Characteristics of Nd_YAG Laser Welded Joints of Dual Phase Steel

Characteristics of Nd_YAG Laser Welded Joints of Dual Phase Steel
Characteristics of Nd_YAG Laser Welded Joints of Dual Phase Steel

ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING

Vol. IX2009No. 4 Characteristics of Nd:YAG laser welded joints

of dual phase steel

M.S. W?GLOWSKI, K. KWIECI?SKI, K. KRASNOWSKI, R. JACHYM

Institute of Welding, Testing of Materials Weldability and Welded Constructions Department,

B?ogos?awionego Czes?awa 16–18, 44-100 Gliwice, Poland

Examination results of microstructure, mechanical properties, fatigue strength and residual stresses of laser welded joints in dual phase HDT580X steel have been presented. The main goal of these stud-ies was to verify whether Nd:YAG laser welding without filler metal can be used for welding of dual phase steel. In the frame of this investigation the microstructure has been studied by optical and scan-ning microscopy. Mechanical properties have been analysed by tensile, bend and hardness tests. Addi-tionally fatigue tests and residual stress measurements were carried out. The results revealed that the HDT 580X steel is characterized by good laser weldability. The tensile strength of welded joints is at the same level as that of the base metal and the maximum hardness does not exceed 343 HV. The microstructure of welded joints is mainly composed of lath martensite in the weld and a mixture of lath martensite, bainite and ferrite in the heat affected zone (HAZ). The fatigue class FAT was determined, which is equal to 284 MPa and 150 MPa for base material and welded joint, respectively. Residual stresses determined by the hole drilling method and the videoextensometer were: σmax= 573 MPa and σmin= –126 MPa.

Keywords: dual phase steel, Nd:YAG, fatigue ,residual stress, videoextensometer

1. Introduction

Fuel economy and, thereby, weight reduction have become a point of consider-able interest in the car industry over the past 20 years. The body-in-white, the heaviest and largest car component, comprises about 25–30 percent of the total weight of a medium-sized passengers car. Hence, it has to fulfill a variety of mate-rial – relevant requirements. For car manufacturer, five demanding areas can be distinguished: cost, production, styling and space optimization, physical charac-teristics and quality, environmental impact [1]. The dominating role of steel as the material for car bodies is attributed to its good response to most of these require-ments and its adaptability. Cold rolled, high strength sheet steels have been devel-oped predominantly for automotive applications, and newly developed high strength steels are measured by the five criteria listed. Hence, the aim is to in-crease strength without decreasing formability, joinability, coatability, and also process ability [2]. Various new grades of steels – IF (Interstitial Free), DP (Dual

M.S. W?GLOWSKI et al.

86

Phase), HSLA (High Strength Low Alloy) –have been developed which show ex-cellent formability and are able to meet the most automotive requirements. The most popular grades of automotive steels are DP grades [1–3].

Dual Phase steel, so called because they consist essentially of a dispersion of martensite in a ferrite matrix, are produced by intercritically annealing and cooling at such a rate as to give the desired structure. Apart from the chemical composi-tion, the microstructure and mechanical properties in the practical point of view the most important factor is “jointability” of automotive steels [4]. Traditionally, resistance welding and fusion welding have been used in the automotive industry. However, the most prospective welding process in this branch of industry is laser welding. The main advantages of laser welding are small distortions of the sheets caused by a small width of HAZ, high welding speed and flexibility of this proc-ess. Investigations which have been carried out so far and cover laser welding of DP steels, are focused on mechanical [5, 6] and structural properties [5, 7] of welded sheets in thicknesses lower than 2 mm. The research have shown [5] char-acteristics of Nd:YAG laser welded 600 MPa grade DP steel, 1.4 mm in thickness, in respect of hardness, microstructure, mechanical properties and formability. They concluded that the hardness in the HAZ was about 380 HV at the welding speed of 1.2 m/min and the laser power of 3.5 kW. The strength of the welded joint was higher than that of the base metal. The weld and HAZ was composed of ferrite and rapidly solidified structure (RSS). Dilthey et al. [6] has presented me-chanical properties of DP600 steel welded joint 2.0 mm in thickness. They found that the hardness in the welded zone is higher than 400 HV and the tensile strength of the joint was at the same level as of the base metal. Krizan et al. [7] reported mechanical and structural properties of DP laser welded joints 1.5 mm in thick-ness. Welding was performed by a CO2 laser welding unit operated in the continu-ous wave mode. The microstructure of the base metal consisted of ferrite, bainite and martensite. Both the fine-grained and the coarse-grained supercritical HAZ’s consisted of lath martensite. In the weld a fully lath martensite was observed. Na-gasaka et al. [8] reported on the improvement of the press formability of YAG laser welded TRIP/DP tailored blanks. They investigated the DP600 steel 1.2 mm in thickness. Anand et al. [9] determined the fatigue strength of dissimilar thick-ness laser-welded sheets and different coatings. The results showed that tailor welded blanks (TWB) made from zinc-coated/galvanized steels exhibited a lower fatigue limit as compared to the TWB combination from uncoated bare metal. Authors [10] presented results of the influence of martensite volume fraction on the fatigue limit of DP steel. They concluded that the higher volume of martensite improved the fatigue limit for rolled and not rolled materials. Some results of nu-merical simulation of distortion and residual stresses of DP steel weldments are also available [11]. Authors [11] concluded that the demonstrated numerical simulation of the welding process is a powerful tool for the prediction of distor-

Characteristics of Nd:YAG laser welded joints of dual phase steel 87

tions and residual stresses in welded structures. Paper [12] contains microstructure analysis of DP600 steel after three different welding methods: MAG, resistance welding and braze welding. The authors conclude that the resistance welded zone is composed of the Widmannst?tten structure with hardness about 420 HV.

However, there have been essentially no reports on laser welding of the DP600steel more than 2 mm in thickness. Because of this, butt-welded joints 2.4 mm in thickness have been welded using a Nd:YAG laser, and their microstructure, mechani-cal properties, fatigue strength and residual stresses were examined and tested. The aim of investigation presented in this paper is to perform good quality joints of thick steel sheets. Applications for this kind of joints include mainly automotive industry etc. bumper reinforcements, pillars and beams.

2. Experimental procedure

2.1. Welding procedure

The 2.4 mm thick hot rolled sheets of dual phase steel (HDT580X acc. to PN-EN 10336:2007 [13]) were laser welded at a robotized laser stand which, was composed of the solid state laser Nd:YAG TRUMPH HL 2000D, the focusing head TRUMPF D70 and the robot KUKA – KR 30/2 HA. The chemical composition of the HDT580X steel is given in Table 1.Table 1. Chemical composition of HDT580X steel [%]

C Mn Si P S Cu Cr

Ni 0.070.900.090.0280.0010.040.40

0.04Mo V Al N Nb Ti B

Sn 0.010.0040.0390.00580.0020.0220.00030.003

Ito and Bessyo [15] define the carbon equivalent of steel with the carbon content in mass % less than 0.18 as follows:

.510V 15Mo 60N 20Cr Cu Mn 30Si B i C CE ++++++++= (1)The carbon equivalent of the HDT580X steel is 0.14 %.

Before welding the surface of the specimens was chemical cleaned by acetone.Butt welding was performed acc. to EN ISO 15614-11:2005 [14]. The joints were produced by deep penetration welding method (also known as keyhole welding) without filler metal at the following welding parameters: beam power at workpiece – 2.0 kW,travel speed – 2.1 m/min, shielding gas – argon at a flow rate of 16 l/min, working dis-tance – 223 mm. Tensile tests, bend tests and metallographic examination were done on specimens cut off the welding joints.

