等价无穷小量替换定理

等价无穷小量替换定理
等价无穷小量替换定理

§2–6无穷小与无穷大的比较

基础知识导学

1、无穷小的比较

定义1 设α、β是某一极限过程中的两个无穷小,若 c =α

β

lim

(c 为常数) 则(1)当c ≠ 0时,称在此极限过程中β与α是同阶无穷小;

(2)当c = 0时,称在此极限过程中β是α的高阶无穷小,记作β=o (α)(读作小欧α); (3)当c = 1时,称在此极限过程中β与α是等价无穷小,记作β~α。

2、无穷大的比较

定义2 设Y 、Z 是同一极限过程中的两个无穷大量,

(1)如果Y Z

lim = c ≠ 0,则称Y 与Z 是同阶无穷大量; (2)如果Y

Z

lim = ∞时,则称Z 是Y 的高阶无穷大量;

(3)如果k

Y Z lim

= c ≠ 0(k >0),则称Z 是关于(基本无穷大量)Y 的k 阶无穷大量。

3、无穷小的阶与主部 定义

3 把某极限过程中的无穷小α作为基本无穷小,如果β与

k

α(k >0)是同阶的无穷小,即

k

α

β

lim = c ≠ 0,则称β是关于α的k 阶无穷小。

重点难点突破

1.关于无穷小的比较

要确定两个无穷小量是同阶、高阶和等价的关系,其实就是求这两个无穷小量比的极限,再根据定义判断两个无穷小的关系。

注意 (1)符号β=O (α)与β~α的含义

β=O (α)表示β是α的高阶无穷小,即0lim =α

β

; β~α表示β与α是等价无穷小,即1lim

β

(1) 同阶不一定等价,等价一定同阶。 (2) 利用等价无穷小求极限

等价无穷小在求极限的过程中可以进行如下替换: 若α~αˊ,β~βˊ,且αβ''lim

存在,则αβlim =αβ'

'lim

无穷小量的比较表

2.关于无穷小的阶 当x →0时,由恒等式

(ⅰ)o (x n )+ o (x m )= o (x n ) 0<n <m (ⅱ)o (x n ) o (x m )= o (x m+n ) m >0, n >0 3.关于无穷小的替换定理

设当0x x →时,)(~)(21x x αα,)(~)(21x x ββ,)()(lim

220

x x x x αβ→存在,则)()

()()(lim 2

2110

x x x x x x αβαβ=

→. 解题方法指导

1.判断无穷小的阶有以下几种方法(仅供参考):

例1 当x →0时,下列无穷小量是x 的几阶无穷小 ① x - 3x 3 + x 5 ②sinxtgx

解:①因为当x →0时,在x - 3x 3 + x 5中3x 3 与x 5都是x 的高阶无穷小,由恒等式(ⅰ)

13lim 530=+-→x

x x x x 所以,当x →0时,x - 3x 3 + x 5是x 的一阶无穷小

②因为当x →0时,sin x ~x ,tg x ~x ,由恒等式(ⅱ)可得 sin x tg x =o (x 2),即1sin lim 20=→x

xtgx

x 所以,当x →0时,sin x tg x 是x 的二阶无穷小 (2)先将原式变形,再判断阶数

例2 当x →0时,下列无穷小量是x 的几阶无穷小 ①x x --+11 ②tg x –sin x 解:①通过分子有理化将原式变形

x x --+11=

x

x x

-++112

由此看出,当x →0时,x x --+11是x 的一阶无穷小,事实上 1)

11(2lim

0=-++→x x x x

x

②通过三角函数的公式将原式变形 x

x x x x x x tgx cos )

cos 1(sin sin cos sin sin -=-=

-

因为 sin x ~x , 1-cos x ~

2

1x 2 由此看出,当x →0时,tg x –sin x 是x 的三阶无穷小,事实上

2

1cos 21lim cos )cos 1(sin lim 32

030=??=?-→→x x x x x x x x x x 此题错误解法: 解:因为 0sin lim sin lim

00=??

?

??-=-→→x x x tgx x x tgx x x

所以,当x →0时,tg x –sin x 是x 的一阶无穷小 这种解法是错误的,因为由无穷小阶的定义,β与k α比的极限不能为零。

2.利用等价无穷小代换求极限

常用等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x

-, 2

2

1~

cos 1x x -,x x x 2tan ~2sin ~2. 例5 求下列函数的极限 (1)203cos 1lim

x x x -→ , (2)3

0tan sin lim

x x x

x →-.

