Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta

Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta
Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta

Extraction,puri?cation,and characterization of the polysaccharides from Opuntia milpa alta

Weirong Cai

a,b

,Xiaohong Gu a ,Jian Tang

a,c,*

a

Key Laboratory of Food Science and Safety,Ministry of Education,Jiangnan University,Wuxi 214036,China

b

Department of Biochemistry,Anhui College of Science and Technology,Wuhu 241000,China

c

Testing &Analysis Center,Jiangnan University,Wuxi 214036,China

Received 7May 2007;received in revised form 30May 2007;accepted 7June 2007

Available online 16June 2007

Abstract

Polysaccharides production from Opuntia milpa alta was carried out.The e?ects of the extraction parameters of extraction time,extraction temperature and ratio of water to raw material were optimized by using statistical techniques such as a three factor,three level Box–Behnken factorial design (BBD)and response surface methodology (RSM),with a view to maximize the extraction yield under optimal extraction parameters combination.From this study,it could be concluded that the maximum yield of the polysaccharides (0.694%)can be obtained extraction temperature of 86.1°C,extraction time of 3.61h,ratio of water to material of 3.72:1.Three isolated fractions of the polysaccharides were characterized by employing High-Performance Liquid Chromatography (HPLC).ó2007Elsevier Ltd.All rights reserved.

Keywords:Opuntia milpa alta ;Polysaccharides;Extraction;Optimization;Response surface analysis;Puri?cation

1.Introduction

Polysaccharides from plant,epiphyte and animal extracts are an interesting source of additives for several industries,in particular food and drug industry (Forabosco et al.,2006;F-Tischer et al.,2006;Li,Fang,&Zhang,2007;Nunes,Rocha,Saraiva,&Coimbra,2006;Ray,2006;Wang,Luo,&Ena,2007).Many of these polysac-charides,like those from the Cactaceae family,have been empirically used to modify the rheological properties of some products (Pimienta-Barrios,1991).In traditional medicine,extracts of polysaccharide-containing plants are widely employed for the treatment of skin and epithelium wounds and of mucous membrane irritation (Bedi &Shenefelt,2002).Therefore,discovery and evaluation of new polysaccharides from the various Opuntia as new safe

compounds for functional foods and medicine has become a hot research spot.

Opuntia milpa alta ,a member of the cactaceae family,is a tropical or subtropical plant originally grown in South America and cultivated in dry regions as an important nutrient and food source (Habibi,Mahrouz,&Vignon,2005a ).This genus is endemic to America and up to now 377species have been recognized,104have been wild in Mexico,and 60of which are endemic to this country (Cor-rales-Garc?′a,Pen ?a-Valdivia,Razo-Mart?′nez,&Sa

′nchez-Herna

′ndez,2004;Habibi,Mahrouz,&Vignon,2005b ).It often takes the form of a small shrub or creeping plant and it can easily be recognized by its green and thick long pencas,in the shape of a sports racket.In some countries the young stems (nopalitos)is also used for human con-sumption (Ruiz Pe

′rez-Cacho,Gala ′n-Soldevilla,Corrales Garc?′a,&Herna

′ndez Montes,2006).The juice obtained from the cladodes contains a large amounts of phenolic components,in particular some ?avonoids,(?avan-3-ols,also known as catechins)and proanthocyanidins,such as hydroxycinnamic acids and anthocyanins;antioxidant

0144-8617/$-see front matter ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.carbpol.2007.06.008

*

Corresponding author.Address:Key Laboratory of Food Science and Safety,Ministry of Education,Jiangnan University,Wuxi 214122,China.Tel./fax:+8651085919837.

E-mail address:guxh@https://www.360docs.net/doc/e612781290.html, (J.Tang)https://www.360docs.net/doc/e612781290.html,/locate/carbpol

Available online at https://www.360docs.net/doc/e612781290.html,

Carbohydrate Polymers 71(2008)

403–410

constituents,including Vitamin C(ascorbic acid),Vitamin

E(a-tocopherol),carotenoids,glutathione,?avonoids and

phenolic acids,as well as other unidenti?ed compounds,

many of which possess a variety of biological activities cor-

related to antioxidant activity and cell matrix interactions

(Gaby,1999;Panico et al.,2005;Shin,Hwang,Kang,&

Lee,2006).

The extract of Opuntia cladodes is used in folk medicine

for their anti-ulcer and wound healing activities(Corrales

Garcia,Franco Moreno,&Rodriguez Campos,2006;

Matsuhiro,Lillo,Sa′enz,Urzu′a,&Za′rate,2006)and the

production of mucilages,often referred as pectin polysac-

charides,is characteristic of members of the Cactaceae

family(Rivera et al.,1994).Studies found that the extract

from Opuntia plants was a mixture of a neutral glucan,

glycoproteins and an acidic polysaccharide composed of L-arabinose,D-galactose,L-rhamnnose,D-xylose and

D-galacturonic acid(Medina-Torres,Brito-De La Fuente, Go′mez-Aldapa,Aragon-Pin?a,&Toro-Vazquez,2006;

Trachtenberg&Mayer,1981).Studies also found that

the mucilage was a neutral polysaccharide that contained

arabinose,rhamnose,galactose and xylose(Amin,Awad,

&El-Sayed,1970).Trachtenberg and Mayer(1980,1981)

reported that the mucilage was a polysaccharide,which

contained10%uronic acids,of TCM to promote blood cir-

culation,strengthen the immune system,for the treatment

of heart failure congestion,neuralgia,rheumatism and

gout,etc.,as well as for invigoration and retarding aging.

In the present work,we attempted to systematically

investigate the extraction,separation,puri?cation and

structural analysis of the polysaccharide from https://www.360docs.net/doc/e612781290.html,pa alta

and its three isolated fraction were examined using HPLC

chromatography.

2.Materials and methods

2.1.Materials

Opuntia milpa alta was obtained from Shanhai LinHui

Biotechnology Ltd.,in Shanghai,China.All other chemi-

cals and solvents used were of analytical grade.

2.2.Extraction procedure

The fresh cactus(500g)was agitated into homogenate

with a blender and the ground samples were put in boiling

water and decocted by a traditional method for Chinese

medicinal herbs.After edulcoration with petroleum ether,

they were extracted with hot distilled water for4h at

90°C.After centrifuging to remove debris fragments

(3000r/min,20min),the solution was concentrated in a

rotary evaporator.Protein was removed with the Sevag

method(Vilkas&Radjabi-Nassab,1986).Then,the solu-

tion was precipitated with four volumes of95%ethanol

for48h at4°C.The precipitate was collected by centrifu-

gation(3000r/min,20min)and respectively washed twice

with acetone and acetone,and then vacuum-dried at40°C,giving a brown powder with a molecular weight of.All experiments were performed at least in duplicate.

Extraction yield of polysaccharides was measured by employing sulphuric acid–phenol method(Hilz,Bakx, Schols,&Voragen,2005):

Extraction rate(%)=(polysaccharides weight/wet raw material weight)·100%.

2.3.Analysis of samples

The polysaccharides was characterized by The FTIR spectrum.

The crude polysaccharide was then separated and sequentially puri?ed through DEAE-cellulose and Sepha-dex G-75.The chemical composition of three isolated frac-tions(F1,F2and F3)of the polysaccharides were measured by a Shimadzu Corporation(Kyoto,Japan)high-perfor-mance liquid chromatography(HPLC)with a refractive index(RI)detector and BioRad(Hercules,CA,USA) Aminex HPX-87H column(300·7.8mm)at45°C.The eluent was0.005M H2SO4,at a?ow rate of0.6ml/min and a sample volume of20l l.

