正定矩阵的判定与性质_曹璞

正定矩阵的判定与性质_曹璞
正定矩阵的判定与性质_曹璞

正定矩阵的判定方法及正定矩阵在三个不等式证明中的应用汇编

正定矩阵的判定方法及正定矩阵 在三个不等式证明中的应用 作者:袁亮(西安财经大学) 摘要: 本文从正定矩阵的的定义出发,给出了正定矩阵的若干判定定理及推论,并给出了正定矩阵在柯西、Holder、Minkowski三个不等式证明中的应用. 关键词: 正定矩阵,判定,不等式,应用 Abstract: In this paper, we mainly introduce some decision theorem and inference based on the definition of positive definite matrices and give the application of positive definite matrices in the proving on Cauchy、Holder、and Minkowski inequality. Keywords: positive definite matrix,determine,inequality,application

目录 1 引言 (4) 2 正定矩阵的判定方法 (4) 2.1 定义判定 (5) 2.2 定理判定 (6) 2.3 正定矩阵的一些重要推论 (11) 3 正定矩阵在三个不等式证明中的应用 (15) 3.1 证明柯西不等式 (15) 3.2 证明Holder不等式 (16) 3.3 证明Minkowski不等式 (18) 结束语 (21) 参考文献 (22)

1 引言 代数学是数学中的一个重要的分支,而正定矩阵又是高等代数中的重要部分.特别是正定矩阵部分的应用很广泛, n阶实对称正定矩阵在矩阵理论中,占有十分重要的地位.它在物理学、概率论以及优化控制理论[]2中都得到了重要的应用,而本文只提供解决正定矩阵判定问题的方法,并阐明它在数学分析中三个重要不等式证明中的应用. 正定矩阵的一般形式是,设A是n阶实对称矩阵,若对任意n x∈,且0 R x, ≠ 都有0 Mx x T成立[]2.本文从正定矩阵的定义,给出正定矩阵的判定定理,并给> 出正定矩阵的重要推论,这些重要推论对计算数学中的优化问题有着重要的作用,并在矩阵对策,经济均衡,障碍问题[]3的研究中具有很实用的价值.同时还介绍正定矩阵在三个不等式证明中的应用,其一是用正定矩阵证明著名的柯西不等式,其二是用正定矩阵的性质给出Holder不等式的一个新的证明,其三是运用正定矩阵的两个引理证明Minkowski不等式,这三个应用说明正定矩阵运用的广泛性和有效性.以上这些正定矩阵的研究只局限在正定矩阵的理论分析方面,它的一些实际方面的应用还有待笔者和一些学者去探索挖掘. 2 正定矩阵的判定方法 2.1 定义判定 设A=()ij a,(其中ij a∈C,i,j=1,2,…,n),A的共轭转置记为*A=()ji a 定义1[]1对于实对称矩阵A=()ij a,(其中ij a∈R,i,j=1,2,…,n)若对于任意非零列向量X,都有T X A X>0,则称A是正定矩阵. 定义2[]1对于复对称矩阵A=()ij a,(其中ij a∈C,i,j=1,2,…,n)若对于任意非零列向量X,都有* X A X>0,则称A是正定矩阵. 例1设A为m阶实对称矩阵且正定,B为m×n实矩阵,T B为B的转置矩阵,试证AB B T为正定矩阵的充要条件是B的秩r(B)=n. 证 [必要性] 设AB B T为正定矩阵,则对任意的实n维列向量0 x, ≠