解 (1)203cos 1lim x x x -→=61321lim 220=→x x

x (221~cos 1,0x x x -→). (2)x x x x 30sin sin tan lim -→=x

x x x x cos )

cos 1(sin lim 30-→ 20sin (1cos )1lim cos x x x x x x

→-=?? =2

2

2sin 2lim

x x

x →

=21 ( 2

22~2sin ,0??

?

??→x x x ) . 小结 利用等价无穷小可代换整个分子或分母,也可代换分子或分母中的因式,但当分子或分母为多项式

时,一般不能代换其中一项。否则会出错. 如上题 0lim sin sin tan lim

3030

=-=-→→x

x

x x x x x x , 即得一错误结果.

(完整word)高等数学等价替换公式

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x Θ .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x Θ .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n Θ .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

高等数学等价无穷小替换

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x ) 函数()x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n

定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷 小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系:

等价无穷小替换_极限的计算

无穷小 极限的简单计算 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+ →0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞ →+∞→∞→∞ →∈00 0x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即 ()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都 不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即 ()∞=→x f x * lim 。显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0l i m =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0 lim ()()(),x x x f x A f x A x α? =? +其中)(x α是自变量在同一变化过程 0x x →(或∞→x )中的无穷小.

叠加定理和替代定理

叠加定理和替代定理 1.加深对叠加定理和替代定理的理解 2.验证叠加定理只适用于线性电路,而替代定理则对线性电路和非线性电路均适用 1.叠加定理:多个独立电源共同作用的线性电路中,在任意一个支路中所产生的电压和电流 响应,等于各个电源分别单独作用时在该支路所产生的电压或电流响应的代数和。 注:电压源不工作时,短路处理,用一根理想导线代替 电流源不工作时,断路处理,从电路中拿掉 ——叠加定理只适用于线性电路,对非线性电路不适用 2.替代定理:若电路中某支路电路压uU,U或电流已知,则次电路可用电压的电压源iS或i,i的电流源代替,替代前后,电路中各支路电压、电流不变。 S ——替代定理则对线性电路和非线性电路均适用 1.验证叠加定理 II21a ++IU,8VU,5VS1S2 -- RR,100,R,200,112 b 图4-1 叠加定理

按图4-1接线,稳压二极管接入电路时的极性如图4-1所示,它处于反向工作状态,其稳定电压约5.5~6.5V。测量电压源单独作用及共同作用时的各支路电流II、、和电压I12U。将测量数据记录在表格一中。ab (V) U(mA)(mA) II(mA)表一、叠加定理 Iab12 电压源工作状态 U,8V,U,0V S1S2 U,0V,U,5V S1S2 U,8V,U,5V S1S2 2.验证替代定理 计算在电压源共同作用时稳压二极管的电阻值(R,UI),并在电阻箱上取此值,替ab代稳压二极管接入电路,电路如图4-2所示。测量电压源单独作用及共同作用时的各支路电 流I、I、和电压U。将测量数据记录在表格二中。 I12ab II21a ++IU,8VU,5VS1S2 -- RR,100,R,200,112 b 图4-2 替代定理 表二、替代定理 电压源工作状态 U(V) II(mA)(mA)(mA) Iab12 U,8V,U,0V S1S2 U,0V,U,5V S1S2 U,8V,U,5V S1S2 序号仪表设备名称选用挂箱型号数量备注

关于大学高等数学等价无穷小

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。 1.做乘除法的时候一定可以替换,这个大家都知道。 如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。关键要记住道理 lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x) 其中两项的极限是1,所以就顺利替换掉了。 2.加减法的时候也可以替换!但是注意保留余项。 f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看: f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的! 问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。 比如你的例子,ln(1+x)+x是可以替换的,因为 ln(1+x)+x=[x+o(x)]+x=2x+o(x), 所以ln(1+x)+x和2x是等价无穷小量。 但是如果碰到ln(1+x)-x,那么 ln(1+x)+x=[x+o(x)]-x=o(x), 此时发生了相消,余项o(x)成为了主导项。此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。

