1.2.3绝对值

1.2.3绝对值
1.2.3绝对值

1.2.3 绝对值

教学目标:

1、借助数轴理解绝对值的概念,会求一个数的绝对值;

2、通过对|a|的讨论的教学,让学生体会分类时应做到不重复、不遗漏,渗透符

号意识。

重点:求一个有理数的绝对值。

难点:对|a|的讨论及对绝对值的几何意义的理解。

教学过程

一、创设问题情境,引入新课

观察:它们分别距原点多远?它们与原点的距离有何关系?

二、合作交流,解读探究

1、学习绝对值的概念

(1)在数轴上,表示一个数的点与原点的距离叫做该数的绝对值。

(2)绝对值的表示:

一个数的绝对值就是在这个数的两旁各画一条竖线,如+2的绝对值等于2,记作|+2|=2。

数a的绝对值记作|a|.

(3)想一想互为相反数的两个数的绝对值有什么关系?

一对相反数虽然分别在原点两边,但它们到原点的距离是相等的。

互为相反数的两个数的绝对值相等。

2、一个数的绝对值与这个数有什么关系?

例如:|3|=3,|+7|=7

一个正数的绝对值是它本身;

例如:|-3|=3,|-2.3|=2.3

一个负数的绝对值是它的相反数;

0的绝对值是0.

因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:

(1) 如果a>0,那么|a|=a

(2) 如果a<0,那么|a|=-a

(3) 如果a=0,那么|a|=0

三、做一做

1、在数轴上表示下列各数,并求出各数的绝对值. -15,-3,-1,-5.

2、绝对值是7的数有几个?各是什么?有没有绝对值是-2的数

3、绝对值是0的数有几个?各是什么

4、绝对值小于3的数是否都小于绝对值小于5的数?

5、绝对值小于10的整数一共有多少个?

6、判断:(1)若一个数的绝对值是2 ,则这个数是2 ;()

(2)|5|=|-5|;()(3)|-0.3|=|0.3|;()

(4)|3|>0;()

(5)|-1.4|>0;()

(6)有理数的绝对值一定是正数;()

(7)若a=b,则|a|=|b|;()

(8)若|a|=|b|,则a=b;()

(9)若|a|=-a,则a必为负数;()

(10)互为相反数的两个数的绝对值相等;()

7、求绝对值不大于2的整数;

8、已知x是整数,且2.5<|x|<7,求x.

练习一

2. 如果一个数的绝对值等于

3.25 ,则这个数是___

3、如果a的相反数是-0.74,那么|a| =______

4. 如果|x-1|=2,则x=______.

练习二

1.绝对值等于6的数有_______, 绝对值是0的数是。

2.比较大小:│-5││-8││-0.05│0;│-3│1;

3. 判断(对的打“√”,错的打“×”):

(1)一个有理数的绝对值一定是正数。( )

(2)-1.4<0,则│-1.4│<0。( )

(3)│-32︱的相反数是32 ( )

(4)如果两个数的绝对值相等,那么这两个数相等( )

(5)互为相反数的两个数的绝对值相等( )

4. 足球比赛中对所用的足球有严格的规定,下面是5个足球的质量检测结果(用正数表示超过规定质量的克数,用负数表示不足规定质量的克数)

-20 +10 +12 -8 -11

请指出哪个足球的质量好一些,并用绝对值的知识加以说明。

答:记为-8的足球质量好一些。

因为│-20│=20,│+10│=10,│+12│=12,

│-8│=8,│-11│=11

所以│-8│< │+10│< │-11│< │+12│< │-20│

也就是说记为-8的足球与规定的质量相差比较小,

因此其质量比较好

四、本章小结

一个正数的绝对值等于它本身

一个负数的绝对值等于它的相反数

0的绝对值等于0

互为相反数的两个数的绝对值相等

五、作业

初一数学绝对值典型例题

绝对值 绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。 绝对值的定义及性质 绝对值 简单的绝对值方程 化简绝对值式,分类讨论(零点分段法) 绝对值几何意义的使用 绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|