2.4.Experimental design

On the basis of single-factor experiment for the polysac-charides production,proper ranges of extraction time, extraction temperature,ratio of water to raw material, extraction number were preliminarily determined.A three level,three variable Box–Behnken factorial design(BBD) (SAS,SAS Institute,Cary,NC,USA)(Aslan&Cebeci, 2007)was applied to determine the best combination of extraction variables for the production of cactus polysac-charides.Based on the investigations on single-factor experiment,the variables considered are extraction time, extraction temperature,ratio of water to raw material in the experimental design.The independent factors and the dependent variables used in this design are listed in Table 1.Table2lists de?nition and coded levels that were carried out for developing the model.Each experiment was per-formed in duplicate and the average of extraction yield of cactus polysaccharides was taken as the response,Y.

Regression analysis was performed,based on the exper-imental data,and was?tted into an empirical second-order polynomial model as shown below in the following equation.

Table1

De?nition and coded levels for Box–Behnken design matrix

Factor Level

à101 Temperature(Z1)/°C708090 Time(Z2)/h234 Ratio of water to raw234 material(Z3)/mL gà1

404W.Cai et al./Carbohydrate Polymers71(2008)403–410

Y ?

X

A 0t

X 3i ?1

A i X i t

X 3i ?1

A ii X 2i

t

X 2i ?1X 3j ?i t1

A ij X i X j

where Y is the response variable,A 0,A i ,A ii ,A ij are the

regression coe?cients of variables for intercept,linear,quadratic and interaction terms,respectively,and X i and X j are independent variables (i …j ).

The responses obtained from each set of experimental design (Table 2)were subjected to multiple nonlinear regression using the software SAS Package,Version 8.01to obtain the coe?cients of the second polynomial model.The quality of the ?t of the polynomial model equation was expressed by the coe?cient of determination R 2,and its statistical signi?cance was checked by an F -test.The signif-icances of the regression coe?cient were tested by a t -test.3.Results and discussion 3.1.Result of analysis of samples

The FTIR spectrum of the polysaccharides (Fig.6)showed a strong band between 1300and 1000cm à1attrib-uted to the stretching vibrations of pyranose ring.A characteristic absorption at 897cm à1was also observed,indicating the b -con?guration of the sugar units.There was no absorption to be observed at 890cm à1for the a -con?guration in the examination.

The crude polysaccharide was separated and sequen-tially puri?ed through DEAE-cellulose and Sephadex G-75,each giving three single elution peak (F 1,F 2and F 3),as detected by the phenol–sulfuric acid assay.The chemical composition of three isolated fractions (F 1,F 2and F 3)of the polysaccharides were measured by a Shimadzu Corpo-ration (Kyoto,Japan)high-performance liquid chromatog-raphy.Results of HPLC showed that molecule weight of F 1,F 2and F 3were 4373430,63366and 1938Da,respec-

tively (Figs.4and 5).F 1is composed of rhamnose,arabi-nose,xylose,mannose,glucose,galactose with a molar ratio:1:1.83:0.73:1.44:2.80:24.52.F 2is composed of rham-nose,arabinose,xylose,mannose,glucose,galactose with a molar ratio:11.56:52.83:44.39:0.94:1:44.87.F 3is composed of rhamnose,arabinose,xylose,mannose,glucose,galact-ose with a molar ratio:18.2:125.0:63.5:1:17.54:46.33.3.2.E?ect of extraction temperature on the yield of the polysaccharides

Here,extraction temperature was respectively set at 70,75,80,85,90and 95°C to examine the in?uence of extraction temperature on the yield of the synthesized compounds when other extraction conditions were as follows:ratio of water to raw material 3/1,extraction time 3h,and the extraction number 2.Fig.1shows extraction yields of polysaccharides at various temperatures (70–95°C).The extraction yields ranged from 0.59%to 0.61%with the increasing tempera-ture.The highest yield of polysaccharides was 0.61%obtained at 80°C.But increasing the temperature from 80to 90°C decreased the yield of the polysaccharides because of increasing the hydrolysis of polysaccharides when extrac-tion temperature was higher.

3.3.E?ect of extraction time on the yield of the polysaccharides

Here,extraction time was respectively set at 1,2,3,4and 5h to examine the in?uence of extraction time on the yield of the polysaccharides when other extraction con-ditions were as follows:ratio of water to raw material 3/1,extraction temperature 80°C,and the extraction number 2.Fig.2shows the e?ect of extraction time on the yield of the polysaccharides.The results indicated that extraction time was proportional to the yield of the polysaccharides when extraction time was between 1and 4h.The yield of the polysaccharides was close to the peak value (0.68%)when extraction time was 4h.After this point,the yield of the polysaccharides started to decrease with increasing the extraction time.Examination of the data in Fig.2reveals

Table 2

Box–Behnken design matrix and the responses of the dependent variables of extraction yield Run X 1X 2X 3Extraction yield 1à1à100.4902à1100.56731à100.62041100.670501à10.53560à1à10.63570110.63480à110.6859à10à10.5051010à10.60511à1010.561121010.693130000.651140000.65515

0.660

Experimental polysaccharides productions are averages of duplicates within ±5%error.

Average absolute relative deviation (%)=

5.75.

W.Cai et al./Carbohydrate Polymers 71(2008)403–410

405

that increasing the extraction time may enhance the yield of the polysaccharides.However,excessively lengthening extraction time will also induce the change of polysaccha-rides molecule structure,as a result of which extraction yield of polysaccharides instead decreased.

3.4.E?ect of ratio of water to raw material on the yield of the polysaccharides

In this research,ratio of water to raw material was set at 1,2,3,4and 5to investigate the in?uence of ratio of water to raw material on the yield of the polysaccharides when other reaction conditions were similar to those described in Section 3.2.The results were given in Figs.3,5and 6,we could observe that,as the ratio of water to raw material was in the range of 1–3,the extraction yield rapidly increased with the ration;however,as the ratio continued to increase the yield increased slowly.Therefore from the results we con-cluded that high extraction yield could be obtained with ratio of water to raw material in the range of 3–4.3.5.E?ect of extraction number on the yield of the polysaccharides

In this research,extraction number was in turn set at 1,2and 3.Other reaction conditions were similar to those

described in Section 3.2.The e?ect of extraction number on the yield of the polysaccharides was tested.We can found that,as the extraction number was 1,the yield of the polysaccharides was 0.654%,and that as the extraction number was 2,the yield was 0.671%.However,when extraction number exceeding twice,its in?uence on the extraction yield becomes insigni?cant.Therefore,taking the extraction yield and processing costs into consider-ation,twice is su?cient for the extraction of the polysaccharides.

3.6.Box–Behnken design results and response surface analysis

Using the relationships in Table 1,the actual levels of the variables for each of the experiments in the design matrix were calculated and experimental results obtained as given in Table 2.Multiple regression analysis was per-formed on the experimental data and the coe?cients of the model were evaluated for signi?cance with the Student t -test.The values of the coe?cients are presented in Table 3.The analysis of variance (ANOVA)for the BBD is shown in Table 4.The F -ratio in this table is the ratio of the mean square error to the pure error obtained from the replicates at the design centre.The signi?cance of the F -value depends on the number of degrees of freedom (DF)in the model,and is shown in the P -value column (95%con?dence level).Thus,the e?ects lower than 0.05in this column are signi?cant.This is emphasized in Table 2,which reveals three signi?cant coe?cients a?ect-ing the extraction (within the chosen limits),namely extraction time,extraction temperature and ratio of water to raw material.The lack of signi?cance of the cross product terms suggests the absence of interaction between variables in the zone studied.From the experimental results listed in Table 2and regression analysis,the sec-ond-order response functions representing (Y )can be expressed as a function of extraction temperature (X 1),extraction time (X 2)and ratio of water to raw material (X 3).The relationship between responses (Y )and vari-ables were obtained for coded unit for one size fraction as

follows:

Fig.4.HPLC of polysaccharides.