碰到这种情况也不是说就不能替换,如果你换一个高阶近似: ln(1+x)=x-x^2/2+o(x^2) 那么 ln(1+x)-x=-x^2/2+o(x^2) 这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。 从上面的例子就可以看出来,余项很重要,不能直接扔掉,因为余项当中包含了一定的信息。而且只要保留余项,那么所做的就是恒等变换(注意上面我写的都是等式)而不是近似,这种方法永远是可行的,即使得到不定型也不可能得出错误的结论。等你学过带余项的Taylor公式之后对这一点就会有更好的认识。 高数教了一段时间了,对于等价无穷小量代换法求极限为什么只能在乘除中使用,而不能在加减的情况下使用的条件感到有些疑惑,于是找了一些资料,仔细的研究了这个问题,整理如下: 等价无穷小的定义及常用的等价无穷小 无穷小量是指某变化过程中极限为0的变量。而等价无穷小量是指在某变化过程中比值极限为1的两个无穷小量。 常用的等价无穷小有: sinx~tanx~arctanx~arcsinx~ln(1+x)~x(x→0) sin?x~tan?x~arctan?x~arcsin?x~ln?(1+x)~x(x→0) 1?cosx~x22,1+x?????√n?1~xn(x→0)1?cos?x~x22,1+xn?1~xn(x→0) 等价无穷小量在求极限问题中非常重要。恰当的使用等价无穷小量代换常常使极限问题大大简化。但是有时却不能使用等价无穷小量代换。

叠加定理和替代定理

叠加定理和替代定理 一、实验目的 1.加深对叠加定理和替代定理的理解 2.验证叠加定理只适用于线性电路,而替代定理则对线性电路和非线性电路均适用 二、实验原理与说明 1.叠加定理:多个独立电源共同作用的线性电路中,在任意一个支路中所产生的电压和电流响应,等于各个电源分别单独作用时在该支路所产生的电压或电流响应的代数和。 注:电压源不工作时,短路处理,用一根理想导线代替 电流源不工作时,断路处理,从电路中拿掉 ——叠加定理只适用于线性电路,对非线性电路不适用 2.替代定理:若电路中某支路电路压u 或电流i 已知,则次电路可用电压U U S =的电压源或i i S =的电流源代替,替代前后,电路中各支路电压、电流不变。 ——替代定理则对线性电路和非线性电路均适用 三、实验内容 1.验证叠加定理 8U 1S =V 5U 2S =Ω =2002=100R 1 图4-1 叠加定理 按图4-1接线,稳压二极管接入电路时的极性如图4-1所示,它处于反向工作状态,其稳定电压约5.5~6.5V 。测量电压源单独作用及共同作用时的各支路电流1I 、2I 、I 和电压 ab U 。将测量数据记录在表格一中。

表一、叠加定理 2.验证替代定理 计算在电压源共同作用时稳压二极管的电阻值(I U R ab =),并在电阻箱上取此值,替代稳压二极管接入电路,电路如图4-2所示。测量电压源单独作用及共同作用时的各支路电流1I 、2I 、I 和电压ab U 。将测量数据记录在表格二中。 8U 1S =V 5U 2S =Ω =2002=100R 1 图4-2 替代定理 表二、替代定理

四、实验设备 五、注意事项 1.稳压二极管的极性 2.电压源不做用时短路 3.可调电阻箱上的电阻必须事先调好 六、实验报告 1.列出测量数据表格 2.依据实测数据验证叠加定理,并验证叠加定理不适用于非线性电阻 3.验证替代定理并说明其适用情况 4.分析产生误差的主要原因

三角函数极限等价无穷小公式

三角函数公式整合: 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB- cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB- cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] 诱导公式 sin(-α) = -sinα cos(-α) = cosα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα

替代定理的妙用

《大学电路/电路原理/电路分析》06--替代定理的妙用电学中重要的电路定理有叠加定理、齐性定理、替代定理、戴维宁定理、诺顿定理和最大功率传输定理,在不同的场合解决各类电路问题,真的是太精妙了。 叠加定理把多电源电路变为单电源电路,一下子回到高中物理。齐性定理体现了线性电路的比例性质,其“倒推法”用在单电源多电阻电路就是一个字--“绝”。戴维宁定理和诺顿定理特别擅长于只求某一支路参数的场合,把待求支路从电路中一取走,变成开口电路,难度一下降低。最大功率传输定理将复杂的求导变成求戴维宁/诺顿等效电路中的等效电阻了。但唯独对替代定理的介绍最少,相应的例题应就更少。其实替代定理是一个非常棒的定理,用得好,考试时大可以提前交卷!接下来介绍替代定理在推导及计算中的妙用。 1.替代定理 替代定理是指已知电路中某一支路的参数,如两端的电压,流过支路的电流,那么该支路可等效为一个电压源,或电流源,又或是一个电阻,如下图所示: 其证明过程也是相对简单的,等效为电压源时只需在支路上串联2个大小相等,方向相反的电压源,如下图所示: 虚线框内支路电压刚好和下面的电压源抵消了,电压为0,可用一条导线替代,这样就只剩下面那个电压源了,得证。 而等效为电流源时,则需在支路两端并联2个大小相等,方向相反的电流源,如下图所示:

