应用泛函分析复习小结

应用泛函分析复习小结
应用泛函分析复习小结

第一章实分析概要

本章将简要的介绍数学分析与实变函数的一些基础知识,特别是点集的勒贝格测度与勒贝格积分理论。这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。

第一节集合及其运算第

二节实数的完备性第三

节可数集与不可数集

第四节直线上的点集与连续函数第

五节点集的勒贝格测度与可测函数

1

第六节勒贝格积分

第一节集合及其运算

1)A∪A=A,A∩A=A;

2)A∪ Φ=A,A∩ Φ=Φ;

3)若A?B,则A∪B=B,A∩B=A,A\B=Φ;

4) 设X为基本集,则

A ∪ A C= X , A ∩ A C=Φ, ( A C)C= A, A \

B = A ∩ B C

又若A?B,则A C?B C。

集合的运算法则:

2

交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A ;

结合律( A∪B) ∪C=A∪ (B∪C) =A∪B∪C;

( A∩B) ∩C=A∩ (B∩C) =A∩B∩C;

分配律( A∪B) ∩C= ( A∩C) ∪ (B∩C) ;

( A∩B) ∪C= ( A∪C) ∩ (B∪C) ;

( A \ B) ∩C= ( A∩C) \ (B∩C) .

定理 1.1 设X为基本集,Aα为任意集组,则

1) ( U Aα )C=I ( Aα )C (1.6)

α∈I α∈I

2) ( I Aα )C=U ( Aα )C (1.7)

α∈I α∈I

A \ ( A \ B)= A I B

3

第二节实数的完备性

2.1有理数的稠密性

2.2实数的完备性定理

定义 2.1(闭区间套)

设{[a n,b n]}(n=1,2,L, )是一列闭区间,a n

1)渐缩性,即[a1,b1]?[a2,b2]?L?[a n,b n]?L;

2) 区间长度数列{b n?a n }趋于零,即lim(b n?a n)=0

n→∞

4

定理 2.1 (区间套定理)

设{[a n,b n]}为实数轴上的任一闭区间套,其中a n与b n都是实数,那么存在唯一的一个实数ξ属

于一切闭区间[a n,b n](n=1,2,L),即ξ∈ ∩[a n,b n],并且

n=1

lim a n= lim b n=ξ

n→∞n→∞

利用区间套定理,可以直接推出所谓的列紧性定理(定理 2.2),这个定理的名称的含义在第二章中解释。我们先介绍一个有关的概念。

命题 2.1设{x n}是一个数列,则lim x n=a的充分必要条件是:

n→∞

{x n }的每一个子列都收敛而且有相同的极限值a .

5

定理 2.2(列紧性定理)√

任何有界数列必有收敛子列

定义 2.3设{x n}是一个数列,如果当m,n→∞时,有x m?x n→0,那么就说{x n}是一个基本

数列或柯西数列。

定理 2.3柯西(Cauchy)收敛原理(完备性定理)√

数列{x n}收敛的充分必要条件是,它是一个基本数列。

定理 2.4(单调收敛定理)√

单调有界数列(即单调增有上界数列或单调减有下界数列)必然收敛

定义 2.4 (确界)设A是一个数集,M是A的一个上(下)界。如果对任意的ε 0,必存在

6

A 中的数 xε,使得 xε> M ?ε(xε< M +ε),那么就称 M 为数集 A 的上(下)确界。

定理 2.5确界存在定理(不讲)

由上(下)界的数集必有上(下)确界。

定义 2.5 (覆盖)设[a,b]是一个闭区间,Α={σa|a∈I}是一个区间族,其中区间σa可以是开的,闭的或者半开半闭的,而指标集I可以是有限集,也可以是无限集。如果[a,b]中的每一点必

含于区间族Α的某一区间σa之中,那么就称Α覆盖区间[a,b],或者区间[a,b]被Α覆盖。

定理 2.6(有限覆盖定理)(不讲)