[例1] (1) 绝对值大于2.1而小于4.2的整数有多少个? (2) 若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 (3) 下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 (4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少? 分析: (1) 结合数轴画图分析。绝对值大于2.1而小于4.2的整数有±3,±4,有4个 (2) 答案C 不完善,选择D.在此注意复习巩固知识点3。 (3) 选择D 。 (4) 根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9 [巩固] 绝对值小于3.1的整数有哪些?它们的和为多少? <分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。 [巩固] 有理数a 与b 满足|a|>|b|,则下面哪个答案正确( ) A.a >b B.a=b C.a

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题 【例1】求 y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少 初一引进绝对值的概念,但多数学生对绝对值的问题只是浅尝辄止。绝对值有两个方面的意义,一个是代数意义,另一个几何意义,但一般教学往往侧重于代数意义而忽略了其几何意义。 绝对值的代数意义:|a|=a, (a≥0);|a|=-a, (a<0)。 绝对值的几何意义:|a|是数轴上表示数a的点到原点的距离。 众所周知,如果数轴上有两点A,B,它们表示的数分别为a, b(a≤b),则A,B之间的距离:|AB|=|a-b|(如图1)。 设点X在数轴上表示的点为x,则|x-a|+|x-b|表示点X到点A和点B的距离之和:|XA|+|XB|, 由图2可以看出,如果X在A,B两点之间,那么|XA|+|XB|可以取到最小值|AB|,即:当a≤x≤b时,|x-a|+|x-b|取最小值|a-b|; 同样,设点C在数轴上表示的点为c,(a≤b≤c),则|x-a|+|x-b|+|x-c|表示点X到点A、点B和点C的距离之和:|XA|+|XB|+|XC|, 由图3可以看出,如果X落在B点,那么|XA|+|XB|+|XC|可以取到最小值|AC|,即:当x=b时,|x-a|+|x-b|+|x-c|取最小值|a-c|。 一般说来,设f(x)=|x-a?|+|x-a?|+|x-a?|+???+|x-a n|, 其中a?≤a?≤…≤a n,那么: 当n为偶数时,f min(x)=f(a),其中a n/2≤a≤a n/2+1; 且f(a)=(a n-a1)+(a n-1-a2)+???+(a n/2+1-a n/2) =(a n+a n-1+??? a n/2+1)-(a1+a2+???+a n/2) 当n为奇数时,f min(x)=f(a(n+1)/2); 且f(a)=(a n-a1)+(a n-1-a2)+???+【a(n+1)/2+1-a(n+1)/2-1】 =【a n+a n-1+??? a(n+1)/2+1】-【a1+a2+???+ a(n+1)/2-1】

绝对值分三种情况讨论

分三种情况讨论 在解形如3|x﹣2|=|x﹣2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论: 解题回顾:本题中2为x﹣2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论. 知识迁移: (1)运用整体思想先求|x﹣3|的值,再去绝对值符号的方法解方程:|x﹣3|+8=3|x﹣3|; 知识应用: (2)运用分类讨论先去绝对值符号的方法解类似的方程:|2﹣x|﹣3|x+1|=x﹣9. 提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢? 适合|2a+7|+|2a﹣1|=8的整数a的值有﹣3,﹣2,﹣1,0. 1.(1)若|x+5|=2,则x=﹣3或﹣7; (2)代数式|x﹣1|+|x+3|的最小值为4,当取此最小值时,x的取值范围是﹣3≤x≤1; (3)解方程:|2x+4|﹣|x﹣3|=9. (1)解方程:|2x+3|=8. (2)解方程:|2x+3|﹣|x﹣1|=1. 3.解方程:|x+1|+|x﹣3|=4. 4.解方程:|x﹣2|+|x﹣1|=3, 5.解绝对值方程:|x﹣1|﹣|x﹣2|=x﹣3. 6.方程|x+1|﹣2|x﹣2|=1的解为x=或x=4. 7.|2x+1|=|x﹣3| 8.解绝对值方程:|x﹣4|+|x﹣3|=2. 8.解方程:|x|+|2x﹣1|=5. (1)根据上面的解题过程,方程2|x﹣1|﹣x=4的解是x=6或x=﹣.(2)根据上面的解题过程,求解方程:2|x﹣1|﹣|x|=4. (3)方程|x|﹣2|x﹣1|=4无解.(直接在_____上填“有”或“无”)