M.S. W?GLOWSKI et al.

88

2.2. Testing

Transverse sections of the welded joints passing through the weld centre as well as sections of base metal were prepared by a standard metallographic procedure and etching in 3% alcoholic nitric acid solution. The microstructural examinations were carried out by an optical microscope LEICA MEF4M and scanning electron microscope HITACHI S-3500N. The microstructure of base metal was also studied by TEM – JEM200CX.

The Vickers microhardness measurement across the weld and the base metal was carried out on metallographic specimens at a load of 500 g. During microhardness testing the indentations were randomly made on the matrix without marking the spe-cific phases. However, in case of welded specimens specific attention was paid to place the indentations in the region of HAZ and weld. Hardness measurement of the welded sheet was performed by using the Zwick hardness tester.

The tensile tests of the welded joints (acc. to EN 895 [16]) as well as of the base metal (acc. to EN 10002-1 [17]) was performed on a mechanical universal testing machine (INSTRON 1420) by using three specimens. The bend tests were carried out on a mandrel of 10 mm in diameter acc. to EN 910 [18]. The tensile and bend tests were performed at room temperature.

The fatigue properties of the laser welds and base metal were determined on the universal fatigue machine 1000 kN MTS type 311.31 at a frequency in the range from 15 to 20 Hz. Tests were conducted at room temperature at a load ratio R = 0.2 (where R = σmin/σmax). The analysis of data was performed acc. to the document XIII-2151-07/XV-1254-07 of the International Institute of Welding (IIW) [19].

The distribution of residual stresses in welded joints was determined by using the hole-drilling method [20] and videoextensometer type Messphysik ME-46. A full image video-camera was focused on the test specimen upon which contrasting marks (targets) have been plotted and the resulting image was analyzed in real time by a PC-based video processor. The associated software ensures that the distance between targets is continuously measured during testing. The Video Extensometer automatically acts as a “strain meter” by directly calculating the measured extension as a percentage of the original length. Then the extensions were calculated to stresses.

3.Results and discussion

3.1. Base metal

The dual phase structure of the base metal, revealed by nital etching, with marten-site islands (dark areas) in a ferrite matrix (white areas) is shown in Figure 1a. Due to the fact that in some cases dark areas can be indicated as ferrite, the colour etching by the Beraha reagent has been used to unambiguously identify the martensite phase. Figure 1b shows the effect of colour etching of the base metal – white areas are martensite, dark areas – ferrite. The authors of the publication [21] have indicated that

Characteristics of Nd:YAG laser welded joints of dual phase steel89 the microstructure of a dual phase steel can consist of martensite and fine pearlite is-lands in ferrite matrix or martensite and bainite islands in ferrite matrix. The small content of carbon causes that the presence of pearlite phase is of little probability. To estimate the real microstructure of the HDT580X steel, the SEM microscope was used. Figure 2a shows the SEM microstructure of base metal which is composed of martensite-austenite (M-A) islands in a ferrite matrix. The SEM techniques did not reveal the bainite and pearlite phases. So, the TEM microscope was used, which shows that the microstructure of the HDT580X steel is composed of martensite-austenite islands in ferrite matrix, in some island bainite is also present (Figure 2b).

The mechanical properties of HDT580X steel are given in Table 2.

Fig. 1. Microstructure of HDT 580X steel, a) etched by Nital 3% reagent,

b) colour etched by Beraha reagent

Fig. 2. Microstructure of HDT 580X steel, a) SEM – etched by Nital 3% reagent,

b) TEM. F – ferrite, M – martensite, B – bainite, A – austenite

3.2. Macrostructure and microstructures of the welded joint

Figure 3 shows the macrostructure of the laser weld of DP steel. As can be seen the weld is well formed and free of imperfections, i.e. without porosities or cracks in the

90

M.S. W?GLOWSKI et al.

fusion zone. The epitaxial crystallisation of the fusion zone initiated on the fusion boundary with the formation of columnar grains that grew towards the weld centre line. The quality level of this joint has been determined as B acc. to EN ISO 13919-1 [22].

Etch. Nital 3% ×10

Fig. 3. Macrostructure of the laser welded (2.0 kW, 2.1 m/min) HDT 580X steel joint

Table 2. Mechanical properties of HDT580X steel (mean values)

Orientation to rolling direction

longitudinal transverse

R m612 MPa630 MPa

R e420 MPa423 MPa

A531.5 %27.9 %

A1024.5 %22.23 %

Fig. 4. Microstructure of welded HDT 580X steel. Optical microscope, a) HAZ b) weld The optical microstructures of the HAZ and weld observed in the welded joint are shown in Figure 4. The structure of the HAZ is composed of ferrite, bainite and martensite (Figure 4a). The microstructure of the weld is uniform and consists of lath martensite, typical for this kind of low carbon steel. The lath martensite is built in packets as shown in Figure 4b.

Characteristics of Nd:YAG laser welded joints of dual phase steel 91

Fig. 5. SEM microstructure of the welded joint, a) HAZ, b) weld

Figure 5 shows the SEM microstructure of the HAZ and weld. The results of SEM confirmed those achieved by optical microscopy. The HAZ is composed of a mixture of ferrite, martensite and bainite. In the weld zone a fully lath martensite structure was observed due to the rapid cooling.

3.3. Microhardness across the welded joint

The changes of hardness across the weld in the cross sectional plane of the laser welded joint are shown in Figure 6. The base material hardness values did not exceed 226 HV. In the HAZ there was an increase of hardness to 285 HV. The maximum hardness 343 HV was observed in the weld. These results confirmed that the low car-bon lath martensite was present in the weld and HAZ.

Fig. 6. Microhardness distribution across the welded joint

92

M.S. W?GLOWSKI et al.

3.4. Mechanical properties

The tensile test revealed that the strength of welded joints is at the same level as that of the base material, and equals R m = 631 MPa (average value of three speci-mens). All specimens fractured in the base metal away from the weld. These results indicate that the strength of welded joints is not less that that of the base material The bend tests were performed up to the angle of 180°, for all cases on the surface of welds cracks or other imperfection did not occur.

So, based on structural and mechanical properties of the welded joints, it can be concluded that the welding parameters used in the tests guarantee their proper quality.

3.5. Fatigue strength

Fatigue tests were performed to establish fatigue strength curves for the base mate-rial and welded joint. Figure 7 shows the fatigue sample for the base metal and welded joints. Statistical methods offer three ways of testing a limited number of samples from a larger population [19]:

– a specimen to failure,

–first specimen to failure,

–p specimens to failure amongst n specimens.

Fig. 7. Fatigue sample for base metal and welded joints

The presented results are based on the first method – specimen to failure. The test results were obtained at constant stress ratios R. The S–N data was presented in a graph showing log(endurance in cycles) as the abscissa and log(range of fatigue actions) as the ordinate (Figure 8). In order to get the defined fatigue characteristic values at 2·106, the fatigue test data have been calculated using a statistical method [19]. These characteristic values are, in principle, values at α = 95% survival prob-ability (5% probability of failure) associated to a two sided confidence interval of 75% of the mean x k and of the standard deviation Stdv of β= 75% (12.5% probability of being above or below the extreme values of the confidence interval).