虚线框内流过支路的电流和右边的电流源也抵消,电流为0,整个框可以去掉,只剩左边那个电流源了。 2. 替代定理在定理推导中的应用 戴维宁定理是指,一个含源一端口可以等效为一个实际电压源模型,在证明时该定理就先替代定理,再用叠加定理来操作的,如下图所示: 图中N s表示含源一端口,N0表示无源一端口。有学生问替代时为什么选电流源而不选电压源,主要是由于在接着使用的叠加定理,将电流源置零时可直接将其断开,方便计算,如果选电压源,置零时就要短接,求解麻烦。将分电路中求出的电压u叠加,得到表达式为: 根据式中的电压电流关系,得到等效电路就是实际电压源模型,即戴维宁等效电路,如下图所示: 看到这里,只想喊一句:“太妙了!” 3.替代定理在解题中的应用 替代定理在一些复杂电路中最能显示它的优势,如下图所示:

高等数学等价无穷小替换_极限的计算

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用

→x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷 小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0 lim () ()(),x x x f x A f x A x α其中)(x α是自变量在同一变化过 程0x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim () ,x x f x A 令()(),x f x A α则有0 lim () 0,x x x α ).()(x A x f α+=∴

基尔霍夫定律与替代定理验证实验

基尔霍夫定律与替代定理验证实验 一、实验目的 1、加深对基尔霍夫定律的理解。 2、用实验数据验证基尔霍夫定律。 3、熟练掌握仪器仪表的使用技术。 二、仪器设备 GDDS-2C智能型电工电子系统实验装置 三、原理与说明 基尔霍夫定律是电路理论中最基本的定律之一,它阐明了电路整体结构必须遵守的规律,应用极为广泛。 基尔霍夫定律有两条:一是电流定律,另一是电压定律。 1、基尔霍夫电流定律(简称KCL):对任意节点,在任意时刻,流入该节点所有支路电流的代数和为零(或:流入节点的电流等于流出节点的电流)。 KCL是电荷守恒和电流连续性原理在电路中任意结点处的反应。是对结点处支路电流加的约束,与支路上接的是什么元件无关,与电路是线性还是非线性无关。KCL方程是按电流参考方向列写的,与电流实际方向无关。KCL可推广应用于电路中包围多个结点的任一闭合面。 2、基尔霍夫电压定律(简称KVL):任一时刻,任一回路,延任一绕行方向,所有支路电压的代数和恒等于零。 KVL的实质反映了电路遵从能量守恒。是对回路中的支路电压加的约束,与回路各支路上接的是什么元件无关,与电路是线性还是非线性无关。KVL方程是按电压参考方向列写的,与电压实际方向无关。 替代定理定理: 对于给定的任意一个电路,若某一支路电压为u k、电流为i k,那么这条支路就可以用一个电压等于u k的独立电压源,或者用一个电流等于i k的独立电流源,或用R=u k/i k的电阻来替代,替代后电路中全部电压和电流均保持原有值。 四、实验内容与步骤 (一)、基本要求 1、验证基尔霍夫电流定律 (1)、按照图3-4所示实验线路接线:取电阻R=1KΩ,