高三数学复习绝对值函数及函数与方程

1 精锐教育学科教师辅导讲义 学员编号: 年级:高三课时数:3 学员姓名:辅导科目:数学 学科教师:刘剑授课 类型 T (同步知识主题) C (专题方法主题) C (专题方法主题) 授课日 期时段教学内容 绝对值类型(2) 专题二:局部绝对值 例1:若不等式a +21 x x ≥2log 2x 在x ∈(12,2)上恒成立,则实数a 的取值范围为. 例2:关于x 的不等式x 2+9+|x 2-3x |≥kx 在[1,5]上恒成立,则实数k 的范围为________.例3:设实数1a ,使得不等式a a x x 23,对任意的实数2,1x 恒成立,则满足条件的实数a 的范围是 .

2 例4:设函数f(x)=x 2+|2x -a|(x ∈R ,a 为实数). (1)若f(x)为偶函数,求实数 a 的值;(2)a=2时,讨论函数)(x f 的单调性; (3)设a>2,求函数f(x)的最小值. 例习1:已知函数f(x)=|x -m|和函数g(x)=x|x -m|+m 2 -7m. (1)若方程f(x)=|m|在[4,+∞)上有两个不同的解,求实数m 的取值范围;[来源学#科#网Z#X#X#K](2)若对任意x 1∈(-∞,4],均存在x 2∈[3,+∞),使得f(x 1)>g(x 2)成立,求实数m 的取值范围.练习2:设 a 为实数,函数2()2()||f x x x a x a . (1)若 (0)1f ,求a 的取值范围;(2)求()f x 的最小值; (3)设函数 ()(),(,)h x f x x a ,求不等式()1h x 的解集.

3 专题三:整体绝对值 3 例1.已知函数f(x)=|x 2+2x -1|,若a <b <-1,且f(a)=f (b),则ab +a +b 的取值范围是. 例2.设函数d cx bx ax x f 23)(是奇函数,且当33x 时,)(x f 取得最小值932设函数)1,1()13()()(x x t x f x g ,求)(x g 的最大值)(t F 练习3:21 0x 时,21 |2|3x ax 恒成立,则实数a 的取值范围为. 练习4:设函数3221() 23(01,)3 f x x ax a x b a b R . (Ⅰ)求函数f x 的单调区间和极值;(Ⅱ)若对任意的 ],2,1[a a x 不等式f x a 成立,求a 的取值范围。

绝对值和平方的非负性专题练习(学生版)