矩阵的判定条件

关于矩阵正定的若干判别方法 数学学院数学与应用数学(师范)专业 2010级赵明尖 指导教师吴春 摘要:矩阵的正定性是矩阵论中的一个重要概念,研究矩阵的正定性一直都是矩阵分析领域中非常热门的课题。本文主要讨论了矩阵的定义、性质以及正定性。全文一共分为两章,第一章,主要阐述矩阵的正定性的定义以及性质;第二章,主要讨论了正定性矩阵的定义判别法和定理判别法。 关键词:正定矩阵;定义;性质;判定 Abstract: The positive definiteness of matrix is an important concept in theory of the matrix, Studying positive definiteness of the matrix is always a very popular topic in the area of analysis of the matrix. We mainly discuss the definition, property and positive definiteness of matrix in this paper .The text is divided into two chapters, and the first chapter, we mainly expound the definition and property of the positive definiteness of the matrix; the second chapter, we mainly discuss discriminating method of the definition and the theorem of the positive definiteness of matrix. Key words: positive definiteness of the matrix;definition;property;discrimination 1 引言 代数学是数学中的一个重要分支,矩阵是高等代数中的重要组成部分,而正定矩阵在矩阵论中占有十分重要的地位。而且正定矩阵部分的应用非常广泛,n阶实正定矩阵在正定理论中占有非常重要的地位。正定矩阵在物理学,概率论以及优化控制论中都得到了重要的应用,另外在数值计算科学中也经常用到正定矩阵的知识。比如线性方程组的高斯-塞德尔迭代法就是在方程组的系数是正定矩阵的情况下对任意初始向量是收敛的。但是随着数学本身及应用矩阵的其他学科或领域(数学规划,现代控制等)的发展,普通矩阵越来越不能满足其应用需要,于是正定矩阵引起了国内外学者的广泛关注并做出了许多重要的研究工作,本文在前人研究的基础上对正定矩阵的性质及判定做了进一步的讨论研究,获得了一些

正定矩阵的性质及其应用_____

如对您有帮助,请购买打赏,谢谢您! 正定矩阵的性质及其应用 姓名: 学号: 指导教师: 摘 要;矩阵是数学中的一个重要基本概念,是代数学中的一个主要研究对象,而正定矩阵作为一类特殊的矩阵,固然有它与其它矩阵不同的性质和应用。本文主要是给出了正定矩阵的若干等价条件,对正定矩阵的一些重要性质进行了归纳整合并给出部分性质的证明过程,最后给出了正定矩阵在不等式证明问题、多元函数极值问题、最优化的凸规划问题以及解线性方程组问题中的应用。 关键词:矩阵;正定矩阵;性质;应用 The Properties of Positive Definite Matrix and Its Applications Abstract: Matrix is one of the important basic concepts and it is one of the main research object in math . Positive definite matrix is a kind of special matrix, no doubt it has its properties and applications different from other matrix. This paper states some equivalent conditions on how to determine a positive definite matrix, integrates some important properties, then puts forward several applications of the positive definite matrices on inequation problems, multiple function extreme problems, the optimization of convex programming problem and solving linear equations. Key Words: matrix; positive definite matrix; property; application 1. 引言 矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具实用价值、应用广泛的数学理论。矩阵是矩阵理论中一个重要基本概念,是代数学的一个主要研究对象,而正定矩阵作为一类常用矩阵,其在计算数学、数学物理、运筹学、控制论、数值分析等领域中都具有着广泛的应用。本文主要介绍正定矩阵的等价定理及其一些重要的性质,最后给出正定矩阵在数学及其它学科中的若干应用。 2. 正定矩阵的等价定理 首先我们给出正定矩阵的定义。 定义1[1] 设()T f x X AX =为一个实二次型,若对任意一组不全为零的实数12,,,n c c c ,都有 12(,,,)0n f c c c >,

正定矩阵和半正定矩阵的性质及应用

摘要 本文主要针对正定矩阵和半正定矩阵进行讨论,归纳和总结了正定矩阵和半正定矩阵的性质,通过实例介绍了正定矩阵(半正定矩阵)的判别方法诸如:定义法、主子式法、特征值法等,并且给出了它们在不等式的证明问题中以及多元函数极值问题中的一些应用. 关键词:正定矩阵;半正定矩阵;二次型;主子式;特征值

ABSTRACT This paper mainly discusses positive definite matrices and positive semi-definite matrix,the properties of positive definite matrix and semi-positive definite matrix are summarized.Through examples, the judgment methods of positive definite matrix and semi-positive definite matrix are introduced, such minor method, master type method, eigenvalue method, etc. Some applications of positive definite matrices and semi-positive definite matrix in the proof of inequality extreme value problems of multivariate functions are given. Keywords:positive definite matrix; positive semi-definite matrix; quadratic form; principal minor determinant;characteristic value

