配电低压线路保护的相关措施探究

配电低压线路保护的相关措施探究
配电低压线路保护的相关措施探究

配电低压线路保护的相关措施探究

【摘要】文章阐述了《低压配电设计规范》对保护和保护选择性要求,强调了低压保护电器的选型和整定,指出了当前配电低压线路设计中存在的普遍问题,并提出了解决的探讨方案,对简易、经济的有选择性的断路器提出了想法。

【关键词】配电;低压线路保护

0.前言

低压配电线路,为了防护在发生故障(如过载、短路和接地故障)时危及人身安全(间接接触导致的电击),或是线路过热而导致损坏甚至引起电气火灾,配电线路应有必要的防护措施,以保护线路安全和用电安全。由于低压配电线路遍布各种建筑以至户外各处,发生故障的机率大,而且有大量非专业人员可能接触,更显得这种防护特别重要。最主要的防护措施就是在各级配电线路装设保护电器,以保证在电路发生故障时,能有效地断开故障电路。这些保护应符合GB50054—95《低压配电设计规范》的有关规定。

1.设计依据

低压配电线路保护依据国家标准GB50054—95《低压配电设计规范》,该规范规定了电路几种故障时的保护要求。低压保护电器主要使用低压断路器和低压熔断器两类;断路器从选择性分类,则有“选择型断路器”(另外还具有短延时定时限过电流脱扣器)和“非选择型断路器”(具有反时限和瞬时动作两个过电流脱扣器)两类。为此,各级线路不仅要设置保护电器,还必须要正确整定其参数,以保证在规定的时间内可靠切断故障;还要求应有选择地切断电路,即要求最靠近故障点的保护电器动作,而其上级的保护电器不动作,以使得切断电路的范围最小。

2.低压配电线路保护要求

2.1电路故障时能自动切断故障回路

电路故障包括以下三类:(1)短路故障:依靠保护电器自动切断。(2)过负载:依靠保护电器自动切断或发出报警。以上两类均属过电流保护,目的是防止导体过热,在达到规定的允许最终温度之前切断,以防止导线(电缆)损坏,甚至引起火灾。(3)接地故障保护:依靠保护电器在规定的时间内切断,除防止电线过热外,更主要是作间接接触电击防护。

2.2要有选择性切断电路

故障时,要求靠近故障点的保护电器动作,而以上各级保护电器不应动作,以保证非故障电路的连续供电,最大限度缩小停电范围。这也是配电低压系统最

低压配电线路中SPD的选择和安装

低压配电线路中SPD的选择和安装 1.雷电防护分区与分级 1.1雷电防护区 将需要进行雷电防护的空间划分为不同的雷电防护区,是为了规定各部分空间不同的雷电电磁脉冲的严重程度和指明各区交界处的等电位连接点的位置;而在不同的防雷区界面处选择和安装的SPD的参数值也有很大的差异。因此,选用SPD时,首先应搞清楚SPD的安装部位所处的防雷区界面。

雷电防护区的划分是根据需要保护和控制雷电电磁脉冲环境的建筑物,从外部到内部划分为不同雷电防护区(LPZ): ):电磁场没有衰减,各类物体都可能遭到直(1)直击雷非防护区(LPZO A 接雷击,属完全暴露的不设防区。 ):电磁场没有衰减,各类物体很少遭受直接雷(2)直击雷防护区(LPZO B 击,属充分暴露的直击雷防护区。 (3)第一防护区(LPZ1):也称第一屏蔽防护区。由于建筑物的屏蔽措施,流经各类导体的雷电流比直击雷防护区(LPZOB)区减小,电磁场得到了初步的衰减,各类物体不可能遭受直接雷击。 (4)第二防护区(LPZ2):也称第二屏蔽防护区。进一步减小所导引的雷电流或电磁场而引入的后续防护区。 (5)后续防护区(LPZn):需要进一步减小雷电电磁脉冲,以保护敏感度水平高的设备的后续防护区。 1.2雷电防护等级 建筑物电子信息系统的雷电防护等级按防雷装置的拦截效率分为A、B、C、D 四个等级。(GB50343的2009年新修订版本已改为A、B、C三个等级)在不同的雷电防护等级下,应选用的浪涌保护器的参数值也是有很大差异的。因此,在选用浪涌保护器时,首先应搞清楚该工程电子信息系统的雷电防护等级。 GB50343-2004之5.1.1规定:建筑物电子信息系统的防雷设计,应满足雷电防护分区、分级确定的防雷等级要求。 如:GB50343-2004之5.4.1第7款规定:用于电源线路的浪涌保护器就需要根据相应防雷等级的要求选择其不同的标称放电电流的参数值。 2.SPD的主要技术参数 这同样是一个比较重要的问题,在没有搞清楚关于SPD的一些主要参数及其定义的情况下,设计人员是不太可能在工程设计时,将SPD设计到位的。这里主要介绍几个与工程的施工图设计关系比较密切的主要参数及其定义: 2.1 冲击电流(Iimp) 由电流幅值Ipeak、电荷Q和单位能量W/R三个参数所限定。