绝对值与平方的非负性专题练习 一、选择题 1、有理数的绝对值一定是(). A. 正数 B. 整数 C. 自然数 D. 正数或零 2、下列代数式中,值一定是正数的是(). A. x2 B. |-x+1| C. (-x)2+2 D. -x2+1 3、设a是有理数,则下列各式的值一定为正数的是(). A. a2 B. |a| C. a+1 D. a2+1 4、若(a-2)2+|b+3|=0,则(a+b)2014的值是(). A. 0 B. 1 C. -1 D. 2014 5、若|a-2013|+(b+1)2012=0,则b4的值为(). A. -1 B. 1 C. -2013 D. 2013 6、若|m+3|+(n-2)2=0,则m n的值为(). A. 6 B. -6 C. 9 D. -9 7、a为任何有理数,则下列代数式中,正确的有(). ①-a<a;②a2≥0;③a≤a2;④a>1 a ;⑤|a|≥a. A. 1个 B. 2个 C. 3个 D. 4个 8、当式子(2x-1)2+2取最小值时,x等于(). A. 2 B. -2 C. 0.5 D. -0.5 二、填空题 9、整式(2x-4)2-1的最小值是______. 10、若|m|=-|n-7|,则m+n=______. 11、已知(a-3)2与|b-1|互为相反数,则式子a2+b2的值为______. 12、已知z-|y+2|的最大值为8,y+z=______. 13、-(a-b)2的最大值是______;当其取最大值时,a与b的关系是______. 14、代数式15-|x+y|的最大值是______,当此代数式取最大值时,x与y的关系是______. 15、已知|a+2|+(b-3)2=0,则a-b=______. 16、已知5|3a+4|+|4b+3|=-|c+1|,a-b+c的值为______. 17、如果m、n为整数,且|m-2|+|m-n|=1,那么m+n的值为______.

思维特训(四) 绝对值与分类讨论

思维特训(四) 绝对值与分类讨论 方法点津 · 1.由于去掉绝对值符号时,要分三种情况:即正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以涉及绝对值的运算往往要分类讨论. 用符号表示这一过程为:||a =???a (a >0), 0(a =0),-a (a <0). 2.由于在数轴上到原点的距离相等的点(非原点)有两个,一个点表示的数是正数,另一个点表示的数是负数,因此知道某个数的绝对值求该数时,往往需要分两种情况讨论. 用符号表示这个过程为:若||x =a (a >0),则x =±a . 3.分类讨论的原则是不重不漏,一般步骤为:①分类;①讨论;①归纳. 典题精练 · 类型一 以数轴为载体的绝对值的分类讨论 1.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB|,定义|AB|=|a -b|. (1)|AB|=________; (2)设点P 在数轴上对应的数是x ,当|PA|-|PB|=2时,求x 的值. 2.我们知道:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b|,所以式子|x -3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离. 根据上述材料,回答下列问题: (1)|5-(-2)|的值为________; (2)若|x -3|=1,则x 的值为________; (3)若|x -3|=|x +1|,求x 的值; (4)若|x -3|+|x +1|=7,求x 的值. 类型二 与绝对值化简有关的分类讨论问题

函数的性质与带有绝对值的函数(教师)

函数的性质与带有绝对值的函数 一、复习要点 基本初等函数性质主要包含了函数的定义域、值域、奇偶性、单调性及周期性等,另外最值问题、含参问题、范围问题等是重点复习的内容,特别是含有绝对值的函数问题难度都比较大,当涉及到最值问题时,分类讨论与数形结合是常用方法. 二、基础训练 1.(1)若f (x )是R 上的奇函数,且当x >0时,f (x )=1+3 x ,则f (x ) = . (2)若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则f (x )<0的x 的取值范围是 . 【答案】(1)?????-1+3x ,x <0 0, x =0 1+3 x , x >0 ;(2)(-2,2). 2.已知函数()log 1(01)a f x x a a =+>≠且,若当(0,1)x ∈时恒有()0f x <,则函数 23 ()log () 2a g x x ax =-+ 的递减区间是 . 【答案】(0,)3 a . 3.(1)若函数y =log 2(x +2)的图象与y =f (x )的图象关于x =1对称,则f (x )= . (2)已知f (x )=log 2|ax +3|关于x =1对称,则实数a = . 【答案】(1)log 2(4-x );(2)-3或0. 4.已知函数()lg f x x =,若0a b <<且()()f a f b =,则2a b +的取值范围是 . 【答案】()3,+∞. 5.()||f x x a =-在()2+∞, 上为增函数,则实数a 的取值范围是 . 【答案】2a ≤. 6.关于x 的方程()(0)x a x a a a --=≠的实数解的个数为 . 【答案】1个. 7.2 3x m b --=有4个根,则实数b 的取值范围是 . 【答案】02b <<. 8.若不等式a +21x x -≥2log 2x 在x ∈(12,2)上恒成立,则实数a 的取值范围为 . 【答案】1a ≥. (2)若函数()x f 满足条件(1),且对任意[]10,30∈x ,总有()[]10,30∈x f ,求c 的取值范围; (3)若0b =,函数()x f 是奇函数,()01=f ,()2 3 2-=-f ,且对任意[)+∞∈,1x 时,