若闭区间[a,b]被区间族Α覆盖,则能从Α中选出有限个开区间覆盖[a,b]。

7

上面我们介绍了刻画实数完备性的六个定理,它们是按这样的逻辑顺序进行的:从定理2.1 (区间套定理)出发,推出定理2.2(列紧性定理),又从定理2.2推出定理 2.3 柯西(Cauchy)收敛原理(完备性定理),又从定理 2.3推出定理 2.4(单调收敛定理),又从定理2.4推出定理2.5确

界存在定理),最后,从定理 2.5推出定理2.6(有限覆盖定理)

第三节可数集与不可数集

3.1 映射

定义 3.1设A与B是两个非空集合,如果按照一定的法则f,对于A中的每个元

8

x ,都存在B中的一个确定的元y与 x 相对应,那么我们称f为定义A上取值于B中的一个映射,记作y=f(x)。y称为x在映射f下的象,对于固定的y,A中适合关系式y = f (x)的 x 的全体称为y的原象。集A称为映射 f 的定义域, f ( A)={ f (x) | x ∈ A}称为

映射f的值域,一般f(A)?B。

为方便起见,今后常将把从集A到f(A)?B的映射写成

f : A → B

特别,若B是一个数集,此时映射f称为泛函;若A与B都是数集,f就是通常的函数。

9

3.2 可数集与不可数集,集合的势

定理3.1有理数集是可数集。

定理3.3可数个可数集的并是可数集。

定理3.4区间[0, 1]中的点是不可数的。

第四节直线上的点集与连续函数本节先讨论直线上的点集的基本性质,然后,在此基础上研究

4.1 开集、闭集及其性质

10

4.2开集的构造

4.3点集上的连续函数,函数的一致连续性

4.4函数列的一致收敛性

4.1开集、闭集及其性质

定义 4.1设E是直线R上的任一点集,a是直线上的任意一点,我们把直线上包含a的任一区间(α,β)称为点a的邻域;设a是E中的点,如果存在着a的一个邻域(α , β ) 整个包含于E内,则称a是E的内点;如果点集E的每一点都是它的内点,则称E 是一个开集。

定理4.1开集具有下列的性质:

1)空集Φ与直线R的本身都是开集;

11

2)任意多个开集的并是开集;

3)有限多个开集的交是开集.

定义 4.2设E是直线R上的任一点集,a是直线上的任意一点(不一定属于E)。如

果a的任一邻域(α,β)中含有E中不同于a的点,则称a为E的极限点(或聚点)。

定理 4.2点a是集E的极限点的充要条件是存在E中的点列{a n}(a n≠a),使

lim a n=a

n→∞

定义 4.3设E为直线上的点集,由E的所有极限点构成的集称为E的导集,记

作E',称集E U E'为E的闭包,记作E。若集E的余集E C=R\E为开集,则称E为闭集.

定理4.3非空集E是闭集的充要条件是E'? E

定理4.4集合E为闭集的充要条件是E=E。

12

定理4.5闭集具有下列基本性质

1)空集Φ与全直线R是闭集;

2)任意多个闭集的交是闭集;

3)有限多个闭集的并是闭集.

4.2 开集的构造

定义4.4设G是直线R上的一个有界开集,如果开区间(α,β)满足条件:

1)(α,β) ?G

2)α ? G,β ? G

则称(α,β)为开集G的一个构成区间。

定理4.6(开集的构造原理)设G为直线上的任意非空有界开集,则G可以表

13

示为至多可数个互不相交的构成区间之并,即

G =U(αk,βk)

k∈I

其中I为有限的或可数的指标集.