考研数学等价无穷小代换

考研数学等价无穷小代换 更多技巧尽在考研数学(https://www.360docs.net/doc/eb12958849.html,/u/2461250915)每周至少更新两次 众所周知,考研数学里面一部分题目需要求极限,大多数同学处理这类问题的方法是洛必达法则,但是,运用洛必达法则运算量大,运算步骤繁琐,因而也就容易出错,稍有不慎,则会算错,尤其对于选择填空题,一旦算错,一分也没有,而且,洛必达法则需要的时间也较多,如果一味的使用洛必达法则,则有可能浪费大量的时间,得不偿失。这里介绍一些求极限等问题的特殊技巧,基本上可以涵盖所有的求极限题目,因为,我们所学的初等函数有五类,反三角函数,对数函数,幂函数,三角函数,指数函数,简称反对幂三指,以下是这五类函数的无穷小代换。以下x均趋近于0 常见代换:x~sin x~tan x~arctan x~arcsin x 幂函数代换:(1+x)λ~λx+1 λ可以取整数也可以取分数 指数函数代换:e x ~x + 1 a x ~ lna·x + 1 对数代换:ln(1+x) ~ x log a(1+x) ~ x/lna 差代换:1.二次的:1-cos x ~ x2/2 x-ln(1+x) ~ x2/2 2三次的:(1)三角的:x -sin x ~ x3/6 tan x -x ~ x3/3 tan x -sin x ~ x3/2 (2)反三角的:arcsin x -x ~ x3/6 x -arctan x ~ x3/3 arcsin x -arctan x ~x3/2 下面来举几个例子简单的说一下这些技巧怎么用 例如:求:当x→0时,lim(arcsin x-arctan x)/ x3的值。 当求这个极限的值的时候,如果用洛必达法则,计算量则会很大,这里不再赘述运用洛必达法则如何求解,只介绍如何使用上述技巧。 lim(arcsin x-arctan x)/ x3=lim(1/2 x3)/ x3=1/2 大家可以自己做一下洛必达法则的方法,对比一下两者之间的差别。 需要注意的是,等价无穷小的运用往往不止一次,只要发现运用洛必达法则运算困难,则可以尝试等价无穷小代换。

等价无穷小公式大全

1,x\sim \tan x\sim \sin x\sim \arcsin x\sim (e^x-1)\sim\arctan x\sim ln(1+x)\sim ln(x+\sqrt{1+x^2})x~tanx~sinx~arcsinx~(ex?1)~arctanx~ln(1+x)~ln(x+1+x2) 2,(1-\cos x)\sim\frac{1}{2}x^2(1?cosx)~21x2 3,log_a(1+x)\sim\frac{x}{lna}loga(1+x)~lnax 4,(x - \sin x)\sim\frac{1}{6}x^3\sim(\arcsin x-x)(x?sinx)~61x3~(arcsinx?x) 5,(\tan x -x)\sim\frac{1}{3}x^3\sim(x-\arctan x)(tanx?x)~31x3~(x?arctanx) 6,(1+bx)^a-1\sim abx(1+bx)a?1~abx 7,(\tan x-\sin x)\sim \frac{1}{2}x^3(tanx?sinx)~21x3 8,a^x-1\sim xlnaax?1~xlna 9,(\sqrt[n]{1+x}-1)\sim \frac{x}{n}(n1+x?1)~nx 等价无穷小替换公式如下: 以上各式可通过泰勒展开式推导出来。

等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 扩展资料: 求极限时,使用等价无穷小的条件: 1. 被代换的量,在取极限的时候极限值为0; 2. 被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。

高等数学等价无穷小替换

无穷小极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如,,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

高等数学等价无穷小替换_极限的计算

讲义 无穷小极限的简单计算【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较用等价无穷小求极限。 难点是未定式的极限的求法。

【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是

高等数学等价替换公式

根据arcsinx的泰勒公式,可以轻松得到为同阶不等价无穷小。x→0,时x→sinx ; x→arcsinx ; x→tanx ;x→arctanx; x→ln(1+x); x→(e^x-1); [(1+x)^n-1]→nx;(1-cosx)→x*x/2;a^x-1→xlna, ln(1+x)→x;麦克劳林公式也是,那个符号不好写,你课本上或者习题里有.例1 limx →0tanx-sinxx3 给你举几个利用无穷小的例子例1 limx→0tanx-sinxx3 解:原式=limx →0sinx(1-cosx)x3cosx=limx→0x·12x2x3(∵sinx~x,1-cosx~x22)=12 此题也可用罗比塔法则做,但不能用性质④做。∵tanx-sinxx3=x-xx3=0,不满足性质④的条件,否则得出错误结论0。例 2 limx→0e2x-31+xx+sinx2 解:原式=limx→0e2x-1-(31+x-1)x+x2=limx→02x-13xx(1+x)=53 例3 limx→0(1x2-cot2x) 解法1:原式=limx→0sin2x-x2cos2xx2sin2x =limx→0(sinx+xcosx)(sinx-xcosx)x4 =limx→0x2(1+cosx)(1-cosx)x4 (∵sinx~x) =limx→0(1+cosx)(1-cosx)x2 =limx→012x2·(1+cosx)x2=1 解法2:原式=limx→0tan2x-x2x2tan2x =limx→0(tanx+x)(tanx-x)x4 =limx→02x(tanx-x)x44 (∵tanx~x) =limx→02(tanx-x)x3 =limx→02(sec2x-1)3x2 =23limx→0tan2xx2=23 (∵tanx~x) 例4[3]limx→0+tan(sinx)sin(tanx) 解:原式=limx→0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) (用罗比塔法则)=limx→0+sec2(sinx)cosxcos(tanx)sec2x·limx→0+sin(tanx)tan(sinx) (分离非零极限乘积因子)=limx→0+sin(tanx)tan(sinx) (算出非零极限)=limx→0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) (用罗比塔法则)=limx→0+cos(sinx)sec2xsec2(sinx)cosx·limx→0+tan(sinx)sin(tanx) =limx→0+tan(sinx)sin(tanx) 出现循环,此时用罗比塔法则求不出结果。怎么办?用等价无穷小代换。∵x~sinx~tanx(x →0) ∴原式=limx→0+xx=1而得解。