Characteristics of Nd:YAG laser welded joints of dual phase steel 93

Fig. 8. Fatigue resistance for the base material, a) and welded joint, b) P -probability

For the evaluation of test data originating from a test series, the characteristic values were calculated by the following procedure:

a) computing the log 10 of all data: stress range Δσ and number of cycles N ,

b) computing the exponents m and constant log C of the formula:

,

log log log σΔ??=m C N (2)by linear regression take stress as the independent variable:

)

(log log σΔ=f N (3)

c) computing the mean x m and standard deviation Stdv of log C through m ,

d) computing the characteristic values x k by the formula:,

Stdv k x x m k ??= (4)where k is equal 2.4 [19] for 15 fatigue samples.

For the base material, the regression line (2) is expressed as:

),

log(96.2449.68log σΔ?=N (5)for the welded joint:

).log(51.606.19log σΔ?=N (6)The calculated results indicate that the fatigue class – FAT for the HDT580X steel and welded joint equals 284 MPa and 150 MPa, respectively.

M.S. W ?GLOWSKI et al.

943.6. Residual stress

The residual stresses in the area surrounding the drilled hole relax. The hole was made by a drill 1.2 mm in diameter. The method is based on the measurement of the relieved strains by the videoextensometer and than by computing the stresses. The measurements of residual stresses in the area of the welded joint were performed acc.to the following procedure [20, 23]:

– computing the stresses σmax , σmin from:

()()(),44,2213213'13max min B E A E ?????

??++?±+=εεεεεεεσσ (7)

where:

A ′,

B ′ – calibration constants,

ε1, ε2, ε3 – relieved strains,

E – Young’s modulus,

– computing the constants A ′, B ′ from:

()r a A ?+?=′ν1, ()???

??????????????++?+=′41122r a r a r a B ν (8)

where:

ν – Poisson’s ratio,

a – radius of drilled hole 1.2 mm in diameter (see Figure 9),

r – radius of videoextensometer measurement base circle (see Figure 9),

– computing the relieved strains ε1, ε2, ε3 from:,21r A Δ=ε,22r B Δ=ε,23r C Δ=ε (9)where ΔA , ΔB , ΔC – reference bases (see Figure 9),

– computing the angle α (measured clockwise from direction of base ΔC to the di-rection of σmax – see Figure 9) from:

.arctag 2113213??????????+=εεεεεα(10)For reasons of pictorial clarity in Figure 9, the principal residual stresses σmax ,σmin are shown as uniformly acting over the entire region around the hole location. In

Characteristics of Nd:YAG laser welded joints of dual phase steel95 actuality, it is not necessary for the residual stresses to be uniform over such a large region.

The relived strains depend only on the principal stresses originally existing at the boundaries of the hole. The stresses beyond the hole boundaries do not affect the re-lieved strains. Because of this, the hole drilling method combined with the videoexten-someter provides a very localized measurement of residual stresses.

Fig. 9. Schematic diagram of videoextensometer reference bases arrangement After calculation the residual stresses σmax = 573 MPa, σmin= –126 MPa and the angle α = 33.8°.

3. Conclusion

The characteristics of Nd:YAG laser welded HDT580X steel joint was investigated in respects of hardness, mechanical properties, fatigue resistance and residual stress and the following results were obtained:

–the structural examination of the weld cross sections revealed that the welds were free of any defects such as porosity, concavity, voids, inclusions or misalignment. This indicates that the laser welding parameters are appropriate to obtain sound welds;

–the microstructure of the HDT580X steel is composed of martensite-austenite islands in ferrite matrix, in some islands bainite was observed;

–the macroscopic examination and mechanical tests indicate that it is possible to achieve good quality welds by the application of proper welding parameters;

–the welding process has an affect on the fatigue class, the FAT for the base ma-terial is 284 MPa, and for the welded joint 150 MPa;

–the welding residual stresses are: σmax= 573 MPa and σmin= –126 MPa.

96

M.S. W?GLOWSKI et al.

References

[1]Hamm L.: Stahl–ein zukunftstr?chtiger Werkstoff im Karosseriebau?, Proc. IISI 27th

Annual Meeting and Conference, Paris, 1993.

[2]Bleck W.: Cold rolled high strength sheet steels for auto applications, JOM, No. 7, 1996,

pp. 26–31.

[3]Kuziak R., Kawalla R., Waengler S.: Advanced high strength steels for automotive in-

dustry, Archives of Civil and Mechanical Engineering, Vol. 8, No. 2, 2008, pp. 103–117.

[4]Svensson L.E., Larsson J.K.: Welding and joining of high performance car bodies, Steel

World (UK), Vol. 7, No. 7, 2002, pp. 21–32.

[5]Kang C.Y., Han T.K., Lee B.K., Kim J.K.: Characteristics of Nd:YAG Laser Welded

600MPa Grade TRIP and DP Steel, Materials Science Forum, Vol. 539–543, 2007, pp. 3967–3972.

[6]Dilthey U., Ghandehari A., Bleck W., Budak I.: Mechanical-technological properties

of beam welded high and ultra high strength steels, Zeitschrift für Metallkunde, Vol. 92, No. 3, 2001, pp. 221–225.

[7]Krizan D., Waterschoot T., Koruk A.L., De Coman B.C.: Bake hardening of laser welded

Dual Phase steel, Steel Research, Vol. 74, No. 10, 2003, pp. 639–645.

[8]Nagasaka A., Sugimoto K.I., Kobayashi M., Makii K.: Press formability of YAG laser

welded TRIP/DP tailored blanks, J. Phys. IV France, Vol. 115, 2004, pp. 251–258. [9]Anand D., Chen D.L., Bhole S.D., Andreychuk P., Boudreau G.: Fatigue behavior of

tailor (laser)-welded blanks for automotive applications, Materials Science and Engi-neering A, Vol. 420, 2006, pp. 199–207.

[10]Sarwar M., Priestner R., Ahmad E.: Influence of martensite volume fraction on fatigue

limit of Dual Phase steel, Journal of Materials Engineering and Performance, Vol. 11, No. 3, 2002, pp. 274–277.

[11]Brand M., Siegele D.: Numerical simulation of distortion and residual stresses of dual

phase steel weldments, Welding in the World, Vol. 51, No. 9–10, 2007, pp. 56–62. [12]Kustroń P., Rutkowska – Gorczyca M., Ambroziak A., Lachowicz M.: Microstructure of

welds of modern steel DP600 applied in automotive industry, Proceedings of XXXVI Materials Engineering School, Kraków–Krynica 2008, pp. 203–207.

[13]EN 10336:2007 – Continuously hot-dip coated and electrolytically coated strip and sheet

of multiphase steels for cold forming. Technical delivery conditions.

[14]EN ISO 15614-11:2002 – Specification and qualification of welding procedures for me-

tallic materials. Welding procedure test. Part 11: Electron and laser beam welding.

[15]Ito I., Besssyo K.: Weldability formula of high strength steels. IIW document IX-576-68.

[16]EN 895:1995 – Destructive tests on welds in metallic materials – Transverse tensile test.

[17]EN 10002-1:2001 – Metallic materials. Tensile testing. Part 1: Method of test at ambient

temperature.

[18]EN 910:1999 – Destructive tests on welds in metallic materials – Bend tests.

[19]Hobbacher A.: Recommendations for fatigue design of welded joints and components

revision of XIII-1539-96 / XV-845-96, IIW document XIII-2151-07/XV-1254-07. [20]ASTM Standard E837-92 Standard test method for Determining Residual Stresses by the

Hole-Drilling strain-Gage Method.

[21]Gupta P., Ghosh P.K., Nath S.K., Ray S.: Resistance spot weldability of plain carbon and

low alloy dual phase steels, Zeitschrift für Metallkunde, Vol. 81, No. 7, 1990, pp. 502–508.