4.3 点集上的连续函数,函数的一致连续性

定义在区间上的连续函数的概念几乎可以逐字逐句的推广到直线的点集上去。

定义4.5设E是直线R上的点集,f(x)是定义在E上的一个函数(即映射f : E → R ), x0是E中的任意一点。如果对于E中任何收敛于 x0的点列{x n},都有

lim f (x n ) =f (x0 )

x n→x0

那么称函数f(x)在点x0连续。如果f(x)在E中每点都连续,那么称f(x)在集E上连续。定理4.7设F是直线R上的有界闭集,f(x)是定义在F上的连续函数,则

14

(1) f (x)在集F上必有界,

(2)并且能取得它的最大值(上确界)与最小值(下确界)。

定义4.6 设f(x)定义在点集E?R上,如果对于任意的ε>0,都能找到δ(ε)> 0

(注意δ(ε)与点x无关),使得对于E中的任意两点x1与x2,只要x1? x2 <δ,就有

f (x1)? f (x2) < ε(1.13)成立,则称函数f(x)在集E上一致连续。

定理4.8 设f(x)在有界闭集F?R上连续,那么f(x)在F上必一致连续。

4.4 函数列的一致收敛性

定义 4.7设{f n(x)}是定义在点集E?R上的函数列。如果存在E上的函数f(x),

15

对于任意给定的ε>0,都能找到正整数N(ε),使得当n>N(ε)时,不等式

f n(x)? f (x)<ε

对于所有x∈E的成立,那么就称f n(x)在集E上的一致收敛于f(x)。

定理 4.9定义在点集E?R上的函数列{f n(x)}一致收敛于f(x)的充要条件是:对于任给的ε>0,存在正整数N(ε),使得当m,n>N(ε)时,不等式

f m(x)? f n(x) < ε(1.17)对于所有x∈E的成立.

定理 4.10设{f n(x)}是E上的一个连续函数列,如果在E上它一致收敛于函数 f (x),那么极限函数 f (x)也在集 E 上连续。

定理 4.11设{f n(x)}是区间[a,b]上的连续函数列,若{f n(x)}在[a,b]上一致收敛于 f (x),则极限函数 f (x)在[a,b]上可积,并且

16

b

f (x )dx = lim

b

f n (x )dx

(1.18)

a

n →∞ a

或写成

b

b

∫a

[lim

n →∞ f n

(x )]dx =

lim

n →∞

∫a

f n

(x )dx

第五节 点集的勒贝格测度与可测函数

本节将简要地介绍点集的勒贝格测度与可测函数的基本理论,它不但是建立勒贝

格积分的必要准备,而且在其他的学科(如概率论与随机过程)中也经常用到。

5.1 从黎曼积分到勒贝格测度

17

命题5.1如果f(x)在区间[a,b]上连续,那么f(x)在[a,b]上必R可积。

5.2 点集的勒贝格测度

定义 5.1设G为直线上的有界开集,定义G的测度为它的一切构成区间的长度之和,也就是说,若G=U(αk,βk),其中(α,βk)是G的构成区间,则

k

mG =∑(βk?αk) (1.23)

k

定义5.2 设F为直线上的有界闭集,F?(a,b),则G=(a,b) \F是有界开集,定义

F 的测度为

18

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

泛函分析复习提要

泛函分析复习提要 一、填空 1. 设X 是度量空间,E 和M 是X 中两个子集,如果 ,则称集M 在集E 中 稠密。如果X 有一个可数的稠密子集,则称X 是 空间。 2. 设X 是度量空间, M 是X 中子集,若 ,则称M 是第一纲集。 3. 设T 为复Hilbert 空间X 上的有界线性算子,若对任何x X ∈,有*Tx T x =, 则T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是正常算子的充要条件是 。) 4. 若复Hilbert 空间X 上有界线性算子T 满足对一切x X ∈,,Tx x <>是实数,则 T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是自伴算子的充要条件是 。) 5.设X 是赋范线性空间,X '是X 的共轭空间,泛函列(1,2,)n f X n '∈= ,如果 存在f X '∈,使得对任意的x X ∈,都有 ,则称{}n f 弱*收敛于f 。 6. 设,X Y 是赋范线性空间,(,)n T B X Y ∈,1,2,n = ,若存在(,)T B X Y ∈使得对任意的x X ∈,有 ,则称{}n T 强收敛于T 。 7. 完备的赋范线性空间称为 空间,完备的内积空间称为 空间 8. 赋范线性空间X 到赋范线性空间Y 上的有界线性算子T 的范数T = 9. 设X 是内积空间,则称 是由内积导出的范数。 10.设X 是赋范空间,X 的范数是由内积引出的充要条件是 。 11. 设Y 是Hilbert 空间的闭子空间,则Y 与Y ⊥⊥满足 。 12.设X 是赋范空间,:()T D T X X ?→的线性算子,当T 满足 时, 则T 是闭算子。 二、叙述下列定义及定理 1. 里斯(Riesz )定理; 2. 实空间上的汉恩-巴拿赫泛函延拓定理;