专题十一:绝对值最值问题

绝对值最值问题 绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离。数a的绝对值记作a 几个绝对值和的最小值问题:奇点偶段(含端点) 1、(1)阅读下面材料: 点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB. 当A、B两点中有一点在原点时,不妨设点A在原点, 如图甲,AB=OB=|b|=|a﹣b|; 当A、B两点都不在原点时, 1如图乙,点A、B都在原点的右边, AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|; ②如图丙,点A、B都在原点的左边, AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|; ③如图丁,点A、B在原点的两边 AB=OA+OB=|a|+|b|=a+(﹣b)=|a﹣b|. 综上,数轴上A、B两点之间的距离AB=|a﹣b|. (2)回答下列问题: ①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的 距离是,数轴上表示1和﹣3的两点之间的距离是; ②数轴上表示x和﹣1的两点分别是点A和B,则A、B之间的距离是,如果|AB| =2,那么x=; ③当代数式|x+2|+|x﹣5|取最小值时,相应的x的取值范围是. ④当代数式|x﹣1|+|x+2|+|x﹣5|取最小值时,相应的x的值是. ⑤当代数式|x﹣5|﹣|x+2|取最大值时,相应的x的取值范围是.

2、在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a﹣b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5﹣2|=3:回答下列问题: (1)数轴上表示1和﹣3的两点之间的距离是: (2)若AB=8,|b|=3|a|,求a,b的值. (3)若数轴上的任意一点P表示的数是x,且|x﹣a|+|x﹣b|的最小值为4,若a=3,求b 的值.

绝对值应用(分类讨论)(北师版)(含答案)

学生做题前请先回答以下问题 问题1:什么是绝对值,绝对值法则是什么? 问题2:|x|=2表示在数轴上,x所对应的点与_______的距离为______,因此x=______.问题3:有关绝对值的分类讨论: ①__________,分类; ②根据__________,筛选排除. 绝对值应用(分类讨论)(北师版) 一、单选题(共9道,每道11分) 1.若,则的值为( ) A.4 B. C.-4 D.0 答案:B 解题思路: 试题难度:三颗星知识点:去绝对值 2.若,则的值为( ) A.1 B.±1 C.±7 D.1或7 答案:D 解题思路:

试题难度:三颗星知识点:去绝对值 3.若,则( ) A.4 B.8 C.4或8 D.4或-8 答案:C 解题思路: 试题难度:三颗星知识点:去绝对值 4.若,,则( ) A.8 B.±8 C.8或-2 D.±2 答案:C 解题思路:

试题难度:三颗星知识点:去绝对值 5.若,,则( ) A.-3 B.-3或7 C.3或-7 D.±3或±7 答案:D 解题思路: 试题难度:三颗星知识点:去绝对值 6.已知,,且,则a+b的值为( ) A.±3 B.±13 C.3或-13 D.-3或13 答案:A 解题思路:

试题难度:三颗星知识点:去绝对值 7.若,,且,则x与y的值分别为( ) A.或 B.或或 C.或或 D.或或或 答案:C 解题思路:

试题难度:三颗星知识点:去绝对值 8.已知,,且,则的值为( ) A.±3 B.-3或-7 C.-3或7 D.或 答案:B 解题思路:

试题难度:三颗星知识点:去绝对值 9.若,则的取值共有( ) A.4个 B.3个 C.2个 D.1个 答案:C 解题思路:

分段函数与绝对值函数练习

分段函数与绝对值函数练习 一、双基题目练练手 1.设函数f (x )=?????≥--<+, 114,1)1(2x x x x 则使得f (x )≥1的x 的取值范围为 ( ) A.(-∞,-2]∪[0,10] B.(-∞,-2]∪[0,1] C.(-∞,-2]∪[1,10] D.[-2,0]∪[1,10] 2.(2006安徽)函数2 2,0 ,0x x y x x ≥?=?-

7. 已知函数13 2 (0)()(01)log (1)x x f x x x x ?<=≤≤>??,当a <0时,f {f [f (a )]}= 8.函数221(0)()(0)x x f x x x ?+≥?=?-≤n n 求f (2002). 解:∵2002>2000, ∴f (2002)=f [f (2002-18)]=f [f (1984)]=f [1984+13]=f (1997)=1997+13=2010. 感悟方法 求值时代入哪个解析式,一定要看清自变量的取值在哪一段上. 【例2】判断函数22(1)(0)()(1)(0)x x x f x x x x ?-≥?=?-+0时,-x<0, f(-x)= -(-x)2(-x+1)=x 2(x -1)=f(x); 当x=0时,f(-0)=f(0)=0;当x<0时,f(-x)=( -x)2(-x -1)= -x 2(x+1)=f(x)。因此,对任意x ∈R 都有f(-x)=f(x),所以函数f(x)为偶函数。

绝对值大全(零点分段法、化简、最值)..

绝对值大全(零点分段法、化简、最值) 一、去绝对值符号的几种常用方法 解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。因此掌握去掉绝对值符号的方法和途径是解题关键。 1利用定义法去掉绝对值符号 根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥?? -????≤?;| x |>c (0) 0(0)(0)x c x c c x c x R c <->>?? ?≠=??∈c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|

七年级数学(上)思维特训(4):绝对值与分类讨论(含答案)

思维特训(四) 绝对值与分类讨论 方法点津 · 1.由于去掉绝对值符号时,要分三种情况:即正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以涉及绝对值的运算往往要分类讨论. 用符号表示这一过程为:||a =?????a (a >0),0(a =0),-a (a <0). 2.由于在数轴上到原点的距离相等的点(非原点)有两个,一个点表示的数是正数,另一个点表示的数是负数,因此知道某个数的绝对值求该数时,往往需要分两种情况讨论. 用符号表示这个过程为:若||x =a (a >0),则x =±a . 3.分类讨论的原则是不重不漏,一般步骤为:①分类;②讨论;③归纳. 典题精练 · 类型一 以数轴为载体的绝对值的分类讨论 1.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB |,定义|AB |=|a -b |. (1)|AB |=________; (2)设点P 在数轴上对应的数是x ,当|P A |-|PB |=2时,求x 的值. 2.我们知道:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为

AB ,在数轴上A ,B 两点之间的距离AB =|a -b |,所以式子|x -3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离. 根据上述材料,回答下列问题: (1)|5-(-2)|的值为________; (2)若|x -3|=1,则x 的值为________; (3)若|x -3|=|x +1|,求x 的值; (4)若|x -3|+|x +1|=7,求x 的值. 类型二 与绝对值化简有关的分类讨论问题 3.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答下列问题: 【提出问题】三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c 的值. 【解决问题】 解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数. ①当a ,b ,c 都是正数,即a >0,b >0,c >0时,则|a|a +|b|b +|c|c =a a +b b +c c =1+1+1 =3;②当a ,b ,c 中有一个为正数,另两个为负数时,设a >0,b <0,c <0,则|a|a +|b|b +|c|c =a a +-b b +-c c =1-1-1=-1. 所以|a|a +|b|b +|c|c 的值为3或-1. 【探究】请根据上面的解题思路解答下面的问题:

分段函数与绝对值函数

2.11分段函数与绝对值函数 ——随着高考命题思维量的加大,分段函数成了新的热点和亮点,单设专题,以明析强化之 一、明确复习目标 了解分段函数的有关概念;掌握分段函数问题的处理方法 二.建构知识网络 1.分段函数:定义域中各段的x 与y 的对应法则不同,函数式是分两段或几段给出的. 分段函数是一个函数,定义域、值域都是各段的并集。 2.绝对值函数去掉绝对符号后就是分段函数. 3.分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。 4.分段函数的处理方法:分段函数分段研究. 三、双基题目练练手 1.设函数f (x )=???? ?≥--<+, 11 4,1) 1(2 x x x x 则使得f (x )≥1的x 的取值范围为 ( ) A.(-∞,-2]∪[0,10] B.(-∞,-2]∪[0,1] C.(-∞,-2]∪[1,10] D.[-2,0]∪[1,10] 2.(2006安徽)函数2 2,0 ,0x x y x x ≥?=? -

4.(2006全国Ⅱ)函数19 1 ()n f x x n == -∑的最小值为 ( ) (A )190 (B )171 (C )90 (D )45 5.(2005北京市西城模拟)已知函数f (x )=?? ?<-≥-), 2(2 ), 2(2 x x x 则f (lg30-lg3) =___________;不等式xf (x -1)<10的解集是_______________. 6. (2006浙江)对R b a ∈,,记则{}? ??≥=b a b b a a b a <,,,max 则函数 (){}()R x x x x f ∈-+=2,1max 的最小值是 . 7. 已知函数1 3 2 (0)()(01)log (1) x x f x x x x ?<=≤≤>??,当a <0时,f {f [f (a )]}= 8.函数2 21(0) ()(0) x x f x x x ?+≥?=?-

绝对值的非负性及其应用

一、绝对值的非负性及其应用 引例:(教材17页作业题A组3题) 例题:下面的说法对吗如果不对,应如何改正 (1)一个数的绝对值一定是正数; (2)一个数的绝对值不可能是负数; (3)绝对值是同一个正数的数有两个,它们互为相反数. 知识点归纳: 1、绝对值:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值. 绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关. 结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立. 2、绝对值是非负数 一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即任何一个实数的绝对值是非负数 例题讲解 例1、a,b为实数,下列各式对吗若不对,应附加什么条件请写在题后的横线上。 (1)|a+b|=|a|+|b|;; (2)|ab|=|a||b|;; (3)|a-b|=|b-a|;; (4)若|a|=b,则a=b;; (5)若|a|<|b|,则a<b;; (6)若a>b,则|a|>|b|,。 例2? 实数a、b、c在数轴上的位置如图所示,则代数式的值等于 (? ). (A) ? (B) ? (C) ? (D) 归纳点评? 这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清: 1.零点的左边都是负数,右边都是正数. 2.右边点表示的数总大于左边点表示的数.

3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了. 练习:设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.例3:│a│+ │b│=0,求a,b的值。 变式:│a│+ │b│+ │c│=0,求a,b,c 的值。 例4:│a-2│+ │b+3│=0,求a,b的值. 变式练习: 11、任何一个有理数的绝对值一定(D) A.大于0 B.小于0 C.不大于0 D.不小于0 2已知a为有理数,则下列四个数中一定为非负有理数的是 (C) A.a B.-a C.|-a | D.-|-a | 3若|x|-|y|=0,则(D) A.x=y B.x=-y C.x=y=0 D.x=y或x=-y 变式训练4对于任意有理数a,下列各式一定成立的是(C) A.a>| a | B.a>|-a | C.a≥-| a | D.a<| a | 变式训练5若| a |+|b|=0,则a与b的大小关系是(A) A.a=b=0 B.a与b互为相反数 C.a与b异号D.a与b不相等 变式训练6若x是有理数,则|x|+1一定(C) A.等于1 B.大于1 C.不小于1 D.不大于1 变式训练7如果一个有理数的绝对值等于它的相反数.那么这个数一定是 (B) A.负数B.负数或零C.正数或零D.正数 变式训练8已知:|2x-3|+|y+2|=0,比较x,y的大小关系,正确的一组是 (B) A.x<y B.x>y