Characteristics of Nd:YAG laser welded joints of dual phase steel97 [22]EN ISO 13919-1:1996 – Welding. Electrons and laser beam welded joints. Guidance on

quality levels for imperfections – Part 1: Steel.

[23]S?dek P.: Modification of the hole-drilling method of residual stress measurement (Part 1)(in

Polish), Welding Institute Bulletin, Vol. 37, No. 3, 1993, pp. 36–39.

Charakterystyka z??czy ze stali typu Dual Phase spawanych laserem typu Nd:YAG W artykule przedstawiono wyniki badań strukturalnych, w?asno?ci mechanicznych, oraz badań zm?czeniowych i pomiarów napr??eń w?asnych z??czy spawanych wi?zka laserow? ze stali typu Dual Phase (HDT580X). Celem przeprowadzonych badań by?o sprawdzenie mo?li-wo?ci wykonania prawid?owych z??czy spawanych laserowo przy u?yciu lasera typu Nd:YAG bez materia?u dodatkowego. Ocen? budowy strukturalnej z??czy przeprowadzono przy u?yciu mikroskopu optycznego i skaningowego, a materia?u podstawowego dodatkowo przy u?yciu transmisyjnego mikroskopu elektronowego. Badania w?asno?ci mechanicznych obejmowa?y próby statycznego rozci?gania, zginania i pomiarów twardo?ci. Dodatkowo przeprowadzono badania zm?czeniowe i pomiary napr??eńw?asnych. Przeprowadzone badania wykaza?y, ?e stal HDT 580 X jest ?atwo spawalna przy u?yciu wi?zki lasera Nd:YAG. Wytrzyma?o?? z??czy by?a na poziomie materia?u rodzimego. Maksymalna twardo?? w obszarze spoiny wynosi?a 343 HV. Struktura spoiny sk?ada?a si?g?ównie z martenzytu listwowego, a SWC z mieszaniny martenzytu listwowego, bainitu i ferrytu. Kategoria zm?czeniowa FAT dla materia?u podsta-wowego wynios?a 284 MPa, a dla z??cza spawanego 150 MPa. Do wyznaczenia poziomu na-pr??eń w?asnych zastosowano zmodyfikowan? metod? otworkow?. Pomiary odkszta?ceń prze-prowadzono przy u?yciu wideoekstensometru. Napr??enia g?ówne wynios?y σmax = 573 MPa, a σmin = –126 MPa.

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

脉冲激光器

收稿日期:2004-09-20;收到修改稿日期:2005-10-28 作者简介:姜本学(1980-),男,山东青州人,博士研究生,主要从事高平均功率激光晶体生长、光谱和激光性能的研究。E-mail:jiangbx@https://www.360docs.net/doc/e512278313.html, 摘要介绍了能够实现高平均功率的两种固体激光器:固体薄片激光器和固体热容激光器。给出了它们的工作原理和 理论上的工作参数。综述了固体薄片激光器和固体热容激光器的研究历史和现状,指出了高平均功率固体激光器未来的发展方向。关键词 固体薄片激光器;固体热容激光器;高平均功率固体激光器 中图分类号:TN248 Thin Disk Solid State Lasers and Heat Capacity Solid State Lasers JIANG Benxue 1,2ZHAO Zhiwei 1ZHAO Guangjun 1XU Jun 1 1Shanghai Institute of Optics and Fine Mechanics,The Chinese Academy of Sciences,Shanghai 201800 2Graduate School of the Chinese Academy of Science,Beijing 100200 ()Abstract The working principles and the working parameters calculated theoretically of two types of solid state lasers,thin disk lasers and heat capacity lasers,which can realize high average power,are introduced.Their research history and the present status are described,the adoption of Nb:YAG,Nd:GGG,and Nd:YAG crystals in the solid state lasers are summarized,and the prospect and the development trends of high average power solid state lasers are pre 原sented.Key words thin disk solid state laser;heat capacity laser;high average power solid state laser 固体薄片激光器和固体热容激光器 姜本学1,2赵志伟1赵广军1徐军1 1中国科学院上海光学精密机械研究所,上海2018002中国科学院研究生院,北京100200 ()1引言 高平均功率(HAP)输出的固体 激光器(SSL)在工业、科学和军事等领域都有着非常诱人的应用前景[1~4]。设计高功率固体激光器的主要的困难有两个[5]:对抽运过程中无法避免的废热进行处理以及消除由于将废热去除而导致的后果。在激光工作过程中如果不对增益介质冷却,就会导致其温度升高,使得增益系数降低,最终导致不能工作。对增益介质冷却就会引起热透镜、机械应力及其它许多问题的产生,进而可能使激光光束质量下 降、降低激光输出功率、甚至可能导致固体激光增益介质的破裂。 针对高功率固体激光器上述两个发展瓶颈,解决的方法有两个:一是由于产生废热是不可避免 的, 所以要尽量消除由于消除废热而引起的后果。必须要减少热量和热流密度,减小热流的传导路程和 对激光场的影响[6~19]。几年来, 关于这方面的研究有很多的设计模型,比较理想的模型是盘片激光器。二是在激光工作过程中不对增益介质冷却,即固体热容激光器。这样就要求选择增益介质的热容和密度要尽可能的大, 从而在相同的激光输出的情况下,增益介质的温度升高尽量小[20~32]。 Yb 掺杂离子体系和Nd 掺杂离子体系的发展为高功率固体激光器的研究提供了好的方向[5,6]。由于Yb 离子的量子缺陷比Nd 离子低的多,大约仅为1/3,这在很大的程度上降低了废热的产生。但是由于Yb 离子是准三能级结构,激光下能级低,所以受温度影响大,抽运阈值高。本文重点介绍Yb 掺杂离子体系和Nd 掺杂离子体系的盘片激光器和固体热容激光器的研

国外选区激光熔化成形技术在航空航天领域应用现状_董鹏

1 铺粉 国外选区激光熔化成形技术在航空航天领域应用现状 董鹏 陈济轮 (首都航天机械公司,北京100076) 摘要:选区激光熔化成形技术具有制造精度高、表面质量好以及能够实现悬空、复杂内腔和型面等复杂构件的整体制造等特点,是满足航空航天领域中复杂薄壁精密构件高精度、高性能、高柔性与快速反应的理想制造方法。本文对国外选区激光熔化成形技术在航空航天领域的应用以及技术发展方向进行了分析。 关键词:选区激光熔化成形;航空航天;应用现状 Current Status of Selective Laser Melting for Aerospace Applications Abroad Dong Peng Chen Jilun (Capital Aerospace Machinery Company,Beijing 100076) Abstract :Selective laser melting can manufacture complex geometries structures with thin walls and hidden voids or channels without tools or mould,for difficult-to-machine materials.It provides a high efficiency,high-quality,flexible manufacturing technique for manufacturing components in aerosapce fields.The current status and the trends of of selective laser melting for aerospace applications in abroad were analysed. Key words :selective laser melting ;aerospace ;current status of applications 1 引言 金属材料增材制造技术是在航空航天领域关键件研制需求的牵引下诞生的,由于其特有的技术优势,使得各国政府和研究结构投入大量的人力、物力、 财力进行该项技术的研究。近些年在航空航天领域迫切需求的牵引以及计算机技术、激光技术以及材料科学等相关基础技术快速发展的推动下,增材制造技术发展十分迅速。 图1选区激光熔化成形基本流程[4] 作者简介:董鹏(1983-),工程师,光学工程专业;研究方向:激光焊接与增才制造。 收稿日期:2014-03-06 CAD 模型 分层切片 铺粉 激光按分层形状熔化金属粉末 基板下降 完成零件制备