实变函数与泛函分析基础(第三版)-----第三章_复习指导

主要内容 本章介绍了勒贝格可测集和勒贝格测度的性质. 外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别. 我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求. 本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论. 本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和 型集逼近. 正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用. 本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集. 复习题 一、判断题

1、对任意n E R ?,* m E 都存在。(√ ) 2、对任意n E R ?,mE 都存在。(× ) 3、设n E R ?,则* m E 可能小于零。(× ) 4、设A B ?,则** m A m B ≤。(√ ) 5、设A B ?,则** m A m B <。(× ) 6、* *1 1( )n n n n m S m S ∞ ∞===∑。(× ) 7、* *1 1 ( )n n n n m S m S ∞ ∞==≤∑。(√ ) 8、设E 为n R 中的可数集,则* 0m E =。(√ ) 9、设Q 为有理数集,则* 0m Q =。(√ ) 10、设I 为n R 中的区间,则* m I mI I ==。(√ ) 11、设I 为n R 中的无穷区间,则* m I =+∞。(√ ) 12、设E 为n R 中的有界集,则*m E <+∞。(√ ) 13、设E 为n R 中的无界集,则*m E =+∞。(× ) 14、E 是可测集?c E 是可测集。(√ ) 15、设{n S }是可测集列,则 1 n n S ∞=, 1 n n S ∞=都是可测集。 (√ ) 16、零测集、区间、开集、闭集和Borel 集都是可测集。(√ ) 17、任何可测集总可表示成某个Borel 集与零测集的差集。(√ ) 18、任何可测集总可表示成某个Borel 集与零测集的并集。(√ ) 19、若E =?,则* 0m E >。(× ) 20、若E 是无限集,且*0m E =,则E 是可数集。(× ) 21、若mE =+∞,则E 必为无界集。(√ ) 22、在n R 中必存在测度为零的无界集。(√ )

泛函分析试题B

泛函分析试题B PTU院期末考试试卷 (B)卷 2010 ——2011 学年第 1 学期课程名称: 泛函分析适用年级/专业 07 数学试卷类别:开卷(?)闭卷( ) 学历层次: 本科考试用时: 120 分钟 《考生注意:答案要全部抄到答题纸上,做在试卷上不给分》(((((((((((((((((((((((((((一、填空题(每小题3分,共15分) (,)Xdx1.设=是度量空间,是中点列,如果____________________________, XX,,n x则称是中的收敛点列。 X,,n ffNf2. 设是赋范线性空间,是上线性泛函,那么的零空间是中的闭子空XXX,,间的充要条件为_____________________________。 3. 为赋范线性空间到赋范线性空间中的线性算子,如果_________________, TXY 则称T是同构映射。 xyX,,4. 设是实Hilbert空间,对中任何两个向量满足的极化恒等式公式 为:XX ___________________________________________。 ,,5. 设是赋范线性空间,是的共轭空间,泛函列,如果XXXfXn,,(1,2,)Ln ff_______________________________________________,则称点列强收敛 于。 ,,n二、计算题(共20分) ppl叙述空间的定义,并求的共轭空间。 lp(1),,,, 三、证明题(共65分) p1、(12分)叙述并证明空间中的Holder不等式。 lp(1),