学术论文 14021198 程浩关于等价无穷小替换法则在何种情况下适用于加减法的若干探讨

关于等价无穷小替换法则在何种情况下适用于加减 法的若干探讨 程浩 北京航空航天大学,电子信息工程学院,北京,100191 薛玉梅 北京航空航天大学,数学与系统科学学院,数学、信息、行为教育部重点实验室,北京, 100191 摘要:本文对等价无穷小替换法则适用于加减法的情形做了 一些探究,并在最后以泰勒公式做了一些推广. 关键字:等价无穷小 替换 泰勒公式 一、引言 我们已经知道,等价无穷小替换法则适用于乘除法,即: 设函数()()()x h x g x f ,,在0x 附近有定义,且()()()0~x x x g x f → 则:若()()a x h x f x x =→0 lim ,则()()a x h x x x =→g lim 0 ; 若()() a x f x h x x =→0 lim ,则()()a x x h x x =→g lim 0.(在0x 附近()()0,0≠≠x g x f ) 那么等价无穷小替换法则在何时适用于加减法呢?当然我们可以轻易推得: 若()()()0~x x x g x f →,则()()()()()()x h x g x h x f x x x x ±=±→→0 lim lim (若两极限存在)但 在参与一些较复杂的运算时就不一定成立了.如: 例1计算x x x x 30 sin sin tan lim -→ 正解 303030sin cos sin lim sin tan lim sin sin tan lim x x x x x x x x x x x x x -=-=-→→→

()21 sin 21cos cos 1sin lim 2230==-=→x x x x x x x 错解 0sin tan tan lim sin sin tan lim 3030=-=-→→x x x x x x x x 究竟是什么原因导致了错误呢? 原来若我们所求极限是 型极限的话,我们轻易替换可能出现错误,不难验证若分子分母函数的极限都存在且不等于0时,等价无穷小可以适用于加减.因此我 们主要探讨0 型极限.我们只讨论减法运算. 二、从无穷小阶量化角度得到的结论 笔者从无穷小量化的角度得到了如下结论: 定理1设()()()0~x x x g x f →,()0lim 0 =→x h x x ,()0lim 0 =→x F x x ,()()() a x F x h x f x x =-→0 lim , (1)当()x f 和()x h ()0x x →不是等价无穷小量,则 ()()()()()() a x F x h x f x F x h x g x x x x =-=-→→00 l i m l i m ; (2)当()()()0~x x x h x f →,则 ()()()()()() a x F x h x f x F x h x g x x x x =-=-→→00 lim lim 成立当且仅当()()x g x f -是()x F 的高阶无穷小量. 证明 以下设()x h 的阶数为m ,()x f 的阶数为n ,()()x h x f -的阶数为p ,()x F 的阶数为 q , ()()x g x f -的阶数为s.

关于高等数学等价无穷小替换极限的计算

关于高等数学等价无穷小替换极限的计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极 限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用

→x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即 ()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1 为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理1 0 lim () () (),x x x f x A f x A x α其中)(x α是自变量在同一变化过程0 x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim () ,x x f x A 令()(),x f x A α则有0 lim () 0,x x x α (充分性)设() (),f x A x α其中()x α是当0x x 时的无穷小,则 【意义】 (1)将一般极限问题转化为特殊极限问题(无穷小);

高等数学等价无穷小替换_极限的计算

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+ →0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用

→x *表示上述七种的某一种趋近方式,即 *{ } -+→→→-∞→+∞→∞→∞→∈000 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小 是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0lim ()() (),x x x f x A f x A x α? =?+其中)(x α是自变量在同一变化过 程0x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim (),x x f x A ?=令()(),x f x A α=-则有0 lim ()0,x x x α?= ).()(x A x f α+=∴

相关文档
最新文档