金属零件激光选区熔化3D打印装备与技术

金属零件激光选区熔化3D打印装备与技术随着科学技术日新月异的进步,机械加工行业不断发展。而快速成型技术,尤其是激光3D打印技术在机械加工行业中起到了越来越大的作用,并渐渐在制造业得到了广泛应用,成为了如今机械制造业中不可或缺的一部分。3D打印技术正在快速改变我们传统的生产方式和生活方式,不少专家认为,以数字化、网络化、个性化、定制化为特点的3D打印制造技术将推动第三次工业革命。 金属零件3D打印技术作为整个3D打印体系中最前沿和最有潜力的技术,是先进制造技术的重要发展方向。按照金属粉末的添置方式将金属3D打印技术分为三类:(1)使用激光照射预先铺展好的金属粉末,即金属零件成型完毕后将完全被粉末覆盖。这种方法目前被设备厂家及各科研院所广泛采用,包括直接金 属激光烧结成型(Direct Metal Laser Sintering,DMLS)、激光选区熔化(Selective laser melting,SLM)和LC(Laser Cusing)等;(2)使用激光照射喷嘴输送的粉末流,激光与输送粉末同时工作(Laser Engineered Net Shaping,LENS)。该方法目前在国内使用比较多;(3)采用电子束熔化预先铺展好的金属粉末(Electron Beam Melting,EBM),此方法与第1类原理相似,只是采用热源不同。 激光选区熔化技术是金属3D打印领域的重要部分,其采用精细聚焦光斑快速熔化300-500目的预置粉末材料,几乎可以直接获得任意形状以及具有完全冶金结合的功能零件。致密度可达到近乎100%,尺寸精度达20-50微米,表面粗糙度达20-30微米,是一种极具发展前景的快速成型技术,而且其应用范围已拓展到航空航天、医疗、汽车、模具等领域。 目前SLM设备的研究和开发也成为了国内外快速成型领域的热点。本文对SLM设备的组成和成型原理进行了一个概述性的介绍,对比了国内外SLM设备的参数,并对SLM设备和技术的发展进行了展望。 SLM成型设备 SLM设备一般由光路单元、机械单元、控制单元、工艺软件和保护气密封单元几个部分组成。 光路单元主要包括光纤激光器、扩束镜、反射镜、扫描振镜和F-?聚焦透镜等。激光器是SLM设备中最核心的组成部分,直接决定了整个设备的成型质量。近年来几乎所有的SLM 设备都采用光纤激光器,因光纤激光器具有转换效率高、性能可靠、寿命长、光束模式接近基模等优点。由于激光光束质量很好,激光束能被聚集成极细微的光束,并且其输出波长短,因而光纤激光器在精密金属零件的激光选区熔化快速成型中有着极为明显的优势。扩束镜是对光束质量调整必不可少的光学部件,光路中采用扩束镜是为了扩大光束直径,减小光束发散角,减小能量损耗。扫描振镜由电机驱动,通过计算机进行控制,可以使激光光斑精确定位在加工面的任一位置。为了克服扫描振镜单元的畸变,须用专用平场F-?扫描透镜,使得聚焦光斑在扫描范围内得到一致的聚焦特性。

半导体激光器驱动电源的控制系统

半导体激光器驱动电源的控制系统 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。这些外设部件的高度集成为设计小体积、低功耗、高可靠性、高性能的单片机应用系统提供了方便,也大大降低了系统的成本。光功率及温度采样模拟信号经放大后由单片机内部A/D 转换为数字信号,进行运算处理,反馈控制信号经内部D/A转换后再分别送往激光器电流源电路和温控电路,形成光功率和温度的闭环控制。光功率设定从键盘输入,并由LED数码管显示激光功率和电流等数据。 2 半导体激光器电源控制系统设计 目前,凡是高精密的恒流源,大多数都使用了集成运算放大器。其基本原理是通过负反作用,使加到比较放大器两个输入端的电压相等,从而保持输出电流恒定。并且影响恒流源输出电流稳定性的因素可归纳为两部分:一是构成恒流源的内部因素,包括:基准电压、采样电阻、放大器增益(包括调整环节)、零点漂移和噪声电压;二是恒流源所处的外部因素,包括:输入电源电压、负载电阻和环境温度的变化。 2.1 慢启动电路 半导体激光器往往会因为接在同一电网上的多种电器的突然开启或者关闭而受到损坏,这主要是由于开关的闭合和开启的瞬间会产生一个很大的冲击电流,就是该电流致使半导体激光器损坏,介于这种情况,必须加以克服。因此,驱动电源的输入应该设计成慢启动电路,以防损坏,:左边输入端接稳压后的直流电压,右边为输出端。整个电路的结构可看作是在射级输出器上添加了两个Ⅱ型滤波网络,分别由L1,C1,C2和L2,C6,C7组成。电容C5构成的C型滤波网络及一个时间延迟网络。慢启动输入电压V在开关和闭合的瞬间产生大量的高频成分,经过图中的两个Ⅱ型网络滤出大部分的高频分量,直流以及低频分量则可以顺利地经过。到达电阻R和C组成的时间延迟网络,C2和C4并联是为了减少电解电容对高频分量的电感效应。 2.2 恒流源电路的设计 为了使半导体激光器稳定工作,对流过激光器的电流要求非常严格,供电电路必须是低噪声的稳定恒流源驱动,具体电路。 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。

激光脉冲的平均功率和功率

激光脉冲的平均功率和功率, 设脉冲激光器输出的单个脉冲持续时间(脉冲宽度)为:t,(实际为FWHM宽度) 单个脉冲的能量:E, 输出激光的脉冲重复周期为:T, 那么,激光脉冲的平均功率Pav = E/T,(即在一个重复周期内的单位时间输出的能量) 脉冲激光讲峰值功率(peak power)Ppk = E/t 能量密度=(单脉冲能量*所用频率)/光斑面积算 通常也用单位时间内的总能量除以光斑面积 峰值功率=脉冲能量除以脉宽 平均功率=脉冲能量*重复频率(每秒钟脉冲的个数) 脉冲激光器的能量换算 脉冲激光器的发射激光是不连续,一般以高重频脉冲间隔发射。发射能量以功的单位焦耳J) 计,即每次脉冲做功多少焦耳。 连续激光器发射的能量以功率单位瓦特(W)计量,即每秒钟做功多少焦耳,表示单位时间内 做功多少。 瓦和焦耳的关系:1W=1J/秒。 一台脉冲激光器,脉冲发射能量是1焦耳/次,脉冲频率是50Hz,则每秒钟发射激光50次,每秒钟内做功的平均功率为:50X 1焦耳=50焦耳,所以,平均功率就换算为50瓦。再举例 说明峰值功率的计算,一台绿光脉冲激光器,脉冲能量是0.14mJ/次,每次脉宽20 ns,脉冲 频率100kHz, 平均功率为:0.14mJ X 100k=14J/s=14W,即平均功率为14瓦;峰值功率是每次脉冲能量与脉宽之比,即 峰值功率:0.14mJ/20ns=7000W=7kW,峰值功率为7千瓦。 要想知道镜片的脉冲激光损伤阈值是否在承受极限内,既要计算脉冲激光的峰值功率,也要计算脉冲激光的平均功率,综合考虑。 如某ZnSe镜片的激光损伤阈值时是500MW/cm2,使用在一台脉冲激光器中,脉冲激光器的 脉冲能量是10J/cm2,脉宽10ns,频率50kHz。首先,计算平均功率:10J/cm2 X 50kHz =0.5MW/cm2 其次,再计算峰值功率:10J/cm2 / 10ns = 1000MW/cm2 从脉冲激光器的平均功率看,该镜片是能承受不被损伤的,但从脉冲激光器的峰值功率看, 是大于该镜片的激光损伤阈值的。所以,综合判断,该ZnSe镜片不宜用于此脉冲激光器。如果有条件,对脉冲激光器镜片,应当分别测试平均功率和峰值功率的激光损伤阈值。 Ave. Power :平均功率Pulse energy :脉冲能量Pulse Width :脉宽Peak Power:峰值功率Rep. Rate :脉冲频率ps:皮秒,10-12 S ns:纳秒,10-9S M: 兆, 106 J:焦耳W:瓦 氙灯作为激光设备一个常用光源,通常被人们也叫做激光氙灯、脉冲氙灯。氙灯是一 种填充氙气的光电管或闪光电灯。氙气化学性质不活泼,不能燃烧,也不助燃。是天然的稀