406W.Cai et al./Carbohydrate Polymers 71(2008)403–410

The yield of polysaccharides extracted by boiling water (Y )=0.655+0.058375X 1+0.034875X 2+0.03675X 3à0.00625X 1X 2à0.0125X 2X 3+0.008X 1X 3à0:049625X 21à

0:18125X 22à0:014375X 2

3where X 1=(Z 1à80)/10(Z 1denotes extraction temperature),X 2=(Z 2à3)/1(Z 2denotes extraction time)and X 3=(Z 3à3)/1(Z 3denotes ratio of water to raw material).The response surface for this polynomial is represented in Figs.7–9where a max-imum at the positive extremes is clearly shown.

Extraction temperature is the major factor a?ecting the yield of the polysaccharides.As time increases,the yield increases almost linearly.Extraction time and ratio of water to raw material a?ect also the yield in the same way as the extraction temperature.Although The determinant coe?-cients (R 2)of the regression equation is equal to 0.9981,the value of lack-of-?t for regression equation is very small (F =0.81

To determine optimal levels of the variables for the poly-saccharides production,three dimension surface plots were constructed.Fig.7a and b shows the e?ect of extraction time and extraction temperature on polysaccharide produc-tion.While the yield of the polysaccharides reached a max-imum near the central condition of extraction time at a ?xed extraction temperature,increase in extraction temperature at a ?xed extraction time led to an increase in the yield of the polysaccharides.The general form of three dimensional relationship demonstrated that the yield of the

polysaccha-

Fig.5.Standard curve of molecular weight of polysaccharides.

Table 3

Estimated coe?cients of the ?tted second-order polynomial model for the polysaccharides production Term Coe?cients estimated t -value P -value Signi?cance A 10.05837535.08205<0.0001**A 20.03487520.95909<0.0001**A 30.0367522.08592<0.0001**A 11à0.04962520.2611<0.0001**A 12à0.00625 2.655970.045102*A 130.008 3.3996410.019259*A 22à0.0181257.400140.000709**A 23à0.0125 5.311940.003161**A 33

à0.014375

5.86908

0.002037

**

**Signi?cance level 5%;*signi?cance level 1%.

W.Cai et al./Carbohydrate Polymers 71(2008)403–410407

rides depends more on extraction temperature than on extraction time.The e?ect of extraction temperature and ratio of water to raw material shown in Fig.8a and b for the production of the polysaccharides,demonstrated that the yield of the polysaccharides increased with the increase of extraction temperature at a ?xed ratio of water to raw material (Fig.8a and b)or with the increase of ratio of water to raw material at a ?xed extraction temperature.Fig.9a and b shows the response surface plot at various extraction time and ratio of water to raw material.A linear increase in the yield of the polysaccharides with increase in extraction time and ratio of water to raw material was

Table 4

Analysis of variance of the second-order polysaccharides production model

Sum of squares

Degree of freedom Mean square F value Signi?cance Linear 0.04779630.01593637.3**Quadratic 0.01019330.003398135.9**Cross product 0.001037330.000345813.83**

Lack of ?t 0.000060830.00002030.81

Pure error 0.0000520.00005

Total error

0.05913614

Coe?cient of determination (R 2)

0.9981

Note:F 0.05(3,2)=19.16,F 0.01(3,2)=99.17,F 0.01(9,5)=10.16.**Signi?cance level

1%.

Fig.7.Response surface (3D)and contour plots showing the e?ect of extraction temperature (X 1)and extraction time (X 2)added on the response Y

.

Fig.8.Response surface (3D)and contour plots showing the e?ect of extraction temperature (X 1)and ratio of water to raw material (X 3)added on the response Y .

408W.Cai et al./Carbohydrate Polymers 71(2008)403–410

observed.Particularly,increase in extraction time at a ?xed ratio of water to raw material led to a marked increase in the yield of the polysaccharides.The behaviour of response surface graphs indicated that increasing extraction time up to 4h had a positive e?ect on the yield of the polysaccha-rides.However,there seemed to be less e?ect of increased ration of water to raw material on the extraction yield.To further validate optimal values,?rst partial deriva-tive of regression equation was taken and made to be zero.Calculating the equation gave the following results:X 1=0.61,X 2=0.61,X 3=0.73.The optimal values of the variables a?ecting the yield of the polysaccharides given by the software are the following:extraction temperature:86.1°C,extraction time:3.61h and ratio of water to raw material:3.72.Under these conditions,the model gave pre-dicted values of Y (the extraction yield)being 0.698%.As expected,and according to the response surface,the e?-ciency of the extraction in terms of yield in polysaccharides increases by increasing all the three factors.Among the three parameters,extraction temperature is the most signif-icant factor to a?ect the extraction yield.

To test validity of response surface analysis (RSA)method,the polysaccharides was extracted under the opti-mal condition and the extraction yield was 0.694%.The value was close to the theoretical predicted values,indicat-ing that the experimental design matrix may better re?ect the extraction parameters of the polysaccharides.4.Conclusion

This present study indicates that the polysaccharides from https://www.360docs.net/doc/e612781290.html,pa alta are able to be produced by employing boiling water extraction.Results of HPLC indicated that molecular weight of three fractions of the polysaccharides were 4373430,63366and 1938Da,respectively.The opti-mal conditions obtained by BBD and RSA for production of the polysaccharides from https://www.360docs.net/doc/e612781290.html,pa alta include the

following parameters:extraction temperature 86.1°C,extraction time 3.61h,and ratio of water to raw material 3.72/1.Under these conditions,the experimental yield was 0.698%,which is well matched with the predictive yield.Acknowledgment

This work was supported by postgraduate education fund of Jiangsu Province,China.References

Amin,E.-S.,Awad,O.M.,&El-Sayed,M.M.(1970).The mucilage of

Opuntia ?cus-indica Mill.Carbohydrate Research,159,15–24.

Aslan,N.,&Cebeci,Y.(2007).Application of Box–Behnken design and

response surface methodology for modeling of some Turkish coals.Fuel,86,90–97.

Bedi,M.K.,&Shenefelt,P.D.(2002).Herbal therapy in dermatology.

Archives of Dermatology,138,232–242.

Corrales Garcia,J.,Franco Moreno,F.,Rodriguez Campos,J.(2006).

Fruit characterization of twenty cactus pear (Opuntia spp.).Accessions I.Physical and chemical characteristics at harvest.ISHS Acta Horticulturae,728.

Corrales-Garc?′a,J.,Pen ?a-Valdivia,C.B.,Razo-Mart?

′nez,Y.,&Sa ′nchez-Herna

′ndez,M.(2004).Acidity changes and pH-bu?ering capacity of nopalitos (Opuntia spp.).Postharvest Biology and Technology,32,169–174.

Forabosco, A.,Bruno,G.,Sparapano,L.,Liut,G.,Marino, D.,&

Delben,F.(2006).Pullulans produced by strains of Cryphonectria parasitica —I.Production and characterisation of the exopolysaccha-rides.Carbohydrate Polymers,63,535–544.

F-Tischer,P.C.S.,Talarico,L.B.,Noseda,M.D.,Guimara ?es,S.M.P.

B.,Damonte,E.B.,&Duarte,M.E.R.(2006).Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus.Carbohydrate Polymers,63,459–465.Gaby,A.R.(1999).Natural treatments for osteoarthritis.Alternative

Medicine Review,4,330–341.

Habibi,Y.,Mahrouz,M.,&Vignon,M.R.(2005a).Isolation and

structural characterization of protopectin from the skin of Opuntia ?cus-indica prickly pear fruits.Carbohydrate Polymers,60,205–213.Habibi,Y.,Mahrouz,M.,&Vignon,M.R.(2005b).Arabinan-rich

polysaccharides isolated and characterized from the endosperm of

the

Fig.9.Response surface (3D)and contour plots showing the e?ect of extraction time (X 2)and ratio of water to raw material (X 3)added on the response Y .

W.Cai et al./Carbohydrate Polymers 71(2008)403–410409

seed of Opuntia?cus-indica prickly pear fruits.Carbohydrate Polymers, 60,319–329.