正规矩阵

第二学期第八次课 设A 是n 维酉空间V 内的线性变换,如果V 内的线性变换A * 满足? α,β∈V,有 (A α,β)=(α,A * β) 则称A * 是A 的共轭变换. A * 为A 的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭转置. 共轭变换的五条性质: 1)E *=E 2)(A * )*= A 3)(k A )* =k A * 4)(A +B )* =A * +B * 5)(AB )* =B * A * 如果A *= A,则称A 是一个厄米特变换. 设A 是n 阶复矩阵,如果A '=A,则称A 是一个厄米特矩阵. n 个复变量n 21x x x ,, ,?的二次齐次函数 ∑∑===n i n j j i ij x x a f 11 (ji ij a a =) 称为一个厄米特二次型.(对称变换、实对称矩阵、实二次型的推广)。 (酉变换和厄米特变换都是下面的正规变换的特殊情形.) 如果A *A = A A * ,则称A 为一个正规变换. (将酉变换的性质推广,有一般的结果:) 命题 酉空间V 上的线性变换A 的不变子空间M 的正交补⊥ M 是共轭变换A * 的不变子空间. 证明 ? α∈M, β∈⊥M ,有 (α,A * β)=(A α,β)=0 这表明A * β∈⊥ M .

命题酉空间上的正规变换A的属于特征值λ的特征向量ξ的是共轭变换A*的属于特征值λ的特征向量. 证明按假设,有Aξ=λξ则 (A*ξ-λξ,A*ξ-λξ)=((A-λE)*ξ, A*ξ-λξ) =(ξ,(A-λE)(A-λE)*ξ) =(ξ,(A-λE)*(A-λE)ξ) =(ξ,0)=0 从而A*ξ=λξ. 命题酉空间上的正规变换的属于不同特征值的特征向量互相正交. 证明设Aξ=λξ,Aη=μη则 λ(ξ,η)=(Aξ,η)=(ξ,A*η)=(ξ,μη)=μ(ξ,η) 必有(ξ,η)=0. 定理n维酉空间上的正规变换在某组标准正交基下的矩阵是对角阵. 证明对维数n做数学归纳法. 推论n维酉空间上的酉变换在某组标准正交基下的矩阵是对角阵. 命题厄米特变换的特征值都是实数. 证明若Aξ=λξ,则λξ=A*ξ=Aξ=λξ?λ=λ?λ是实数.

正定矩阵的性质和判定方法及应用

内蒙古财经大学本科毕业论文正定矩阵的性质及应用 作者郝芸芸 系别统计与数学学院 专业信息与计算科学 年级10级 学号102093113 指导教师高菲菲 导师职称讲师 答辩日期 成绩

内容提要 矩阵是数学中的一个重要基本概念,也是一个主要研究对象,同时矩阵论又是研究线性代数的一个有力工具.而矩阵的正定性是矩阵论中的一个重要概念.正定矩阵是一种特殊的矩阵,其等价定理在解题过程中可以灵活使用.且正定矩阵具有一般矩阵不具有的特殊性质,尤其是这些性质广泛地应用于各个领域.本文在第一部分介绍了实矩阵的正定性的相关定义以及其等价条件.在第二部分列举了正定矩阵的一系列性质,主要介绍了正定矩阵的关联矩阵的正定性.本文在第三部分介绍了正定矩阵的相关定理.本文在第四部分介绍了矩阵正定性的判定方法:定义法、主子式法、特征值法、与单位矩阵合同法.且简单地举了一些实例来阐述实矩阵正定性的判定.最后本文分别从不等式的证明和多元函数的极值两个方面介绍了正定矩阵的实际应用. 关键词:二次型正定矩阵判定方法应用 Abstract Matrix is an important basic concepts in mathematics, but also a main research object, at the same time matrix theory is a powerful tool for the study of linear algebra. At the same time, the positive definiteness of matrix is an important concept in the matrix theory. The positive definite matrix is a special matrix, the equivalence theorem in the problem solving process can be used flexibly. And the positive definite matrix with special properties of general matrix does not have these properties, especially widely used in various fields. In the first part of this thesis introduces the related definition of positive definite real matrix and its equivalent conditions. In the second part are held a series of properties of positive definite matrix, mainly introduced the positive definiteness correlation matrix is positive definite matrix. This paper introduces the related theorem of positive definite matrix in the third part. This paper introduces the method to judge the positive definiteness matrix in fourth parts: the definition, the master method, the eigenvalue method. Determination and simply cited a number of examples of real positive definite matrices. Two aspects of extreme finally this paper from the proof of inequality and multiple function describes the practical application of positive definite matrices. Key words:Quadratic form Positive definite matrix Determination method Application