针对激光选区熔化表面粗糙度分析LZT

《快速成型技术Ⅰ》课程论文 针对熔融挤出成型(FDM)技术的表面粗糙度分析讨论 学院机械与汽车工程 专业机械一 学生姓名廖政泰 指导教师杨永强王迪 提交日期年月日

表面粗糙度及影响因素 表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 2)表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 表面粗糙度 表面粗糙度 3)表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 4)表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 5)表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 表面粗糙度 表面粗糙度 6)表面粗糙度影响零件的接触刚度。接触刚度是零件结合面在外力作用下,抵抗接触变形的能力。机器的刚度在很大程度上取决于各零件之间的接触刚度。 7)影响零件的测量精度。零件被测表面和测量工具测量面的表面粗糙度都会直接影响测量的精度,尤其是在精密测量时。 此外,表面粗糙度对零件的镀涂层、导热性和接触电阻、反射能力和辐射性能、液体和气体流动的阻力、导体表面电流的流通等都会有不同程度的影响。 选择性激光熔化技术的基本原理 SLM技术是利用金属粉末在激光束的热作用下完全熔化、经冷却凝固而成型的一种技术。为了完全熔化金属粉末,要求激光能量密度超过106W/Cm2。目前用SLM技术的激光器主要有Nd-YAG激光器、Co2激光器、光纤(Fiber)激光器。这些激光器产生的激光波长分别为1064nm、10640nm、1090nm。金属粉末对1064nm等较短波长激光的吸收率比较高,而对10640nm等较长波长激光的吸收率较低。因此在成型金属零件过程中具有较短波长激光器的激光能量利用率高,但是采用较长波长的Co2激光器,其激光能量利用率低。在高激光能量密度作用下,金属粉末完全熔化,经散热冷却后可实现与固体金属冶金焊合成型。SLM 技术正是通过此过程,层层累积成型出三维实体的快速成型技术。根据成型件三维CAD 模型的分层切片信息,扫描系统(振镜)控制激光束作用于待成型区域内的粉末。一层扫描完毕后,活塞缸内的活塞会下降一个层厚的距离;接着送粉系统输送一定量的粉末,铺粉系统的辊子铺展一层厚的粉末沉积于已成型层之上。然后,重复上述2个成型过程,直至所有三维CAD模型的切片层全部扫描完毕。这样,三维CAD模型通过逐层累积方式直接成型金属零件。最后,活塞上推,从成型装备中取出零件。至此,SLM金属粉末直接成型金属零件的全部过程结束. 在制造过程中,铺粉装置按设定的层厚将金属粉末均匀地铺设在基板上,激光在振镜控制下对需要熔化的区域进行扫描熔化;然后,基板下降一个层厚,重复下层的加工,如此往复,金属零件一层层地被加工出来。SLM激光快速成型技术非常适用于复杂零件的快速制造,它可以极大地缩减产品开发周期,降低设计与制造成本,具有广阔的研究与应用前景[1~8]。在这种逐层加工过程中,前一层水平面的表面质量直接影响到下一层的铺粉均匀性,如果前一层的表面粗糙度值很大,甚至存在球化现象,则可能导致下一层的铺粉过程无法完成,从而使得成型加工无法继续;另外,垂直面、倾斜面的表面粗糙度作为成型零件表面粗糙

GH3536合金选区激光熔化成形行为及高温性能研究

GH3536合金选区激光熔化成形行为及高温性能研究 GH3536合金是一种典型的固溶强化型镍基高温合金,具有良好的高温强度以及抗氧化性能,主要用于制作航空发动机燃烧室部件和其他在高温环境下服役的零部件。出于轻量化要求,高性能航空发动机对零部件结构的复杂程度要求越来越高,这给传统制造工艺带来了很大的困难。选区激光熔化(Selective Laser Melting,SLM)技术作为一种典型的金属3D打印技术,在难加工、结构复杂高温合金零部件的加工成形方面具有极大的优势,因此被广泛地应用于航空航天领域。SLM成形过程中,粉末层局部区域经历快速升温/降温过程,存在较高的温度梯度和热应力,容易产生孔隙和微裂纹等缺陷,制约了材料的成形效果和服役性能。同时SLM成形过程中凝固冷却速率极快,区别于传统工艺零部件,SLM成形件晶粒更为细小均匀,残余应力更高。因此有必要对SLM成形件内部孔隙、微裂纹缺陷控制以及组织性能进行研究。为研究GH3536合金SLM成形过程、优化成形工艺、减少成形件内部孔隙和微裂纹缺陷、评估SLM成形GH3536合金服役性能,本课题基于体能量密度研究不同工艺的成形效果,并选择致密度、孔隙和微裂纹数量作为衡量标准;分析薄壁管状成形件显微组织、微裂纹和维氏硬度分布;测试成形件常温力学性能以及高温力学性能,分析高温蠕变行为,并与热轧GH3536合金棒材相应性能进行对比;同时采用有限元方法模拟成形过程温度场、熔池形貌尺寸以及凝固组织。主要结论为:SLM成形件内部孔隙随体能量密度的增加逐渐减少并消失,微裂纹随体能量密度的增加出现并逐渐增加,微裂纹沿晶扩展,整体扩

展方向垂直于扫描线方向和平行于成形方向,并同时跨越相邻扫描线和多个沉积层;SLM成形件显微组织形貌呈现为熔池组成的鱼鳞状形貌,熔池内部存在跨越多个沉积层的柱状晶,晶粒间距约为0.6~1.5μm;SLM成形件硬度和强度高于棒材,塑形低于后者;SLM成形件的蠕变抗力高于棒材,其蠕变裂纹沿熔合线及柱状晶晶界形成并扩展,断口 可见明显扫描线痕迹,SLM成形件和棒材具有相近的蠕变应力指数 6.4~ 7.4;ANSYS模拟熔池形貌尺寸、凝固组织与试验结果吻合较好。

【CN110064756A】一种选区激光熔化成型的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910326782.0 (22)申请日 2019.04.23 (71)申请人 阳江市五金刀剪产业技术研究院 地址 529533 广东省阳江市高新区福冈工 业园科技五路科技企业孵化中心大楼 首层 申请人 阳江市高功率激光应用实验室有限 公司 (72)发明人 路超 张瑞华 屈岳波 肖梦智  赵超 栗子林 康平 刘燕红  邱桥  (74)专利代理机构 北京市邦道律师事务所 11437 代理人 薛艳 温雷 (51)Int.Cl.B22F 3/105(2006.01)B33Y 10/00(2015.01)B33Y 30/00(2015.01)B33Y 40/00(2015.01) (54)发明名称一种选区激光熔化成型的方法(57)摘要本发明属于选区激光熔化成型技术领域。为了解决采用现有选区激光熔化成型方法获得的成型件存在内部有气孔以及表面精度差的问题,本发明公开了一种选区激光熔化成型的方法。该方法具体包括以下步骤:步骤S1,进行铺粉操作;步骤S2,采用第一热源对粉末层进行扫描处理;步骤S3,采用第二热源对粉末固态层进行扫描处理;步骤S4,重复步骤S1至步骤S3,进行逐层的粉末铺设和扫描操作,直至完成零部件的制备;其中,第一热源的能量密度小于第二热源的能量密度。采用本发明的方法进行选区激光熔化成型操作,可以避免成型件内部出现气孔,提升表面精度, 获得高质量的成型件。权利要求书1页 说明书5页 附图5页CN 110064756 A 2019.07.30 C N 110064756 A