Hilz,H.,Bakx,E.J.,Schols,H.A.,&Voragen,A.G.J.(2005).Cell wall polysaccharides in black currants and bilberries—characterisation in berries,juice,and press cake.Carbohydrate Polymers,59,477–488. Li,Y.-Q.,Fang,L.,&Zhang,K.-C.(2007).Structure and bioactivities of

a galactose rich extracellular polysaccharide from submergedly

cultured Ganoderma lucidum.Carbohydrate Polymers,68,323–328. Matsuhiro,B.,Lillo,L.E.,Sa′enz,C.,Urzu′a,C.C.,&Za′rate,O.(2006).

Chemical characterization of the mucilage from fruits of Opuntia?cus-indica.Carbohydrate Polymers,63,263–267.

Medina-Torres,L.,Brito-De La Fuente, E.,Go′mez-Aldapa, C. A., Aragon-Pin?a,A.,&Toro-Vazquez,J.F.(2006).Structural character-istics of gels formed by mixtures of carrageenan and mucilage gum from Opuntia?cus-indica.Carbohydrate Polymers,63,299–309. Nunes,C.,Rocha,S.M.,Saraiva,J.,&Coimbra,M.A.(2006).Simple and solvent-free methodology for simultaneous quanti?cation of methanol and acetic acid content of plant polysaccharides based on headspace solid phase microextraction-gas chromatography(HS-SPME-GC-FID).Carbohydrate Polymers,64,306–311.

Panico, A.M.,Cardile,V.,Garu?, F.,Puglia, C.,Bonina, F.,& Ronsisvalle,G.(2005).Protective e?ects of Capparis spinosa on chondrocytes.Life Science,77,2479–2488.

Pimienta-Barrios,E.(1991).An overview of prickly pear cultivation in the central part of Mexico.In:Proceedings of the second annual Texas Prickly Pear Council(pp.1–18).TX:Kingsville.Ray,B.(2006).Polysaccharides from Enteromorpha compressa:Isolation, puri?cation and structural features.Carbohydrate Polymers,66, 408–416.

Rivera,J.H.,Losada,J.V.,Grande,D.,Corte′s,J.,Arias,L.&Soriano, R.(1994).The production system of nopal(Opuntia?cus-indica), from milpa alta,as part of the Xochimilco region.In:First international conference and second national conference on agricultural production systems research.State of Mexico,Autonomous University.

Ruiz Pe′rez-Cacho,M.P.,Gala′n-Soldevilla,H.,Corrales Garc?′a,J.,& Herna′ndez Montes,A.(2006).Sensory characterization of nopalitos (Opuntia spp.).Food Research International,39,285–293.

Shin,H. C.,Hwang,H.J.,Kang,K.J.,&Lee, B.H.(2006).An antioxidative and anti-in?ammatory agent for potential treatment of osteoarthritis from Ecklonia cava.Archives of Pharmacal Research,29, 165–171.

Trachtenberg,S.,&Mayer,A.(1980).Biophysical properties of Opuntia ?cus-indica mucilage.Phytochemistry,21,2835–2843. Trachtenberg,S.,&Mayer,A.M.(1981).Composition and properties of Opuntia?cus-indica Mucilage.Phytochemistry,2665,20–32. Vilkas,E.,&Radjabi-Nassab,F.(1986).The glucomannan system from Aloe vahombe(liliaceae)https://www.360docs.net/doc/e612781290.html,parative studies on the glucomannan components isolated from the leaves.Biochimie,68,1123–1127. Wang,Z.J.,Luo,D.H.,&Ena,C.(2007).Optimization of polysaccha-rides extraction from Gynostemma pentaphyllum Makino using uni-form design.Carbohydrate Polymers,69,311–317.

410W.Cai et al./Carbohydrate Polymers71(2008)403–410

固相萃取柱知识点

1、使用阳离子固相萃取柱前为什么要用甲醇和水活化 要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。 2、固相萃取技术原理及应用 一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的 1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ? 活化---- 除去小柱内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ? 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)? 淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ? 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜) 如下图1:

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 1word格式支持编辑,如有帮助欢迎下载支持。

硅胶上键合乙基 500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 合物。500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 核酸碱,核苷,表面活化剂。容量:0.2毫当 量/克。 Phenyl 硅胶上键合苯基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,反相萃取,适合 于非极性到中等极性的化合物 Alumnia A (acidic) 酸性 PH ~5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物离子交换和吸附萃取,如维生 素. Silica 无键合硅胶 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物萃取,如乙醇,醛, 胺,药物,染料,锄草剂,农药, 酮,含氮类化合物,有机酸,苯 酚,类固醇 Alumnia B (basic) 碱性 PH~8.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 吸附萃取和阳离子交换。 Cyano(CN) 硅胶上键合丙氰基烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于中等极性的 化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗 菌素,染料,锄草剂,农药 ,苯 酚,类固醇。弱阳离子交换萃 取,适合于碳水化合物和阳离 子化合物。 Alumnia N (neutral) 中性 PH~6.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物吸附萃取。调节pH,阳和阴离。 子交换.适合于维生素,抗菌素,芳香油,酶, 糖苷,激素 Amino(NH2) 硅胶上键合丙氨基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 正相萃取,适合于极性化合物。 弱阴离子交换萃取,适合于碳 水化合物,弱性阴离子和有机 酸化合物。 Florisil 填料-硅酸 镁 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物的吸附萃取,如乙醇,醛,胺,药 物,染料,锄草剂,农药,PCBs,酣,含氮类化 合物,有机酸,苯酚,类固醇 固相萃取柱及填料(SPE column) 2word格式支持编辑,如有帮助欢迎下载支持。

固液萃取

第十章固液浸取 第一节萃取原理 教学目标: 理解萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 掌握单级萃取、多级逆流萃取、多级错流萃取的物料流动过程。 教学重点: 萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 单级萃取、多级逆流萃取的物料流动过程。 教学难点: 萃取分配定律的含义,分配常数计算公式的具体应用。 教学内容: 一、萃取基本原理 1.萃取过程 如图10—1所示,假设一种溶液的溶剂A与另一个溶剂B互不相容,且溶质C在B中的溶解度大于在A中的溶解度,当将溶剂B加入到溶液中经振摇静臵后, 则会发生分层现象,且大部分溶质C转移到了溶剂B中。这种溶质从一种体系转移到另一个体系的过程称为萃取过程。

在萃取过程中起转移溶质作用的溶剂称为萃取剂,由萃取剂和溶质组成的溶液叫萃取液,原来的溶液在萃取后则称为萃余液。如果萃取前的体系是液态则称为液—液萃取,如果是固态则称为固——液萃取,又称固液浸取,如用石油醚萃取青蒿中的青蒿素就是典型的固液浸取实例。 2.萃取原理 物质的溶解能力是由构成物质分子的极性和溶剂分子的极性决定的,遵守“相似相溶”原则的,即分子极性大的物质溶于极性溶剂,分子极性小的物质溶解于弱极性或非极性溶剂中。例如,还原糖、蛋白质、氨基酸、维生素B 族等物质,其分子极性大,可溶于极性溶剂水中,而不溶解于非极性溶剂石油醚中。又如大多数萜类化合物的分子极性小,易溶于石油醚和氯仿等极性小的溶剂中,但不溶于水等极性强的溶剂。因此,同一种化合物在不同的溶剂中有不同的溶解能力。当一种溶质处于极性大小不相当的溶剂中时,其溶解能力小,有转移到相当极性的溶剂中去的趋势,假设这种极性相当的溶剂与原来的溶剂互不相溶,则绝大部分溶质就会从原来的相态扩散到新的溶剂中,形成新的溶液体系,即形成萃取液。 在萃取过程时,溶质转移到萃取剂中的程度遵守分配定律。指出,在其他条件不变的情况下,萃取过程达到平衡后,萃取液中溶质浓度与萃余液中溶质浓度的比值是常数,这个规律叫分配定律,常数0k 叫分配系数。如图10—2所示,在 进行第一次萃取时,设原料液中溶质的摩尔浓度为C,萃取相中溶质的摩尔浓度为X ,萃余相中溶质的摩尔浓度为Y ,则: 假设进行多次萃取才能将目的产物提取完,则进行第n 次萃取时,原料液中0 10--1X k Y ==萃取相()萃余相