因子分析出现非正定矩阵案例

某运营商无线增值业务全国各省某一个月内运营情况, 变量35个,样本31个(全国31个省), 希望通过因子分析对各省综合实力进行排序。 一、问题描述 通过SPSS的因子分析对原始变量进行降维处理时,SPSS提示相关系数矩阵为“非正定矩阵”, 无法给出KMO直,但是SPSS仍然给出了后续因子分析结果。 二、疑问 1)什么是正定矩阵? 2)因子分析是否一定要求变量的相关系数矩阵为正定矩阵? 3)非正定矩阵的存在对因子分析结果有何影响? 4)如何修正使得变成正定矩阵? 三、解决办法 通过在论坛上查阅人相关问题,发现其他网友总结出现这种情况的原因主要集中在两点: 1)样本量太少,而指标过多 2)某些变量间相关性太强 而解决方案分别要求增加样本,或者剔除某些显著强相关的变量,但是在我的这个例子里面无 法增加样本,因此只能从变量的相关性上考虑,看是不是存在一些和其他变量高度相关的变量。 通过查看因子分析结果中的相关系数矩阵,的确发现大部分变量之间都存在高度相关性,而且 相关系数在以上: 但是现在问题来了,那是不是应该直接删除高度相关的变量?该删除哪些变量?按照我的情况 估计很多变量都要剔除了,那对于分析结果就会产生很大的影响。为了找出具体是哪些变量导致问 题的出现,我用了一个比较笨的办法:逐一淘汰法。刚开始时不把所有变量都用来做因子分析,只 选取一小部分,例如我先选取了10个变量做分析,发现SPSS没有再提示“非正定矩阵”而是正常 的输出了KMO佥验值,而且顺利完成了因子分析结果;然后下一步我再逐个添加其他变量进行测试,

当发现添加某个变量SPSS提示“非正定矩阵”时,就记下这个变量,然后再换成下一个变量继续 SPSS认为“非正定矩阵”的原因: 测试,直到把所有变量测试完。通过这样的测试,我终于找到让 一共有5个变量,只要不纳入这5个变量进行分析,spss就能正常的进行因子分析。 找到原因后,我本来想直接删除掉这5个变量好了,但是我查看了一下spss因子分析的输出 结果,发现了为什么是这5个变量的原因,如下图: 上图的截图是“解释的总方差”显示所有变量的相关系数矩阵的所有特征值,大家可以看到在 用红色方框标注的5个特征值,他们的数值的数量级都是10的负16次方、17次方、18次方,甚 至出现了负值,几乎可以认为就是零了,远远小于其他特征值,根据之前的逐一测试法确认,这 5 个特征值是与之前发现的那5个变量是对应的,我想这就应该是为什么是这5个变量导致出现非正定矩阵的原因吧。 那进一步思考,特征值过小或者为负值说明了什么呢,根据正定矩阵的判定,正定矩阵的充分 必要条件是:特征值>0,所有出现负的特征值就肯定会出现“非正定矩阵”的原因,但就靠这点似 乎还不够,因为有些特征值是大于0的,只是非常非常小而已。我推测(仅仅是我推测),因为我 们在做主成分分析的时候,每个主成分的方差就等于对于特征值,特征值太小意味着主成分的方差 太小,方差太小意味着包含变量的信息量太少,而我们在做因子分析时往往也是用主成分法来抽取 公因子,所以特征值太小可能也无法满足正定矩阵的条件,当然这是我的推测。 四、总结 根据整个过程,我总结了一下几点: 1)出现非正定矩阵的情况,并不一定都是样本太少(本例中样本才31,变量有35个) 2)剔除变量的时候,可以利用逐一淘汰法来发现问题变量,再考虑是否要删除 3)非正定矩阵似乎对因子分析结果并无太多影响,因为我们往往只抽取了部分公因子(累计方差

实正定矩阵的判定及其重要结论

摘要:本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论. 关键词:实对称正定矩阵;等价定理;充分条件 Decision of Real Positive Definite Matrix and Its Important Conclusion Abstract:This paper provide a series of matrix theory knowledge of higher algebra ,give some of the equivalence theorem of real symmetric matrix and its proof and obtain some of the important conclusions of real symmetry positive definite matrix . Keywords:real symmetry positive definite matrix, equivalence theorem , sufficient condition