基于选区激光熔化快速成型的自由设计与制造进展_宋长辉

50,080025激光与光电子学进展www.opticsj ournal.net基于选区激光熔化快速成型的自由设计与制造进展 宋长辉1,2 杨永强1,2 叶梓恒1 王 迪 1(1华南理工大学机械与汽车工程学院,广东广州510640;2广州有色金属研究院,广东广州510641 )摘要 随着机械系统复杂性的不断增加,在现代结构理论模型的设计中,设计者需要统筹考虑结构新颖性、性能优 良性和制造可行性,但传统的制造方式对设计约束很大。选区激光熔化(SLM)是快速制造中最有发展潜力的技术之一,在理论上可以实现任意复杂的计算机辅助设计(CAD)理论模型到金属功能件的直接制造。针对SLM自由 制造的特点,结合华南理工大学在该技术方面的研究基础,研究了具有免组装、功能集成和轻量化特点的复杂金属 功能件自由设计与直接制造的工艺,为航空航天、医疗、汽车等领域的产品创新设计与个性化制造提供参考。 关键词 光学制造;选区激光熔化;自由设计与制造;免组装机构;轻量化构件 中图分类号 O436 文献标识码 A doi:10.3788/LOP50.080026 Development of Freeform Design and Manufacturing  Basedon Selective Laser Melting Song Changhui 1,2 Yang Yongqiang1, 2 Ye Ziheng1 Wang  Di 11 School of Mechanical and Automotive Engineering,South China University of Technology,Guanghzou,Guangdong5 10640,China2  Guangzhou Research Institute of Non-Ferrous Metals Guangzhou,Guangdong510641,烄烆烌烎ChinaAbstract As the complexity  of the mechanical system is increasing,designers need to give comprehensiveconsideration to the novelty,excellent performance and manufacturing feasibility  of the structure in the design of thetheoretical model of modern mechanism.However,the traditional manufacturing  methods impose great restrictionon the design.Selective laser melting(SLM)is one of the technologies that have most development p otential,whichcan achieve direct manufacturing of metal functional parts from any  complex computer-aided design(CAD)theoretical models in theory.Based on the characteristics of the freeform manufacturing of SLM,combining  with therelated research of South China University of Technology,we study  the freeform design and direct manufacturingprocess of complex metal pieces with non-assembly,functional integration and lightweig ht characteristics,whichprovides effective reference for the innovative design and personalized manufacturing  of products in the fields ofaerosp ace,medical treatment and automobile.Key  words optical fabrication;selective laser melting;freeform design and manufacturing;non-assemblymechanism;lightweig ht structureOCIS codes 1 40.3390;350.3850;230.4000 收稿日期:2013-03-08;收到修改稿日期:2013-04-01;网络出版日期:2013-07- 11基金项目:国家自然科学基金(51275179 )作者简介:宋长辉(1986—) ,男,博士研究生,主要从事激光加工与激光快速成型等方面的研究。E-mail:song_chang hui@163.com导师简介:杨永强(1961—) ,男,博士,教授,博士生导师,主要从事激光材料加工、快速成型制造等方面的研究。E-mail:meyqyang @scut.edu.cn(通信联系人)1 引 言 随着机械系统复杂性的不断增加,在现代结构理论模型的设计中,设计者需要统筹考虑结构新颖性、性能优良性和制造可行性。其中制造可行性强调在设计阶段就要充分考虑制造中的问题,其基本思想是从产品设计参数中提取与制造过程相关的信息进行分析,以改善设计。传统制造对于产品的形状与结构设计约 080026- 1

半导体激光器驱动电路

查阅相关文献资料,设计半导体激光器驱动电路,说明设计思路和电路模块的功能 图1 在半导体激光器的设计中,为了便于对光功率进行自动控制,通常激光器内部是将LD 和背向光检测器PD集成在一起的,见图1。其中LD有两个输出面,主光输出面输出的光供用户使用,次光输出面输出的光被光电二极管PD接收,所产生的电流用于监控LD的工作状态。背光检测器对LD的功率具有可探测性,可设计适当的外围电路完成对LD的自动光功率控制。激光器电路的设计框图如图所示,将电源加在一个恒压电路上,得到恒定的电压,再通过一个恒流电路得到恒定的电流以驱动LD工作. 其中恒压电路如图2,由器件XC9226以及一个电感和两个电容组成。XC9226是同步整流型降压DC/DC转换器,工作时的消耗电流为15mA,典型工作效率高达92%,只需单个线圈和两个外部连接电容即可实现稳定的电源和高达500IllA的输出电流。其输出纹波为10mV,固定输出电压在0.9v到4.0V范围内,以loomv的步阶内部编程设定。该电路中,输出的恒定电压设定为2.6v。 图2 恒流电路如图3,主要由LMV358、三极管以及一些电阻和电容共同组成.LMv358是一个低电压低功耗满幅度输出的低电压运放,工作电压在2.7v到5.5v之间。从恒压电路输出的2.6V电压经过Rl、RZ分压后,在LMv35s的同相输入端得到恒定电压Up,Up加在一个电压串联负反馈电路上,得到一个输出电压Uo。Uo再通过一个电阻和电容组成的LR滤波

电路上,得到恒定的直流电压uol,将uol作用在由三极管8050组成的共射级放大电路上,得到恒定的集电极电流Ic,k又通过一个滤波电容得到恒定的直流工作电压。 图3

