.综上,f (f (x ))=g (x )的解的个数为4. (2)(2018·中山一模)已知函数f (x )=? ??? ? |log 3x |,03,若方程f (x )=m (m ∈R ) 有四个不同的实根x 1,x 2,x 3,x 4,且满足x 1

泊松方程和拉普拉斯方程

拉普拉斯方程和泊松方程 摘要:拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象的性质。 关键词:分离变量电磁场拉普拉斯 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和 即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ,叫做势方程,后来通称拉普拉斯方程。1813年,S.D.泊松撰文指出,如 果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-V高斯定理微分式,即可导出静电场的泊松方程: 式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。在各分区的公共界面上,V满足边值关系,

, 式中i ,j 指分界面两边的不同分区,σ 为界面上的自由电荷密度,n 表示边界面上的内法 线方向。 边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物 理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄 利克雷边界条件;给定边界面上各点的自由电荷 ,叫做诺埃曼边界条件。 静电场的唯一性定理: 设区域V 内给定自由电荷分布)(x ,在V 内电势满足泊松方程 或拉普拉斯方程,在V 的边界S 上给定电势 ,或V 边界上给定电势的法线方向偏导数 ,则V 内场(静电场)唯一确定。 除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。 各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任 何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。 静磁场的泊松方程和拉普拉斯方程 在SI 制中,静磁场满足的方程为 ,式中j 为传导电流密度。第一式表明静磁 场可引入磁矢势r)描述: 。 在各向同性、线性、均匀的磁媒质中,传导电流密度j 0的区域里,磁矢势满足的方程 为 。 选用库仑规范,,则得磁矢势A 满足泊松方程 ,式中纯数μr 为媒质的相对磁导率, 真空磁导率μo =1.257×10-6亨/米。在传导电流密度j=0的区域里,上 式简化为拉普拉斯方程 。

第七章 Green 函数法 - 数学物理方法

数学物理方法Mathematical Method in Physics 西北师范大学物理与电子工程学院 豆福全

第七章Green函数法 Green Function method 引言 前面几章我们系统的讨论了求解数学物理方法的几种典型方法:分离变量法,行波法以及积分变换法。分离变量法主要适用于求解各种有界区域内的定解问题,行波法则主要适用于求解无界区域内的波动问题,而积分变换法也主要适用于求解无界区域内的定解问题,然而不受方程类型的限制。同时,分离变量法,积分变换法这两种方法所给出的解,一般具有无穷级数与无穷积分的形式。 本章介绍求解数学物理方程的另一重要方法——Green函数法。所不同的是,该法给出的是一种有限积分的解,便于人们进行理论分析与研究。Green函数的特点是它仅与定解问题所定义的区域的形状及边界条件类型有关,而与定解条件及方程非齐次项所给出的具体形式无关。特别是一些用分离变量法较难处理的非齐次方程的定解问题,Green函数法更能显示出其优越性。 从物理上看,一个数学物理方程在大多数情况下,往往表示一种特定的“场”和产生这种场的“源”之间的关系。如热导方程表示的是温度场与点源之间的关系,泊松方程表示的是静电场和电荷分布之间的关系等。这样,当源被分解成许多点源的叠加时,如果通过某一种方法知道各点源产生的场,然后再利用叠加原理,就可以求出同样边界条件下任意源的场,这种求解数理方程的方法被称为Green函数法,而点源产生的场就是Green函数。 本章首先复习Laplace方程边值问题的几种类型,然后由Green公式建立起Green函数的概念,并通过Green函数得到一般的泊松方程边值问题解的积分表达式,最后在几个特殊区域上讨论Green函数及Laplace方程的第一边值问题具体的求解过程。

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。 [1] 拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。 中文名 拉普拉斯方程 外文名 Laplace's equation 别称 调和方程、位势方程 提出者 拉普拉斯 关键词 微分方程、拉普拉斯定理 涉及领域 电磁学、天体物理学、力学、数学 目录 .1基本概述 .?在数理方程中 .?方程的解 .2二维方程 .3人物介绍

基本概述 一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为: ,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 在数理方程中 拉普拉斯方程为: ,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ : 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子 (可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。 方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 [2] 二维方程

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

相关文档
最新文档