禄 鹏 (天水师范学院数学与统计学院,甘肃天水,741000) 摘 要: 本文将运用高等代数中一系列矩阵理论的相关知识,给出了实对称矩阵的若干个判定定理及其证明,并且得到了实对称正定矩阵的若干重要结论. 关键词: 实对称正定矩阵; 等价定理; 充分条件 1 引言 矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具有使用价值、应用广泛的数学理论[]2,1,现已成为处理有限维空间形式和数量关系的强有力的工具. 正定矩阵作为一类常用矩阵,其在数学学科和其他学科技术领域的应用也非常广泛[]4,3,因此它的判断问题一直倍受关注.虽然个别判定条件已被人们所熟知,但缺少系统的总结,本文将尽可能给出多个实对称正定矩阵的判定定理和重要结论,从而使人们能够更好地使用正定矩阵这个工具. 2 实正定矩阵的等价定理 定义1[]5 实二次型()n x x x f ,,,21 称为正定的,如果对于任意一组不全为零的实数 n c c c ,,,21 都有()n c c c f ,,,21 0>. 定义2[]5 实对称矩阵A 称为正定的,如果二次型AX X T 正定. 引理1[]5 n 元实二次型()n x x x f ,,,21 是正定的充分必要条件是它的正惯性指数等于 n . 引理2[]5 任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的. 引理3[]6 设A 是n 阶实对称矩阵,则存在正交矩阵T 使得 ()n T diag AT T AT T λλλ,,,211 ==-, ()1 其中n λλλ,,,21 为A 的特征值. 引理4 [] 7 任何可逆实方阵都可以分解为正交矩阵Q 和上三角矩阵R 的乘积,其中R 的 主对角元均为正. 定理1 实对称矩阵n n R A ?∈为正定矩阵的充要条件是对于任意的n 维非零列向量X ,即10?∈≠n R X ,使0>AX X T .

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

正定矩阵的性质及应用

正定矩阵的性质及应用 摘要:正定矩阵是线性代数中一个极其重要的应用广泛的概念,深入探讨其基本性质对于其他科研领域的研究有着重要的意义。基于此,本文首先对正定矩阵的定义进行了描述,其次研究了正定矩阵的性质与判定方法,最后简单介绍了其具体应用。 关键词:正定矩阵;基本性质;推论;判定;应用 前言:矩阵是线性代数中一个极其重要的应用广泛的概念,如线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程,二次型的正定性与它的矩阵的正定性相对应,甚至有些性质完全不同的表面上完全没有联系的问题,归结成矩阵问题后却是相同的。这就使矩阵成为代数特别是线性代数的一个主要研究对象。作为矩阵的一种特殊类型,正定矩阵有很多特殊性质,是研究二次型,线性空间和线性变换问题的有利工具。本文就此浅谈一下正定矩阵的各种性质和应用。 1.正定矩阵的基本性质 1.1 正定矩阵的定义 设M是n阶实系数对称矩阵,如果对任何非零向量X=(x1,……,xn) 都有X′MX>0,就称M正定(Positive Definite)。正定矩阵在相合变换下可化为标准型,即单位矩阵。所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵,正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵。 1.2 正定矩阵的性质 当矩阵A为正定矩阵的时候,则必有以下几个性质,即: (1)aii>0,i=1,2,……,n; (2)A的元素的绝对值最大者,必定为主对角元; (3)≤annAn-1 ,其中,An-1是A的n-1阶主子式; (4)≤a11a22……ann,当且仅当A为对角阵的时候成立; 而除了以上这几个性质外,还有若干个推论也是比较重要的,在很多应用中

矩阵分析

I. QUESTION I Summarize the known constructions of orthogonal matrices and unitary matrices. Give some numerical examples for each construction. 1》正交矩阵:是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这 里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵不一定是实矩阵。实正交矩阵可以看做是一种特殊的酉矩阵,但存在一种复正交矩阵,复正交矩阵不是酉矩阵。 正交矩阵有以下几种等价定义及其判定 (满足的结构性质) 定义1.1 A 为n 阶实矩阵,若E AA =',则称A 为正交矩阵. 定义1.2 A 为n 阶实矩阵,若E A A =',则称A 为正交矩阵. 定义1.3 A 为n 阶实矩阵,若1-=A A ,则称A 为正交矩阵. 定义1.4 A 为n 阶实矩阵,若A 的n 个行(列)向量是两两正交的单位向量,则称A 为正交矩阵. 实例: ??? ???-θθθθ c o s s i n s i n c o s ?? ????1001 2》酉矩阵:n 阶复方阵U 的n 个列向量是U 空间的一个标准正交基, 则U 是酉矩阵。酉矩阵是正交矩阵往复数域上的推广。 酉矩阵的相关性质: 设有矩阵 ,则 (1)若是酉矩阵,则的逆矩阵也是酉矩阵; (2)若是酉矩阵,则也是酉矩阵; (3)是酉矩阵的充分必要条件是,它的个列向量是两两正交的单位向量。