,,MM,2、(15分)设是Hilbert空间的闭子空间,证明。 MX 试卷第 1 页共 2 页 3、(14分)Hilbert空间是可分的,证明任何规范正交系至多为可数集。 XX 4、(12分) 证明Banach空间自反的充要条件是的共轭空间自反。 XX ,,ll5、(12分)叙述空间的定义,并证明空间是不可分的。 试卷第 2 页共 2 页

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

泛函分析学习心得

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

应用泛函分析复习资料小结

-` 第一章实分析概要 本章将简要的介绍数学分析与实变函数的一些基础知识,特别是点集的勒贝格测度与勒贝格积分理论。这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。 第一节集合及其运算第 二节实数的完备性第三 节可数集与不可数集 第四节直线上的点集与连续函数第 五节点集的勒贝格测度与可测函数

-` 1

-` 第六节勒贝格积分 第一节集合及其运算 1)A∪A=A,A∩A=A; 2)A∪ Φ=A,A∩ Φ=Φ; 3)若A?B,则A∪B=B,A∩B=A,A\B=Φ; 4) 设X为基本集,则 A ∪ A C= X , A ∩ A C=Φ, ( A C)C= A, A \ B = A ∩ B C 又若A?B,则A C?B C。 集合的运算法则: 2

-` 交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A ; 结合律( A∪B) ∪C=A∪ (B∪C) =A∪B∪C; ( A∩B) ∩C=A∩ (B∩C) =A∩B∩C; 分配律( A∪B) ∩C= ( A∩C) ∪ (B∩C) ; ( A∩B) ∪C= ( A∪C) ∩ (B∪C) ; ( A \ B) ∩C= ( A∩C) \ (B∩C) . 定理 1.1 设X为基本集,Aα为任意集组,则 1) ( U Aα )C=I ( Aα )C (1.6) α∈I α∈I 2) ( I Aα )C=U ( Aα )C (1.7) α∈I α∈I A \ ( A \ B)= A I B 3

第二节实数的完备性 2.1有理数的稠密性 2.2实数的完备性定理 定义 2.1(闭区间套) 设{[a n,b n]}(n=1,2,L, )是一列闭区间,a n

理工大泛函分析复习题.docx

-、(10分)设d(x, y)为空间X上的距离。证明 l + d(3) 也是X上的距离。 1、求证/(X,r)为3空间。(其中X为/空间,丫为B空间) 2、S是由一切序列兀=(召,兀2,?…,£,???)组成的集合,在S中定义距离为 p(x,y ,求证S是一个完备的距离空间。 3、Hilbert空间X中的正交投影算子为线性有界算子。 4、附加题 开映射定理(P92) 设x,y都是B空间,若TG/(x,r)是一个满射,则卩是开映射。Hahn—Banach延拓定理(%) 设X是T空间,X。是X的线性子空间,人是定义在X。上的有界线性泛函,则在X上必有有界线性泛函/满足: ⑴芦(兀)=九(兀)(办丘Xo)(延拓条件); (2)||/|| = UII0(保范条件), 其中表示人在X。上的范数。 闭图像定理(乙8)设都是3空间,若丁是X T Y的闭线性算子,并且D(T)是闭的,则卩是连续的。 共鸣定理(毘9)设X是B空间,丫是£空间,如果 Wu/(X,Y),使得sup||Ar||