2016上海初一数学绝对值难题解析

2016上海初一数学绝对值难题解析 绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。 绝对值有两个意义: (1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。 即|a|=a(当a≥0), |a|=-a (当a<0) (2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|; 思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况) (2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。 (3)零点分段法:求零点、分段、区段内化简、综合。 例题解析: 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子: (1)|a-b|-|c-b| 解:∵a<0,b>0 ∴a-b<0 c<0,b>0 ∴c-b<0 故,原式=(b-a)-(b-c) =c-a (2)|a-c|-|a+c| 解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0 当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a 当a-c<0时,a<c,原式=(c-a)+(a+c)=2c 2、设x<-1,化简2-|2-|x-2|| 。 解:∵x<-1 ∴x-2<0 原式=2-|2-(2-x)|=2-|x|=2+x 3、设3<a<4,化简|a-3|+|a-6| 。 解:∵3<a<4 ∴a-3>0,a-6<0 原式=(a-3)-(a-6) =3 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的? 答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b, 解得b=0,这时a≥0;

初一数学绝对值难题解析

初一数学绝对值难题解析 绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。 绝对值有两个意义: (1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。 即|a|=a(当a≥0), |a|=-a (当a<0) (2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|; 思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况) (2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。 (3)零点分段法:求零点、分段、区段内化简、综合。 例题解析: 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子: (1)|a-b|-|c-b| 解:∵a<0,b>0 ∴a-b<0 c<0,b>0 ∴c-b<0 故,原式=(b-a)-(b-c) =c-a (2)|a-c|-|a+c| 解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0 当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a 当a-c<0时,a<c,原式=(c-a)+(a+c)=2c 2、设x<-1,化简2-|2-|x-2|| 。 解:∵x<-1 ∴x-2<0 原式=2-|2-(2-x)|=2-|x|=2+x 3、设3<a<4,化简|a-3|+|a-6| 。 解:∵3<a<4 ∴a-3>0,a-6<0 原式=(a-3)-(a-6) =3 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的? 答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b, 解得b=0,这时a≥0;

绝对值的最值问题

【例题1】:求|x+11|+|x-12|+|x+13|的最小值,并求出此时x的值? 分析:先回顾化简代数式|x+11|+|x-12|+|x+13|的过程 可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值) 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=40 3)当-130,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 4)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=25 5)当-110,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 6)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=48 7)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 可知:当x<-13时,|x+11|+|x-12|+|x+13|=-3x-12>27 当x=-13时,|x+11|+|x-12|+|x+13|=40 当-1312时, |x+11|+|x-12|+|x+13|=3x+12>48 观察发现代数式|x+11|+|x-12|+|x+13|的最小值是25,此时x=-11 解:可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值)将-11,12,-13从小到大排列为-13<-11<12 可知-11处于-13和12之间,所以当x=-11时,|x+11|+|x-12|+|x+13|有最小值是25 例题4:求代数式|x-1|+|x-2|+|x-3|+|x-4|的最小值 分析:回顾化简过程如下 令x-1=0,x-2=0,x-3=0,x-4=0 则零点值为x=1 , x=2 ,x=3 ,x=4 (1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10 (2)当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8 (3)当2≤x<3时,|x-1|+|x-2|+|x-3|+|x-4|=4 (4)当3≤x<4时,|x-1|+|x-2|+|x-3|+|x-4|=2x-2 (5)当x≥4时,|x-1|+|x-2|+|x-3|+|x-4|=4x-10 根据x的范围判断出相应代数式的范围,在取所有范围中最小的值,即可求出对应的x的范围或者取值 解:根据绝对值的化简过程可以得出 当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10 >6 当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8 4<2x+8≤6 当2≤x<3时,|x-1|+|x-2|+|x-3|+|x-4|=4

相关文档
最新文档