一个简单的充分必要判别准则是: 酉矩阵的共轭转置和它的逆矩阵相等 酉矩阵基本性质:(A 是酉矩阵) 1.A 的行列式的模等于1 2.H A A =-1,11)()(--=H H A A 3.1-A 也是酉矩阵,两个n 阶酉矩阵的乘积也是酉矩阵 4.A 的每个(列)行向量(看作酉空间n C 的向量)是单位向量;不同的两个(列)行向量是酉矩阵正交的。 实例: ?? ? ? ??++ββαα s i n c o s 00s i n c o s i i (βα,为任意角度) II. QUESTION II A Hadamard matrix of order n is an n n ?matrix with elements in {}1,1+- such that T n n HH nE ?=where T H is the transpose of H and n E is the identity matrix of order n .This class of matrices are useful in many practical applications. Q1 Does Hadamard matrix exist for any order? Please list a Hadarmard matrix of order n with 20n ≤ if such a matrix exists. Q2 Design two Hadamard matrices []12 ;;; n H h h h =and 12; ; [; ]n G g g g = of order 2m n = (where m is odd) such that: 12/2; ;{}; n h h h is orthogonal to 12/2 ; ;{}; n g g g ;and

矩阵论复习大纲

第一章 1 线性空间概念(封闭性) 2线性空间的基与维数 (教材P3例6) 3坐标概念、及求解(教材P3例8) 4 坐标在不同基下的过渡矩阵及坐标变换 5 子空间、列空间、和空间概念,维数定理以及求法(例1);直和, 直和补空间 6 内积空间概念,标准正交基及标准正交化过程 7 线性变换概念、线性变换的矩阵(概念:教材P22定义1.13,性 质:教材P22定理1.13),计算、过渡矩阵以及不同基下的矩阵(例2, 3) 8 不变子空间,正交变换,酉交变化 例1 设112{,}W L αα=,212{,}W L ββ=,其中T )0121(1=α, T )1111(1-=α,T )1012(1-=β,T )7311(1-=β,求12W W +与 12W W ?的维数,并求出12W W ? 解 [][][]2121212121,,,,ββααββααL L L W W =++=+ ()????? ????????→??? ????????---==71 1022-203-5-30 121 -17110 30111112 121 1,,,2121行变换 ββααA B =???? ?????????????????000 310040101-0 0100 00 31007110121 -1

得r(A)=r(B)=3,dim(W 1+W 2)=3. 又因为dim W 1=2, dim W 2=2,由维数定理 dim (W 1 W 2)= dim W 1+ dim W 2-dim (W 1+W 2)=4-3=1 设,,4433221121ββααααx x x x W W +=+=∈ 化为齐次线性方程组0),,,(142121=--?X ββαα.即0711******* 121211=???? ? ?????------X 解得 ()(){}. 4,3,2,5,4,3,2,54,,3,4,21214321T T k W W k k k k x k x k x k x -==-=+-==-==-=αααα 即 例2 设3R 上线性变换T 为 ,)2())((3132321213T T x x x x x x x x x x T +-++= 求T 在基 T T T ) 111(,)110(,)101(321-===ααα 下的矩阵B. 解 在自然基321,,e e e 下,线性变换T 的坐标关系式为: , 10111012123213132321???? ??????????? ?-=????????+-++=x x x x x x x x x x Y 根据由变换的坐标式 Y=AX 得T 在自然基下矩阵 , 101110121??? ? ????-