x-x0 = inf x-y yeM 七、(15分)设/(兀)=匸兀(『)力—[比)力,求证:/G(C[-1,1])\且求||/||。 八、(15分)简答题 1?试说明C[a,b]与I3[a,b]中函数的差异; 2.泛函分析也称无穷维分析,为什么耍研究无穷维分析,试举例说明; 3.H订bert空间是最接近有限维Euclid空间的空间,请做简要说明。 一、在C[-1,1]上定义内积V /,g〉=[/(f)ga)〃,若记M为C[-1,1]屮奇函数全 体,N为C[-l,l]中偶函数全体,求证:M十W二且丄。 设厶为内积空间H中的一个稠密子集,且x丄厶,证明x = 0. 二、在R中赋予距离p(x,y) =| arctan x-arctan y |,问(R,p)是完备空间吗?为什么?设Tx(t) = rx(r),若T是从厶[0,1] t厶[0,1]的算了,计算||T||;若T是从 Q0,1]T Q0,1]的算子再求||门 四论述题: 1、证明C[a,b]完备,并叙述证明空间完备的一般步骤。 2、论述紧集、相对紧集、完全有界集、有界集的关系。 3、证明||x||=maxx(r)为心,刃上范数,并论述证明范数的一般步骤。 ie[a,b] 设H是内积空间,£,兀儿则当X" t X,儿Ty时,(£,几)T(x,y),即内积 关于两变元连续。 10?设叭叭皿赋范空何,?“ 八码),证明 ⑴+ 7V, (2) fit (】)任取f€E;及则 (T: + T t) V(r)r s)?> f(T^) + /(r?z > -r:/(z) + Ty(x) = (T: +T;)/(z) ? 山人工的任尴性.得: 《珀 + T护= + <2)由共馳算子性质1?■即得:工

泛函分析试题一

泛函分析试题一 一、叙述问答题(第1小题18分,第小题20分,共38分) 1 叙述赋范线性空间的定义并回答下列问题. 设)||||,(11?E 和)||||,(22?E 是赋范线性空间, E 是1E 和2E 的直接和. 对任意E x ∈,定义 2211||||||||||||x x x +=, 其中),(21x x x =,11E x ∈, 22E x ∈. 验证||)||,(?E 为一个赋范线性空间. 2 叙述共鸣定理并回答下列问题. 设}{n T ),2,1( =n 是从Banach 空间E 到Banach 空间1E 上的有界线性算子列, 如果对E x ∈?, }{x T n 是1E 中的基本点列. 问: 是否存在),(1E E T β∈, 使得}{n T 按强算子拓扑收敛于T ? 如果存在, 给出证明, 如果不存在, 试举出反例. 二、证明题 (第1小题10分,第2小题15分,第3小题17分,共42分) 1. 设)(x f 是从距离空间X 到距离空间1X 中的连续映射,A 在X 中稠密,证明)(A f 在1X 中稠密. 2. 设),(ρX 为完备距离空间, A 是从X 到X 中的映射. 记 ),(),(sup 111 x x x A x A n n x x n ρρα≠=, 若级数+∞<∑+∞ =n n α1, 则A 在X 中存在唯一不动点. 3. 设H 是内积空间, H N M ?,, L 是M 和N 张成的线性子空间, 证明: ⊥⊥⊥=N M L . 三、应用题 (20分) 设),(t s K 在b s a b t a ≤≤≤≤,上连续, 试证明由ds t x s t K t Tx b a )(),())((?=定义的

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

最新泛函分析题目

川大2011年泛函分析模拟试题 一、 叙述题 1、 在度量空间(),X ρ中,列紧集、完全有界集的定义及二者之间的关系 列紧集:设A 是度量空间(),X ρ的一个子集,若{}n x A ??在X 中有一个收敛子列 {}k n x ,则称A 为列紧集; 完全有界集:M 是度量空间(),X ρ的一个子集,0ε?>,都存在M 的一个有穷ε网,则称M 为完全有界集。 关系:()A M ?列紧集一定是完全有界集,完全有界集不一定是列紧集:但在完备的度量空间中,列紧集与完全有界集等价(即A M ?) 2、 在欧式空间n R 中,有界集、完全有界集和列紧集三者之间的关系;紧集与有界闭 集的关系 在欧式空间n R 中,有界集?完全有界集?列紧集, 紧集?有界闭集 二、 证明题: 1、 线性算子T 在D 上连续?T 在D 上有界。 证 充分性:因为T 在D 上有界,故0, T M x D x M x ?>?∈≤成立 ,即 Tx T M x θθ -≤-,故T 在θ点连续,从而T 在D 上连续; 必要性:若T 在D 无界, 0,,..n n n n x D st Tx n x ?>?∈> 令 n n n x y n x = , 则 10n n n x y n x n ==→,即0n y →。又因为T 连 续, 故0n n Ty T Ty θθ=?→→, 这与1n n n Tx Ty n x = > 矛 盾,故假设不成立,即T 在D 上有界。 2、 求证(),l X Y 为B 空间。(其中X 为* B 空间,Y 为B 空间) 证 显然(),l X Y 是一个线性空间,兹证T 是范数: ()0,000T T T x x X T ≥=?=?∈?=;