固相萃取柱常见问题及对策 SPE问题

固相萃取柱常见问题及对策SPE问题

问题可能的原因解决方法 回收率低 柱活化条件不恰当 根据固定相的不同正确活化SPE小 柱 反相填料:甲醇、乙腈等,1倍柱管 体积或3倍柱床体积 正相填料:非极性有机溶剂如正己烷 等,1倍柱管体积或3倍柱床体积 离子交换填料:1倍柱管体积的甲醇、 乙腈或异丙醇等与水互溶的极性溶 剂。 样品溶剂对目标成分 的作用力比固定相强 选择对目标组分具有更强选择性的 SPE小柱; 调整样品溶剂的PH值,增加目标组 分在固定相中的作用力; 改变样品溶剂的极性,降低目标组分 在溶剂中的作用力。 清洗溶剂选择不当; 洗脱能力太强 使用正确的清洗溶剂; 选择洗脱能力更弱的溶剂载样时流速过快 重力自然载样或控制载样流速 ≤1ml/min SPE小柱太小 用更大规格的SPE小柱; 用选择性更强的SPE小柱; 用载样量更大的SPE小柱 洗脱前SPE小柱清洗 溶剂抽干不充分 充分抽干冲洗溶剂 洗脱不充分 增加洗脱剂的体积;增加洗脱剂的强 度;用更小规格的SPE小柱 洗脱时流速过快或过 慢 控制流速1-2ml/min 目标成分不能从SPE小柱上 洗脱固定相对目标组分选 择性太强 选择对被分析物保留较弱的小柱; 选择洗脱能力更强的洗脱溶剂。对酸 碱目标成分,调节洗脱剂的PH值,

减弱固定相对目标组分的选择性 SPE小柱规格太大 增加洗脱剂的用量;用更小规格的SPE小柱 洗脱剂用量不足增加洗脱剂 洗脱时流速过快或过 慢 控制流速1-2ml/min 洗脱剂洗脱能力太弱调节洗脱剂的PH值,提高溶剂对目标成分的洗脱能力(对酸、碱目标成 分); 改变洗脱液的极性,提高溶剂对目标 成分的洗脱能力 重现性差 上样前柱床干涸重新活化SPE小柱 超出小柱的载样能力 减小载样量,或用规格更大的SPE小 柱 载样过程流速过高 降低流速,重力自然载样或控制载样 流速≤1ml/min 清洗溶剂洗脱能力太 强 降低清洗溶剂洗脱强度洗脱流速过快 先让洗脱液渗透小柱,再对小柱抽真 空或加压,控制流速1-2ml/min 洗脱剂分两次加入洗脱剂用量不足 增加洗脱剂的用量或者用更小规格的 SPE小柱 干扰物清洗不 干净固定相对干扰物的选 择性太强 选择合适的清洗液,有选择性的将干 扰物清洗掉 选择对目标组分专属性更强的SPE 小柱 固定相残留的干扰物活化前先用洗脱剂清洗SPE小柱 操作过程流速 过低样品中含有过多的颗 粒物质 载样前过滤或离心样品溶液或改用溶 解能力更强的样品溶剂

固相萃取柱

SPE固相萃取各个填料等的区别 CNWBOND Carbon-GCB(碳黑) 石墨化碳黑(CNWBOND Carbon-GCB)固相萃取小柱在萃取很多极性物质,如氨基甲酸酯和硫脲等农药,有着比C8或C18更高更稳定的回收率。有数据显示,石墨化碳黑SPE同时提取食品中超过200多种农残有很好的效果,如有机氯、有机磷、含氮以及氨基甲酸酯类农药等。Carbon-GCB石墨化碳黑由于其非多孔性,对样品的吸附不要求扩散至有孔区域,所以萃取过程非常迅速。此外,虽然其比表面积小于硅胶基质,对化合物的吸附容量却比硅胶大一倍有余。由于Carbon-GCB碳表面的正六元环结构,使其对平面分子有极强的亲和力,非常适用于很多有机物的萃取和净化,尤其适于分离或去除各类基质如地表水和果蔬中的色素(如叶绿素和类胡萝卜素)、甾醇、苯酚、氯苯胺、有机氯农药、氨基甲酸盐、三嗪类除草剂等。技术参数:目数120-400目,比表面积100 m2/g。 CNWBOND Coconut Charcoal(活性炭) 椰子壳活性炭专用于美国环保署EPA 521方法(饮用水中亚硝胺的检测)以及EPA 522方法(饮用水中1,4-二噁烷的检测)。 技术参数:目数80-120目。 CNWBOND Si (硅胶) CNWBOND Silica硅胶是极性最强的小柱,填料为酸洗硅胶,它通常从非极性溶剂中通过氢键相互作用提取极性化合物,然后再通过提高溶剂的极性来洗脱物质。 技术参数:粒径40-63μm,平均孔径60Å,未封尾。 CNWBOND Florisil PR 农残级弗罗里硅土同样适合于分离有机氯农残、胺类、多氯联苯(PCBs)、酮类以及有机酸等,粒径更大,满足EPA 608方法。 技术参数:目数60-100目。 CNWBOND Florisil(弗罗里硅土) 弗罗里硅土作为氧化镁复合的极性硅胶吸附剂(硅镁吸附剂),适合于从非极性基质中吸附极性化合物,如分离有机氯农残、胺类、多氯联苯(PCBs)、酮类以及有机酸等。 技术参数:目数100-200目,比表面积289 m2/g。

常用固相萃取柱

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 填料含量容量包装应用范围填料含量容量包装应用范围 ODS(C18) 硅胶上键合十八烷基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲苯酸取代酯, 苯酚, 邻苯二甲酸酯,类固醇, 表面活化剂,茶碱,水溶性维生 素。 EVIDEXII 辛烷和阳 离子交换 树脂 200mg 400mg 3ml 6ml 50 30 Amphetamina/Methamphetamine、 PCP、 Benzoylecgonine、 Codeine/Morphine、 THC- COOH(Marijuana) Cctyl(C8) 硅胶上键合辛烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲基酸取代酯, 苯酚,邻苯二甲酸酯,类固醇,表 SAX 硅胶上键 合卤化季 氨盐 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 强阴离子交换萃取,适合于阴离子,有机酸,核酸, 核苷酸, 表面活化剂。容量:0.2毫当量/克。

液-液萃取分离法

液-液萃取分离法 【摘要】液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。如果被萃取组分是有色化合物,则可以取有机相宜接进行光度测定,这种方法称为萃取光度法。萃取光度法具有较高的灵敏度和选择性。 【关键字】液—液萃取分离法、亲水性、分配系数、螯合剂 液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。 一. 萃取分离法的基本原理及重要参数 1.萃取过程的本质:根据物质对水的亲疏性不同,通过适当的处理将物质从水相中萃取到有机相,最终达到分离。 亲水性物质:易溶于水而难溶于有机溶剂的物质。如:无机盐类,含有一些亲水基团有机化合物常见的亲水基团有一OH,一SO3H,一NH2,=NH 等.疏水性或亲油性物质:具有难溶于水而易溶于有机溶剂的物质。如:有机化合物常见的疏水基团有烷基如一CH3,一C2H3,卤代烷基,苯基、萘基等物质含疏水基团越多,相对分子质量越大,其疏水性越强2.分配系数和分配比 (1)分配系数 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD为一常数。在稀溶液中可以用浓度代替活度。 (2)分配比 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比. 示例:CCl4——水萃取体系萃取OsO4在水相中Os(VIII)以OsO4,OsO52-和HOsO5-三种形式存在在有机相中以OsO4和(OsO4)4两种形式存在。 (3)分配系数与分配比 当溶质在两相中以相同的单一形式存在,且溶液较稀,KD=D。如: CCl4——水萃取体