正定矩阵的性质及应用

正定矩阵的性质及应用 摘要: 正定矩阵是矩阵理论中的一类重要的矩阵,且在多个不同领域内均有重要的作用,本文回顾了正定矩阵的发展史、性质及应用。矩阵理论的应用愈来愈广,它在众多学科和领域中发挥着不可替代的作用,如在数学分析中用黑塞矩阵来判断函数的极值等。把矩阵理论应用到这些数学学科中时,使很多问题变得简单明了. 关键字: 正定矩阵;主子式;顺序主子式;特征值. 研究矩阵的正定性,在数学理论或应用中具有重要意义,是矩阵论中的热门课题之一.正定矩阵具有广泛的应用价值,是计算数学、数学物理、控制论等领域中具有广泛应用的重要矩阵类,其应用引起人们极大的研究兴趣.本文首先给出了正定矩阵的定义,然后研究了正定矩阵的一些等价条件和一些正定矩阵的若干性质,最后简单的列举了一些正定矩阵在数学其它方面的应用. 一、正定矩阵的定义 定义1.设),,,(21n x x x f 是一个实二次型,若对任意的一组不全为零的实数n c c c ,,, 21 都 有0),,,(21>n c c c f ,则称),,,(21n x x x f 是实正定二次型,它所对应的对称矩阵为正定对称矩阵,简称正定矩阵. 定义2.n 阶是对称矩阵A 称为正定矩阵.如果对于任意的n 维实非零列向量) ,,,(21n x x x f X =都有0>' A X X ,正定的是对称矩阵A 简称为正定矩阵. 注:二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定型,不具备有定型的二次型及其矩阵为不定. 二次型的有定型与其矩阵的有定型之间具有——对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性的判别. 二.正定矩阵的一些性质 1.正定矩阵的充分必要条 (1)n 元实二次型),,,(21n x x x f 正定?它的惯性指数为n .

矩阵性质

关于实正交矩阵的某些性质 华东师范大学数学系04级基地班高等代数与解析几何04学年第二学期大作业 10041510134裘鹏翔 正交矩阵是实数域上一类十分特殊的矩阵,具有很多特殊的性质,经过一个学期来学习,也积累收集了不少正交矩阵的性质,罗列如下: 定义:满足的方阵称为正交矩阵(orthogonal matrix)。 n阶正交矩阵的集合记为。 本文摘要: 1正交矩阵与运算的关系 1.1和:正交矩阵的和不一定是正交矩阵; 1.2差:正交矩阵的差也不一定是正交矩阵; 1.3乘积:正交矩阵的乘积是正交矩阵; 1.4数乘:正交矩阵数乘后一般不是正交矩阵; 1.5直积:正交矩阵的直积还是正交矩阵; 1.6圈积:正交矩阵的圈积还是正交矩阵; 1.7转置:正交矩阵的转置还是正交矩阵; 1.8逆:正交矩阵的逆还是正交矩阵; 1.9伴随:矩阵的伴随矩阵是正交矩阵的充分必要条件是这个矩阵是正交矩阵;2正交矩阵的特征 2.1迹:迹小于阶数; 2.2特征值:实数域上,复数域上模为1; 2.3不定性:正交矩阵是不定矩阵; 2.4对角化:正交矩阵在对角化中的作用; 3正交矩阵与特殊矩阵的关系 3.1与数量矩阵:只有的数量矩阵和正交矩阵的乘积还是正交矩阵; 3.2与整系数矩阵:如果n阶正交矩阵是整系数矩阵(即),则它共有! 种; 3.3与实可逆矩阵:分解为正交矩阵和三角矩阵; 与上(下)三角矩阵:每个实可逆矩阵的分解等等; 3.4与对角矩阵:特征值全是实数的对角化等等; 3.5与对称矩阵:特征值全是实数的正交矩阵是对称的等等; 3.6与反对称矩阵:可对角化情况下的典范型; 4正交矩阵的特殊构造 4.1整系数与非整系数实(反)对称正交矩阵; 5附录 :正规矩阵正交准对角化概述(纯矩阵的证明方法) 5.1定理1;上三角标准定理;

正定矩阵的判定

正定矩阵的判定 摘 要:鉴于正定矩阵的重要性及其应用的广泛性,本文给出了正定矩阵判定的若干等价条件并逐条予以证明,并辅助典型例题。 关键词:正定矩阵;正交矩阵;判定;特征值;正定二次型 一、利用定义 (一)n 阶实对称矩阵A 称为正定矩阵,如果对于任意的n 维实非零列向量X ,都有 T X AX 0>。正定的实对称矩阵A 简称为正定矩阵,记作0A >。 例1 设A 是正定矩阵,P 是非奇异实方阵,则T P AP 也是正定矩阵。 证明:因为A 是实对称阵,故T P AP 显然也是实对称阵,又对任何实的非零列向量X , 由于PX ≠0(P 是非奇阵),故() T T X P AP X 0>,即T P AP 是正定阵。 1.实对称矩阵A 是正定矩阵的充分而且必要条件是对于任意的n 维实非零列向量 X =12x x ?? ? ? ??? ≠0, 二次型'X AX 是正定二次型。 2.实对角矩阵1n d d ?? ? ? ??? 是正定矩阵的充分而且必要条件是i d >0(i =1,2, n )。 3.实对称矩阵A 是正定矩阵的必要而且充分条件是二次型'X AX 的秩与符号差都等 于n 。 二、利用主子式 (一)n 阶实对称矩阵A 的一切顺序主子式都大于0,则A 为正定矩阵。 证明:对n 作数学归纳法。当1n =时,()2 1111f x a x =,由条件11a >0,显然有 ()1f x 是正定的。假设该论断论断对1n -元二次型已经成立,现在来证n 元的情形。 令 111,111,11,1n n n n a a A a a ----?? ?= ? ??? ,11,n n n a a α-?? ?= ? ???