泛函分析的应用

现代数学基础学习报告 泛函分析应用 院系: 专业: 导师: 姓名: 学号:

摘要 信号与系统的泛函分析是以泛函理论为工具描述和研究信号与系统特性的近代分析方法。这种方法可使信号与系统的表示更加抽象与概括,并使连续与离散、时域与频域、分析与综合达到统一,从而在信号与系统学科中得到了日益广泛的应用。本文仅就其基本理论及其在电路设计中的应用加以简要的介绍。本文将利用泛函分析中的度量空间的理论研究信号处理纠错的问题,首先介绍度量空间相关理论,然后举例分析其在信号纠错处理中的解决过程,通过应用泛函知识,使纠错过程变得更简便和概括。然后简单介绍泛函的理论知识,使其应用到求解最低功耗电源的设计中,结果表明应用泛函理论可以将求解过程变得更加简便和清晰。

1.泛函分析介绍 泛函分特点和内容[1] 泛函分析是20世纪30年代形成的分科,是从变分问题,积分方程和的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和。它可以看作无限维向量空间的解析几何及。泛函分析在,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的。 泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。 泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个的系统的运动,实际上需要有新的来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多力学系统的例子。一般来说,从力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的理论就属于无穷自由度系统。 正如研究有穷自由度系统要求n维空间的几何学和作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因此,泛函分析也可以通俗的叫做无穷的几何学和微积分学。古典分析中的基本方法,也就是用的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。 泛函分析是分析数学中最“年轻”的分支,是古典分析观点的推广,综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、等等;另一方面,它也强有力地推动着其他不少分析学科的发展。它在、概率论、函数论、连续介质力学、、计算数学、、等学科中都有重要的应用,还是建立理论的基本工具,也是研究无限个自由度的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。 泛函分析在数学物理方程、、、、等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。 泛函的理论[2]

泛函分析复习指导

2013-2014-2泛函分析复习参考题 一、名词解释 1.度量空间; 2.可分空间; 3.压缩映射原理; 4.线性空间; 5.范数线性空间; 6.内积空间; 7.贝塞尔不定式以及帕塞瓦尔等式。 二、填空题 1. l ∞ 空间为_____________________,其标准距离为___________________________ 2. 2l 空间为_____________________,其标准距离为___________________________ 3. 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为___________________ 4. {}n x 为度量空间X 中的柯西列是指____________________________________________ 5.完备度量空间X 的子空间M 是完备空间的充要条件为____________________________ 6.M 为线性空间X 的一个非空子集,spanM 表示_______________;如果X spanM ?,那么_____________________________ 7. 2[,]L a b 空间为____________________,其标准范数为____________________________,2[,]L a b ________(是或不是)巴拿赫空间 8.设X 是n 维赋线性空间,{}12,, ,n e e e 是X 的一组基,则存在常数M 和M ',使得对一切1n k k k x e ξ==∑都有_____________________________成立 9.设T 是赋范线性空间X 到Y 中的线性算子,则T 为有界算子的充要条件为___________,算子T 的范数为___________________________________________ 10.设X 是赋范线性空间,f 是X 上线性泛函,那么f 是X 上连续泛函的充要条件为f 的零空间()N f 是X 中的_________________________