【精品】常用固相萃取柱

【关键字】精品 常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品

Ethyl(C2) 硅胶上键合乙基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,因为短链,保 持作用小的多,适合非极性化 合物。 SCX 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 强阳离子交换萃取,适合于阳离子,抗菌素,药 物,有机碱 ,氨基酸,儿茶酚胺,锄草剂,核酸 碱,核苷,表面活化剂。容量:0.2毫当量/克。 Phenyl 硅胶上键合苯基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,反相萃取,适合 于非极性到中等极性的化合物 Alumnia A (acidic) 酸性 PH ~5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物离子交换和吸附萃取,如维生素. Silica 无键合硅胶 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物萃取,如乙醇,醛, 胺,药物,染料,锄草剂,农药, 酮,含氮类化合物,有机酸,苯 酚,类固醇 Alumnia B (basic) 碱性 PH~8.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 吸附萃取和阳离子交换。 Cyano(CN) 硅胶上键合丙氰基烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于中等极性的 化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗 菌素,染料,锄草剂,农药 ,苯 酚,类固醇。弱阳离子交换萃 取,适合于碳水化合物和阳离 子化合物。 Alumnia N (neutral) 中性 PH~6.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物吸附萃取。调节pH,阳和阴离。子 交换.适合于维生素,抗菌素,芳香油,酶,糖苷, 激素 Amino(NH2) 硅胶上键合丙氨基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 正相萃取,适合于极性化合物。 弱阴离子交换萃取,适合于碳 水化合物,弱性阴离子和有机 酸化合物。 Florisil 填料-硅酸 镁 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物的吸附萃取,如乙醇,醛,胺,药物, 染料,锄草剂,农药,PCBs,酣,含氮类化合物, 有机酸,苯酚,类固醇

固相萃取-高效液相色谱法测定环境水样中的三嗪类化合物

2006年5月M ay 2006 色谱C h inese J ou rna l of C h rom a tog raphy Vo l .24N o.3 267~270 收稿日期:2005207231 第一作者:李 竺,女,博士研究生,E 2m a il:lizhu 98@https://www.360docs.net/doc/e612781290.html,.通讯联系人:陈 玲,女,教授,博士生导师,Te l:(021)65984261,E 2m a il:chen ling @m a il .tongji https://www.360docs.net/doc/e612781290.html,. 基金项目:国家自然科学基金项目(N o 120477030),上海市科委2005年重点研究资助项目(N o.05JC 14059,N o.05dz 22330). 固相萃取2高效液相色谱法测定环境水样中的三嗪类化合物 李 竺1 , 陈 玲1 , 郜洪文1 , 董丽娴1 , 赵建夫 1,2 (1.同济大学污染控制与资源化研究国家重点实验室,上海200092; 2.同济大学长江水环境教育部重点实验室,上海200092) 摘要:建立了固相萃取2高效液相色谱法(SPE 2H PLC )测定地表水中三嗪类化合物的方法。考察了4种不同固相萃 取柱对三嗪类化合物的吸附效果,最终选择ENV I 218固相萃取柱用于萃取地表水中的三嗪类化合物;系统研究了环境水样中三嗪类化合物的最佳固相萃取条件,选择洗脱溶剂为甲醇,洗脱溶剂用量5mL,水样在萃取前不需要添加甲醇,不调节pH 值。测定了方法的检测限,结果表明,扑草净、莠去津、西玛津、脱乙基莠去津、羟基化莠去津和脱异丙基莠去津的最低检测限依次为0114μg /L,0112μg /L,0108μg /L,0108μg /L,0110μg /L 和0118μg /L 。将该法应用于实际环境水样的分析测定,结果表明某湖水中扑草净的含量为(9133±0127)μg /L,某江水中莠去津和扑草净的含量分别为(5128±0143)μg /L 和(7112±0154)μg /L 。关键词:固相萃取;高效液相色谱;三嗪类化合物;预富集中图分类号:O 658 文献标识码:A 文章编号:100028713(2006)0320267204 栏目类别:研究论文 D e te rm in a t io n o f T r ia z in e s in S u rfa ce W a te r U s in g S o lid P h a s e E x t ra c t io n 2H igh P e rfo rm a n ce L iq u id C h rom a to g rap h y L I Zhu 1 ,CH EN L ing 1 ,GAO H ongw en 1 ,DON G L ix ian 1 ,ZHAO J ianfu 1,2 (1.S ta te Key L a bora tory of Pollu tion Con trol a n d R esou rces R eu se,Ton gji U n ivers i ty,Sha n gha i 200092,Ch in a;2.Key L abora tory of Ya ngtze Aqu a tic En vironm en t,M in is try of Edu ca tion,Tongji U n ivers ity,Sha ngha i 200092,Chin a ) A b s t ra c t:A m e thod w as deve lop ed to m on ito r triazines in su rface w a te r us ing the com b ina tion of so lid p hase ex trac tion (SPE )and h igh p e rfo r m ance liqu id ch rom a tog rap hy .Fou r d iffe ren t SPE ca rtridges w e re tes ted fo r ex trac ting s ix triazines,inc lud ing a trazine (A ),s i m azine (S ),p rom e tryn (P ),dese thy la trazine (D EA ),22hyd roxya trazine (O HA )and des isop rop yla trazine (D I A ),and fina lly ENV I 218w as se lec ted as op ti m a l . The m e thod fo r so lid p hase ex trac tion w as fu rthe r sys tem a tica lly s tud ied fo r de ta ils.O p ti m a l resu lts of o rthogona l des ign w e re de te r 2m ined as fo llow s:pH 6,5m L m e thano l as e lu ting so lven t,and no m e thano l added in to w a te r sam p le befo re ex trac tion.The de tec tion li m its of s ix triazines w e re 0114μg /L fo r P,0112μg /L fo r A,0108μg /L fo r S,0108μg /L fo r D EA,0110μg /L fo r O HA and 0118μg /L fo r D I A.Th is m e thod w as app lied fo r environm en ta l aqua tic sam p les,and the resu lts show ed tha t the con 2cen tra tion of p rom e tryn in a lake w as de tec ted as (9133±0127)μg /L,as w e ll as the concen 2tra tions of a trazine and p rom e tryn in a rive r w e re de tec ted as (5128±0143)μg /L and (7112± 0154)μg /L resp ec tive ly . Ke y w o rd s:so lid p hase ex trac tion (SP E );h igh p e rfo r m ance liqu id ch rom a tog rap hy (H PLC ); triazines;p reconcen tra tion 三嗪类除草剂作为农田杂草生长的抑制性农药在世界范围内广泛使用。这类农药由于地表径流,常造成地表水污染,并对人类、动植物和水生生物造成不利影响。因此,美国环保署(U S EPA )将莠去津、西玛津等三嗪类除草剂列入优先控制污染物名单,规定饮用水中莠去津含量不得超过3μg /L,西玛津含量不得超过4μg /L [1] 。欧盟(EU )规定饮用水中单一农药浓度不得超过011μg /L,总浓度不得 超过015μg /L [2-5] 。我国《地表水环境质量标准》(GB 383822002)则规定地表水中莠去津的标准限值为3μg /L 。 环境水体中的三嗪类除草剂浓度很低,常处于

化工原理液液萃取概念题

化工原理液液萃取概念 题 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

化工原理《液-液萃取》概念题 一、单项选择题 1、单级萃取中,若增加纯溶剂S的加入量,则萃取液的浓度y A 将。 A.不变 B.减小 C.增大 D.不确定 2、单级萃取操作时,若降低操作温度,其他条件不变,则溶剂的选择性 将。 A.变差 B.变好 C.不变 D.不确定 3、选用溶剂进行萃取操作时,其必要条件为。 A.分配系数k A <1 B.萃取相含量y A ≤萃余相含量x A C.选择性系数β>1 D.分配系数k B =1 4、单级萃取中,若升高操作温度,则萃取液中溶质的浓度y A 将。 A.不变 B.减小 C.增大 D.不确定 5、对于萃取过程,若溶剂的选择性好,则溶剂的溶解度也将。 A.变大 B.变小 C.不变 D.不确定 6、当萃取过程溶剂比S/F减小时,萃取液中溶质A的浓度,所需理论级数。 A.不变,减小 B.减小,减小 C.增大,减小 D.减小,增大 7、萃取过程的能耗主要集中在。 A.萃取操作时溶剂的输送 B.萃取操作时原溶液的输送 C.萃取操作时溶剂的回收 D.萃取操作时温度的升高 8、以下说法错误的是。