正定矩阵及其应用

正定矩阵及其应用

本科毕业论文(设计) 正定矩阵及其应用 学生姓名:学号: 专业:指导老师: 答辩时间:装订时间:

A Graduation Thesis (Project) Submitted to School of Science,Hubei University for Nationalities In Partial Fulfillment of the Requiring for BS Degree In the Year of 2016 Positive definite matrices and their applications Student Name: Student No.: Specialty:s Supervisor: Date of Thesis Defense: Date of Bookbinding:

摘要 矩阵是高等代数里的一个基本概念,是代数知识的基础,是矩阵代数的一个主要研究对象. 它不仅是数学的一个重要分支,而且已经成为现在科技领域处理有限维空间形式与数量关系的强有力的工具. 而正定矩阵是从矩阵延伸出来的具有特殊性质的矩阵,是研究二次型的基础,在函数、不等式中都有应用,因此正定矩阵的特殊性质和广泛应用得到了许多学者关注,进而对此进行了大量的研究. 本文从矩阵最基本的概念和性质出发,由浅入深,层层递进. 从矩阵的性质出发,给出了正定矩阵定义及其等价定义,归纳整理了正定矩阵的性质及其部分证明,总结了正定矩阵的判定定理,最后研究正定矩阵在理论证明和在函数极值中的应用. 关键词:矩阵正定二次型正定矩阵极值

矩阵论定义定理

第1章线性空间与线性变换 线性空间 定义1.1 设V是一个非空集合,F是一个数域。定义两种运算,加法:任意α,β∈V,α+β∈V;数量乘法:任意k∈F,α∈V,kα∈V,并且满足8运算,则称V为数域F上的线性空间,V中元素成为向量 定理1.1 线性空间V的性质:V中的零元素唯一;V中任一元素的负元素唯一 定义1.2 设V是线性空间,若存在一组线性无关的向量组α1…αn,使空间中任一向量可由它们线性表示,则称向量组为V的一组基。基所含的向量个数为V 的维数,记为dimV=n 定理1.2 n维线性空间中任意n个线性无关的向量构成的向量组都是空间的基 定义1.3 设α1…是线性空间的V n(F)的一组基,对于任意β∈V,有β=(α1…)(x1…),则称数x是β在基α1…下的坐标 定理1.3 向量组线性相关≡坐标相关 定义1.4 α,β为两组基,若满足β=αC,则称矩阵C是从基α到基β的过渡矩阵 定理1.4 已知β=αC,V中向量A在两组基下的坐标分别为X,Y,则有X=CY 定义1.5 V为线性空间,W是V的非空子集合。若W的元素关于V中加法与数乘向量法运算也构成线性空间,则称W是V的一个子空间 定理1.5 设W是线性空间V的非空子集合,则W是V的子空间的充分必要条件是α,β∈W,α+β∈W;k∈F,α∈W,kα∈W 零空间:N(A)={X|AX=0}列空间:R(A)=L{A1,A2…} 定理1.6 交空间:W1∩W2={α|α∈W1且α∈W2} 和空间:W1+W2={α|α=α1+α2,α∈W1,α∈W2} 定理1.7 设W1和W2是线性空间V的子空间,则有如下维数公式: DimW1+dimW2 = dim(W1+W2) + dim(W1∩W2) 定义1.6 设W1和W2是线性空间V的子空间,W = W1 + W2,如果W1∩W2 = {0},则称W是W1和W2的直和子空间。记为W = W1⊕W2 定理1.8 设W1和W2是V的子空间,W= W1 +W2,则成立以下等价条件:W = W1⊕W2;W中零向量表达式是唯一的;维数公式:dimW = dimW1 + dimW2

相关文档
最新文档