泛函分析考试题

某某大学考试题 课程名称:泛函分析 队别: 班次: 姓名: 第1页共2页 1、 写出下面定义或结论(每个5分): a )两个集合具有相同基数的定义; b )度量空间Cauchy 序列的定义; c )泛函序列弱*收敛的定义; d )开映射定理. 2、 定义2:R f →,使得 1()n n n f x x α∞ ==∑ 其中2α∈。证明:f 是有界的并计算f 的范数f . 3、 X 是赋范线性空间,,x y X ∈是两个给定向量。证明:如果对任意有界线性泛函*f X ∈都有()()f x f y =,则 x y =. 4、 在[,]C a b 中定义范数 [,]||||m a x |()| t a b x x t ∈= 证明:如序列{}[,]n x C a b ?弱收敛到[,]x C a b ∈,即w n x x ??→,n →∞,则序列{}n x 在 [,]a b 上处处收敛到x ,即对任意[,]t a b ∈, l i m ()(n n x t x t →∞ =。 5、 在2中定义线性算子序列{}n T ,22:n T →:对()212,,,,n x ξζξ=∈, ()12(),,, ,n n n n T x ξξζ++= 证明: a )n T 强收敛到零算子; b )n T 不一致收敛到零算子. 6、 证明:在实内积空间中,x y ⊥当且仅当对任意实数α,都有 ||||||x y x α+≥. 7、 设M 是内积空间X 中的非空子集,证明:M 的正交补是X 的闭子空间。 8、 证明Bessel 不等式:设{}123,,,e e e 是Hilbert 空间的规范正交集,证明,对任意x X ∈, 221 |,|.n n x e x ∞=<>≤∑ 9、 X 是Banach 空间,{}n f X *?是有界泛函序列。如果对任意的x X ∈都有1()n n f x ∞=<∞∑,证

泛函分析在桥梁工程中的应用

应用泛函分析解决桥梁工程中的一个问题 摘要:本文简单介绍泛函分析方法和在力学和桥梁工程中的若干应用,包括泛函观点下的结构数学理论、超圆方法、变分法、变分不等式与凸分析、算子的特征值与谱方法等。并通过两个例子来说明泛函在力学和桥梁工程当中的应用。 关键词:泛函变分法桥梁工程 中图分类号:U441.5 一泛函分析概述 泛函分析(Functional Analysis)其研究的主要对象是函数构成的空间,是研究无穷维线性空间上的泛函数与算子理论的一门分析数学。无穷维线性空间是描述具无限多自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科,是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。因此,泛函分析是定量地研究诸如连续介质力学等一类具有无穷多自由度的物理系统的有力工具。根据不同拓扑和代数结构,泛函空间划分为各个类别。力学和桥梁工程中常见的有: 1、度量空间:现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;(II)(对称性)d(x,y)=d(y,x);(III)(三角不等式)d(x,z)≤d(x,y)+d(y,z)则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。 3、巴拿赫空间理论(Banach space) 巴拿赫空间理论是1920年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广sup n n x x ,巴拿赫空间(Banach space)是一种赋有“长度”的线性空间﹐泛函分析研究的基本对象之一。数学分析各个分支的发展为巴拿赫空间理论的诞生提供了许多丰富而生动的素材。 4、内积空间。内积的引入使该空间更直观形象,内容格外丰富。内积把普通的几何术语差不多全带到抽象空间中。例如:长度、两向量交角、直交性、直交投影、就范直交系、点(向量)和子空间的距离等。使抽象泛函空间涂上浓厚的几何色彩。力学家和桥梁工程师对此尤感兴趣。由于内积可诱导范数,内积空间是特殊线性赋范空间,但反之不然。与普通欧式空间最相像的应数下述Hilbert空间; 5、Hilbert空间。它是完备的内积空间,内容最丰富。例如Fourier展开、Bessel 不等式和Parseval等式等。由于本文讨论泛函的力学应用,必须提及的最后一类空间是Sobolev空间。

相关文档
最新文档