选区激光熔化成形温度场模拟与工艺优化

3 基金项目:国家科技型中小企业创新基金(项目编号:05C26214201059) 收稿日期:2007212214  第28卷第3期 应 用 激 光 Vol.28,No.32008年6月 A P PL I ED LAS ER J une 2008 选区激光熔化成形温度场模拟与工艺优化 3 章文献, 史玉升, 李佳桂, 伍志刚 (华中科技大学材料成形与模具技术国家重点实验室,湖北武汉430074) 提要 在金属粉末的选择性激光熔化成形过程中,需要解决球化、翘曲、变形等难题。对于一定的金属粉末,通过优化成形工艺参数可以克服以上难题。为此,利用ANSYS 有限元法对成形过程的熔池及温度场模拟,建立有限元模型,分析得出成形过程熔池的深度和宽度,预测并优化成形过程的工艺参数。通过实验验证,应用有限元法优化后的成形工艺参数能够成形出复杂金属零件。 关键词 选择性激光熔化; 有限元模型; 熔池; 温度场 Simulation of T emperature Field for Optimization of Processing P arameters of Selective Laser Melting Metal Powders Zhang Wenxian , Shi Yusheng , Li Jiagui , Wu Zhigang (S tate Key L aboratory of M aterial Processing and Die and Moul d Technology ,H uaz hong Universit y of Science and Technology ,W uhan ,H ubei 430074,China ) Abstract The phenomena such as balling effect ,warp ,and distortion may occur in the process of selective laser melting (SL M )metal powders.These difficulties can be solved by optimizing the processing parameters during the process for a special metal powders.To optimize the parameters ,the temperature field and molten pool dimensions during the SL M process are modeled and simulated with ANSYS finite element method.The analysis results are given and optimum processing parameters are verified by forming complex structure lattice iron parts with the SL M technology.K ey w ords Selective laser melting ; finite element model ; molten pool ; temperature field 选择性激光熔化(selective laser melting ,SL M )快速成形技术可以直接成形出高精度、综合机械性能好的金属零件。该技术基于离散-堆积成形原理,根据零件CAD 模型直接成形三维实体,成形过程中扫描选区内的金属粉末在激光辐照下完全熔化而获得近100%致密的金属零件[1]。目前,国外应用SL M 快速成形技术可直接制造模具、工具、生物移植物等,它们涉及机械制造、航空航天、生物医学等领域,具有很好的应用前景。 对于特定粉末材料的选择性激光熔化快速成形过程,其成形参数直接影响成形过程的顺利进行及成形零件的致密度、表面质量、成形精度等性能。因此,在成形工艺研究过程中要对成形工艺参数进行优化。然而,目前SLM 快速成形技术的成形工艺参数的优化主要在实验及经验的基础上进行总结,缺少系统科 学的优化理论来指导,不利于SLM 快速成形技术的机理及工艺研究。为此开展了有限元模拟SLM 快速成形过程的相关研究,目前主要有以下人员从事这方面的研究。Childs T.H.C 等人对无基板情况下的粉末单扫描成形截面形状以及面扫描成形层质量进行有限元模拟[2-5]。Shiomi M.等人应用有限元法模拟分析了无基板情况下的粉末面扫描成形层的二维温度场与残余应力[6]。Osakada K 等人也对无基板情况下的粉末面扫描时单层固化成形的应力分布应用有限元模拟进行分析,并提出解决单层固化成形时缺陷的方法[7,8]。因为以上研究主要是针对无基板情况下激光熔化过程中的单线扫描和单面扫描的粉床温度场和应力场的有限元模拟,其主要目的是向无基板下的选择性激光熔化快速成形技术方向发展。然而对于在基板上粉末的选择性激光成形过程的熔池及 — 581—

慢启动半导体激光器驱动电源的设计

慢启动半导体激光器驱动电源的设计 毛海涛,林咏海,张锦龙,冯 伟,柴秀丽,牛金星,李方正 (河南大学物理与信息光电子学院,河南,开封,475001) 摘 要:根据半导体激光器的光功率与电流的关系,通过慢启动电路、纹波调零电路、功率稳恒电路等解决了使用中的电源在工作温度范围内其输出功率不稳定的问题。设计的电路稳定度达到4 10-4。关键词:半导体激光器;功率增益自动控制电路;驱动电源 中图分类号:T N248 44 文献标识码:A 文章编号:1008 7613(2005)05 0021 03 0 引言 半导体激光器(LD)具有体积小、重量轻、价格低、驱动电源简单且不需要高电压(2.5V )等独特优点。目前,广泛应用于光纤通讯、集成光学、激光印刷、激光束扫描等技术领域。在实际应用中,遇到的问题之一是激光器在发光时阻值不断上升,造成输出光功率的下降。这可能导致激光器永久性的破坏或使发光强度达不到作为光源时的参量要求。因此,研制性能可靠、经济、耐用的半导体激光器具有广泛的应用价值。 1 L D 的驱动电流与输出光功率的特性 半导体激光器的结构如图1所示,对一般的半导体激光器来说,激光二极管(L D )是正向接法,光电二极管(P D )是反向接法。P D 受光后转换出的光电流I m 在串联电阻R 2上以电压信号反映出射光功率的大小,如图2所示,因此添加控制电路即可达到 稳定发光功率的目的。 半导体激光器的发光功率与通过的电流关系如图3所示,为便于分辨,图中底部的近似直线有所抬高。从图3中可以看出,在某一温度下,当驱动电流低于阈值电流时,激光器输出光功率P 近似为零,半导体激光器只能发出荧光,当驱动电流高于阈值时输出激光,并且光输出功率随着驱动电流的增大而迅速增加并近似呈线性上升关系。2 半导体激光器驱动电路设计 本例以H TL670T5为例,介绍一种半导体激光器稳功率驱动电路。该管输出波长为650nm,额定功率30mW,其工作特性曲线与图3 所示接近。 2.1 慢启动电路 半导体激光器往往会由于接在同一电网上的日光灯等电器的关闭或开启而损坏,这是因为在开关闭合和开启的瞬间会产生一个很大的冲击电流,该电流足以使半导体激光器损坏,必须避免。为此,驱 21 第19卷 第5期新乡师范高等专科学校学报 Vol.19,No.5 2005年9月 JO U RNAL OF X IN XIAN G T EACHERS COL LEGE Sep.2005 收稿日期:2005 04 05. 作者简介:毛海涛(1953 ),男,河南开封市人,河南大学物理与信息电子学院教授,硕士研究生导师,主要从事激光理论 及应用技术方面的研究工作。

半导体激光器驱动及温度控制电路

电路设计报告 (姓名:_________学号:________) 一、半导体激光器驱动电路 激光二极管广泛用作于光纤通信中的光源,采用恒流驱动方式。电路中,VT 1和VT 2构成恒流源,稳压二极管VD Z 为恒流源提供稳定的基准电压,RP 1限制该电路的电流,RP 2调节最佳工作点。当电流很小时,激光二极管VD 1不发光,光电二极管VD 2检测不到光功率。这时,比较器A 1输出高电平,监视发光二级管LED 不发光显示。调节电路中电流使其超过激光二极管的阈值电平时,激光二极管获得足够大的功率而发光,VD 2中有光电流流过,LED 发光显示。 1 2 3 4 5 6 A B C D 6 5 4 3 2 1 D C B A Tit le N u mb er Rev isio n Size B D ate: 5-A p r-2012Sh eet o f Fil e: E:\ED A\半导体激光器驱动电路.d d b D raw n By 0.1μF 0.1μF 100K Ω 2K Ω 10K Ω 820Ω 200Ω 10K Ω 22Ω 10Ω RP2500Ω RP11K Ω LED 9013 V T1V T2 25C3039 A 1LM339 A 2LM339 V D2 PH OTO 3.6V V Dz V D1 LD V CC V CC TTL 输入 二、半导体激光器温度控制电路 这种驱动电路也可作为热电冷却器TEC 中温度控制电路,如下图。TEC 控制电路是基于比较器A 1的反馈系统。若温度高于设定值,

A 1反相输入端电压低于其低阈值电平,A 1输出高电平,通过R 1、VT 1和VT 2驱动TEC 。TEC 电流由VD 1进行限制。当TEC 被驱动导通时,它使激光制冷,A 1反相输入端电压增大到超过其高阈值电平,A 2输出低电平TEC 截止不工作。RP 用于设定温度值。 1 2 3 4 5 6 A B C D 6 5 4 3 2 1 D C B A Tit le N u mb er Rev isio n Size B D ate: 5-A p r-2012Sh eet o f Fil e: E:\ED A\半导体激光器温度控制电路.d d b D raw n By 0.1μF V T2 25C3039V T1 9013 A 1 LM339 20K Ω RP 2.2KΩ R1 10K Ω 12Ω 10K Ω 1MΩ V D 2.7V TEC 热电冷却器 参考书目 [1]何希才.常用电子电路应用365例.电子工业出版社,2006. 其他什么的大家自己写点吧O(∩_∩)O~

相关文档
最新文档