A.临界混溶点位于溶解度曲线最高点 B.临界混溶点左方曲线表达式为:)(A S x x ψ= C.临界混溶点右方曲线表达式为:)(A S y y ?= D.溶解度曲线内的平衡联结线两端的表达式为:)(A A x f y = 9、一般情况下,稀释剂B 组分的分配系数k B 值 。 A.大于1 B.小于1 C.等于1 D.难以判断,都有可能 10、单级(理论)萃取中,在维持进料组成和萃取相浓度不变的条件下,若用含有 少量溶质的萃取剂代替纯溶剂所得萃余相浓度将 。 A. 增加 B.减少 C.不变 D.不一定 11、单级(理论)萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取 剂代替纯溶剂,则萃取相量与萃余相量之比将 。 A.增加 B.不变 C.降低 D.不定 12、单级(理论)萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取 剂代替纯溶剂,萃取液的浓度(指溶质)将 。 A.增加 B.不变 C.降低 D.不定 13、萃取剂加入量应使原料和萃取剂的和点M 位于 。 A.溶解度曲线之上方区 B.溶解度曲线上 C.溶解度曲线之下方区 D.座标线上 14、萃取是利用各组分间的 差异来分离液体混合物的。 A.挥发度 B.离散度 C.溶解度 D.密度 15、采用多级逆流萃取与单级萃取相比较,如果溶剂比、萃取相浓度一样,则多 级逆流萃取可使萃余相分率 。

分散液液微萃取—高效液相色谱法测定食品中农药的含量

分散液液微萃取—高效液相色谱法测定食品中农药的 含量 张良温指导教师:翦英红 (吉林化工学院环境与生物工程学院环境科学0501班,吉林吉林132022) 摘要:本实验采一种较新的提取分析食品中农药(以阿特拉津为例)残留的方法——分散液液微萃取—高效液相色谱法。分散液液微萃取条件优化后为:水样体积:6mL;萃取剂:氯苯,30.0μL;分散剂:丙酮,1.0mL;离心时间:4min,盐度为4.5%,pH=5.5。最佳条件下,富集因子(EF)和萃取回收率(ER)分别介于105.71-129.19和45.81% - 58.28%。阿特拉津的最低检出限为1μg/L。水样中阿特拉津在加标浓度为40、60、80 μg/L的相对回收率分别为50.72% - 52.95%,45.81% - 52.16%和51.68% - 58.28%。此种方法测定食品浸出液中阿特拉津方便,快速。 关键词:分散液液微萃取;阿特拉津;高效液相色谱法;萃取回收率阿特拉津(atrazine)又名莠去津,化学名:为2-氯4-乙氨基-6一异丙氨基.1,3,5-三嗪,系均三氮苯类农药,常温下,阿特拉津的纯品是无色、无臭晶体,,分式:C18H14ClN5,熔点173~175 ℃,在25℃时,蒸汽压为38.5 μPa,水中溶解度为33 mg/L。在微酸及微碱介质中稳定,但在高温下,碱和无机盐可将其水解为无除草活性的羟基衍生物[23]。 阿特拉津是~种在世界范围内广泛使用的中等偏低毒性除草剂,曾被认为是生态安全的除草剂,但由于使用量大、残留期长,农田施用后随着地表径流、淋溶、沉降等多种途径进入地表水和地下水,阿特拉津的残留物在世界许多国家和地区的地表水和地下水中已有检出。近来不断有阿特拉津污染事件的报道,已有的研究证明阿特拉津对动物的生殖功能有极大的影响,被世界野生动物基金会列为环境荷尔蒙(内分泌干扰剂)的可疑物质,有扰乱内分泌的作用,是人类潜在的致癌物。由于阿特拉津被认为是一种最具污染力的农药,目前,包括德国、法国、瑞典在内的欧洲7个圈家禁止使用。 分散液液微萃取(DLLME)技术由于其萃取时间短、操作简便,是水样分析的前处理方法之一,它建立于三相溶剂体系。在分散剂的作用下,萃取剂以微小

第十章液液萃取和液固浸取

第十章 液-液萃取和液-固浸取 1. 25℃时醋酸(A )–庚醇-3(B )–水(S )的平衡数据如本题附表所示。 习题1附表1 溶解度曲线数据(质量分数/%) 习题1附表2 联结线数据(醋酸的质量分数%) 试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。(2)确定由200 kg 醋酸、200 kg 庚醇-3和400 kg 水组成的混合液的物系点位置。混合液经充分混合并静置分层后,确定两共轭相的组成和质量。(3)上述两液层的分配系数A k 及选择性系数β。(4)从上述混合液中蒸出多少千克水才能成为均相溶液? 解:(1)溶解度曲线如附图1中曲线SEPHRJ 所示。辅助曲线如附图1曲线SNP 所示。分配曲线如附图2 所示。 (2)和点醋酸的质量分率为 25.0400 200200200 A =++= x 水的质量分率为 50.0400 200200400 S =++= x 由此可确定和点M 的位置,如附图1所示。由辅助曲线通过试差作图可确定M 点的差点R 和E 。由杠杆规则可得

kg 260kg 80040 134013=?== M R ()kg 540kg 260800=-=-=R M E 习题1 附图1

习题1 附图2 由附图1可查得E 相的组成为 A S B 0.28, 0.71,0.01y y y === R 相的组成为 A S B 0.20, 0.06,0.74x x x === (3)分配系数 A A A 0.28 1.40.20y k x === B B B 0.010.01350.74 y k x = == 选择性系数 7.1030135 .04.1B A === k k β (4)随水分的蒸发,和点M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变为均相物系。由杠杆规则可得 kg 5.494kg 80055 34 5534=?== M H 需蒸发的水分量为 ()kg 5.305kg 5.494800=-=-H M 2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为30%的醋酸–庚醇-3混合液中 提取醋酸。已知原料液的处理量为1 000 kg/h ,要求萃余相中醋酸的质量分数不大于10%。试(1)水的用量;(2)萃余相的量及醋酸的萃取率。操作条件下的平衡数据见习题1。 解:(1)物系的溶解度曲线及辅助曲线如附图所示。 由原料组成x F =可确定原料的相点F ,由萃余相的组成x A =可确定萃余相的相点R 。借助辅助曲线,由R 可确定萃取相的相点E 。联结RE 、FS ,则其交点M 即为萃取操作的物系点。由杠杆规则可得 3726F S ?=? kg 1423kg 100026 372637=?=?= F S

固相萃取:关于过柱的实验方法和技巧

关于过柱的实验方法和技巧 (注意:有机溶剂对身体特有害别是心肺;肝脏等所有过柱操作都要在通风橱里进行!! 常说的过柱子应该叫柱层析分离,也叫柱色谱。我们常用的是以硅胶或氧化铝作固定相的吸附柱。由于柱分的经验成分太多,所以下面我就几年来过柱的体会写些心得,希望能有所帮助。 1、柱子可以分为:加压,常压,减压 压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 2、关于柱子的尺寸,应该是粗长的最好 柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用2cm×20cm 的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。 3、关于无水无氧柱,适用于对氧,水敏感,易分解的产品 可以湿柱,也可以干柱。不过在样品之前至少要用溶剂把柱子饱和一次,因为溶剂和硅胶饱和时放出的热量有可能是产品分解,毕竟要分离的是敏感的东东,小心不为过。也是因为分离的东西比较敏感,所以接收瓶一定要用可密封的,遵循schlenk操作。至于是加压、常压、减压,随需而定。因为是schlenk操作,所以点板是个问题,如果样品是显色的,恭喜了,不用点板,直接看柱子上的色带就行了。如果样品无色,只好准备几十个schlenk瓶,一瓶一瓶的点,不过几次之后就知道样品在哪,也就可以省些了。像我以前过一根无水无氧柱,需要六个schlenk,现在只一个就能把所要的全收集到。无水无氧柱中用的比较多的是用氧化铝作固定相。因为硅胶中有大量的羟基裸露在外,很容易是样品分解,特别是金属有机化合物和含磷化合物。而氧化铝可以做成碱性、中性和酸性的,选择余地比较大,但是比硅胶要贵些。听说有个方法,就是用石英做柱子,然后用HF254做固定相,这样在柱子外面用紫外灯一照就知道产品在哪里了,没有验证过。哪位做过可以提出来大家参详参详。 4、关于湿法、干法上样 湿法省事,一般用淋洗剂溶解样品,也可以用二氯甲烷、乙酸乙酯等,但溶剂越少越好,不然溶剂就成了淋洗剂了。很多样品在上柱前是粘乎乎的,一般没关系。可是有的上样后在硅胶上又会析出,这一般都是比较大量的样品才会出现,是因为硅胶对样品的吸附饱和,而样品本身又是比较好的固体才会发生,这就应该先重结晶,得到大部分的产品后再柱分,如果不能重结晶那就不管它了,直接过就是了,样品随着淋洗剂流动会溶解的。有些样品溶解性差,能溶解的溶剂又不能上柱(比如DMF,DMSO等,会随着溶剂一起走,显色是一个很长的脱尾),这时就必须用干法上柱了。样品和硅胶的量有一种说法是1:1,我觉得是越少越好,但是要保证在旋干后,不能看到明显的固体颗粒(那说明有的样品没有吸附在硅胶上)。溶剂的

萃取分离法

萃取分离法 1,按萃取的目的,粗去方法可大致分为两类,一类称“完全萃取”,他是要将一个样品中的某个物质全部萃取出,这种萃取常称为提取。如用大量的溶解度高的二甲基甲酰胺从橘皮中提取出橙皮苷而使溶解性差的细胞壁物质残留。另一类成为选择性萃取,他是用于比较困难的分离过程。如金属离子混合物的分离;化学标准品如光谱纯试剂的纯化制备。2,溶剂萃取按萃取原理的不同,可分为两类:一类为物理萃取,这些萃取是基于被萃取物在水相和有机相(或反相胶团)中溶解度不同来实现的。另一类为化学萃取。 3,溶剂萃取的有机相涉及两个概念,萃取剂和萃取溶剂。萃取剂是指被萃取物有化学反应,而能是被萃取物被萃入有机相的试剂。而用于稀释萃取剂的有机相溶剂被称为萃取溶剂(准确称为稀释剂)。 4,在分析化学中选择萃取剂的原则是: a)对萃取物有高的分配比,以保证尽可能地萃取出被萃取物; b)萃取剂对被萃取物的选择性要好,即对需分离的共存物具有足够大的分离因子; c)萃取剂对后面的分析测定没有影响,否则需要反萃除去; d)毒性小,容易制备。 5,所谓反萃,是指在溶剂萃取中常不可缺少的一后处理步骤。反萃即是使用在萃取步骤时,被萃取物最不易被萃取的这种条件,将被萃取物萃取回纯的水相,而与萃取剂分离。6,根据所形成的被萃取物质的不同,可把萃取体系分成以下几类:螯合物萃取体系,离子缔合物萃取体系,三元络合物萃取体系,共萃取体系,酸性磷类萃取体系等。 7,反胶团萃取 a)微胶团概述:反胶团萃取也类似于水-有机溶剂的液液萃取,但他是李永乐表面活性 剂在有机相形成的反胶团水池的双电层与蛋白质的静电吸引作用,而将不同极性 (等电点)、不同分子量的蛋白质选择性地萃取到有机相,达到分离的目的。 b)将表面活性剂溶于水中,当其浓度超过临界胶束浓度时表面活性剂就会在水溶液中 聚集在一起形成聚合体,称为胶束。 c)表面活性剂是由亲水憎油的极性基团和亲油憎水的非极性基团两部分组成的两性 分子,可分为:阴离子表面活性剂(脂肪醇硫酸酯盐等)、阳离子表面活性剂(十 六烷基三甲基季铵溴化物等)、非离子表面活性剂(烷基酚类聚醚等) d)形成反胶团的条件:加入的表面活性剂在有机相中的浓度达临界胶束浓度值以上。 e)反相微萃取的原理:表面活性剂有表面聚集的倾向,在宏观有机相和水相界面的表 面活性剂层,同临界的蛋白质发生静电作用而变形,从而接着在两相界面形成包含

几种常见固相萃取柱

聚合物树脂固相萃取柱 萃取柱装有高纯度和高交联度的苯乙烯-二乙烯基苯聚合物颗粒,表面键合有反相(疏水成分)和强阳离子交换官能团。它对酸性、中性和碱性化合物具有极高的重现性和回收率。StyreScreen®颗粒的平均粒径为30mm,并具有非常高的样品载量,从而使得萃取柱特别适于标准的固相萃取应用。样品载量的增加意味着只需填装更少的填料,这就有助于获得更高的流速并降低溶剂的消耗。高通量和低废液处理量将可以节约大量的时间和费用。此外,在大部分的药物滥用测试应用中也无须预处理步骤。 药物滥用测试共聚物键合固相萃取柱CleanScreen®是Sepax-UCT最受认可的产品系列,用于滥用药物和临床药物的萃取。填料采用硅胶基质混合固定相,可满足生物样品中药物的高效、稳定和洁净萃取。混合相分离模式可为酸性,碱性和中性化合物提供最高的选择性。这使得CLEANSCREEN®特别适用于药物筛选,以及实际上所有药物品种的确认和分析。CLEANSCREEN®DAU和THC萃取柱已被司法鉴定和临床化学家广泛应用,包括:尸检分析•犯罪调查•尿样药物检测•运动员违禁药物检测•赛马实验室•治疗药物监测•药物筛选(注意:如果应用于比较粘稠的样品,比如组织或马血清,请使用我们的XtrackT®系列,这可以获得高的流速。同时CLEANSCREENDAU 填料及其它填料都可以提供大粒径填料 低溶剂消耗固相萃取柱 低溶剂消耗的萃取柱为微填充柱,这种萃取柱具有disc技术的优点,同时保留了传统SPE柱的优点。这种低溶剂消耗萃取柱与传统萃取柱相比可节省75%的溶剂。更少的溶剂意味着更快的分离,更高的通量和更少的废液处理,从而极大地节约您的时间和资金。研究结果表明,存在于尿液和血液中的治疗和滥用药物可以被干净地提取,使用低溶剂消耗的萃取柱同时也可以获得极高的回收率和一致的重复性。 RSV萃取柱的规格有1mL、3mL和10mL。这些萃取柱可以使用真空或正压装置,也可以使用传统的自动萃取装置 高流速固相萃取柱。使用标准的固相萃取柱时,粘稠的样品通常流速会很慢。增加填料的粒径可以提高样品在应用和分析中的流动性。XtrackT®萃取柱专为高粘度的样品设计,包括马尿、尸体血和组织、胎粪、羊水、牛奶等。 XtrackT®也可以作为重力流动柱来分离大部分的血样和尿样。单根萃取柱可以萃取大部分的化合物,对酸性、类固醇和碱性化合物具有不同的选择性。XtrackT®无需额外的纯化步骤就可以获得更干净的提取以及极高的回收率。XtrackT®有疏水、亲水、离子交换和混合型等多种固定相,包括CLEANSCREEN®DAU填料。XtrackT®推荐用于各种高粘度样品或期望获得重力流量的情形。

相关文档
最新文档