如何计算线路保护的整定值

10kV配电线路保护的整定计算 10kV配电线路的特点10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV变电所出线;有的线路上的配电变压器很小,最大不过100kV A,有的线路上却有几千kV A的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。2问题的提出对于输电线路,由于其比较规范,一般无T接负荷,至多有一、二个集中负荷的T接点。因此,利用规范的保护整定计算方法,各种情况均可一一计算,一般均可满足要求。对于配电线路,由于以上所述的特点,整定计算时需做一些具体的特殊的考虑,以满足保护"四性"的要求。3整定计算方案我国的10kV配电线路的保护,一般采用电流速断、过电流及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护(如:保护Ⅱ段、电压闭锁等)。下面的讨论,是针对一般保护配置而言的。(1)电流速断保护:由于10kV线路一般为保护的最末级,或最末级用户变电所保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。在以下两种计算结果中选较大值作为速断整定值。①

按躲过线路上配电变压器二次侧最大短路电流整定。实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定。Idzl=Kk×Id2max 式中Idzl-速断一次值Kk-可靠系数,取1.5 Id2max-线路上最大配变二次侧最大短路电流②当保护安装处变电所主变过流保护为一般过流保护时(复合电压闭锁过流、低压闭锁过流除外),线路速断定值与主变过流定值相配合。Ik=Kn×(Igl-Ie) 式中Idzl-速断一次值Kn-主变电压比,对于35/10降压变压器为3.33 Igl-变电所中各主变的最小过流值(一次值) Ie-为相应主变的额定电流一次值③特殊线路的处理:a.线路很短,最小方式时无保护区;或下一级为重要的用户变电所时,可将速断保护改为时限速断保护。动作电流与下级保护速断配合(即取1.1倍的下级保护最大速断值),动作时限较下级速断大一个时间级差(此种情况在城区较常见,在新建变电所或改造变电所时,建议保护配置用全面的微机保护,这样改变保护方式就很容易了)。在无法采用其它保护的情况下,可靠重合闸来保证选择性。b.当保护安装处主变过流保护为复压闭锁过流或低压闭锁过流时,不能与主变过流配合。c.当线路较长且较规则,线路上用户较少,可采用躲过线路末端最大短路电流整定,可靠系数取1.3~1.5。此种情况一般能同时保证选择性与灵敏性。d.当速断定值较小或与负荷电流相差不大时,应校验速断定值躲过励磁涌流的能力,且必须躲过励磁涌流。④灵敏度校验。按最小运行方式下,线路保护范围不小于线路长度的15%整定。允许速断保护保护线路全长。Idmim(15%)/Idzl≥1

220KV电网线路继电保护设计及整定计算

1.1 220KV 系统介绍 KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条 KV 220线路构成一个整体。整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停 MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。 KV 220系统示意图如图1.1所示。 1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示: 表1.1 发电机参数 电源 总容量(MVA ) 每台机额定功率 额定电压 额定功率 正序 图1.1 220kV 系统示意图

最大 最小 (MVA ) (kV ) 因数cos φ 电抗 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统 428 240 115 0.5 对水电厂12 1.45X X =,对于等值系统12 1.22X X = (2) 变压器参数如表1.2所示: 表1.2 变压器参数 变电站 变压器容量(MVA ) 变比 短路电压(%) Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-Ⅲ A 变 20 220/35 10.5 B 变-1 240 220/15 12 B 变-2 60 220/11 12 C 变 3*120 220/115/35 17 10.5 6 D 变 4*90 220/11 12 E 变 2*120 220/115/35 17 10.5 6 (3) 输电线路参数 KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=, KM CE 30=,KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。 (4) 互感器参数 所有电流互感器的变比为5/600,电压互感器的变比为100/220000。由动稳定计算结果,最大允许切除故障时间为S 2.0。 2 整定计算 2.1 发电机保护整定计算 2.1.1 纵联差动保护整定计算 (1)发电机一次额定电流的计算 式中 n P ——发电机额定容量; θ c o s ——发电机功率因数; n f U 1——发电机机端额定电压; (2)发电机二次额定电流的计算 式中 f L H n ——发电机机电流互感器变比; (3)差动电流启动定值cdqd I 的整定:

10kV配电线路保护的整定计算.doc

(2)过电流保护: 按下列两种情况整定,取较大值。 ①按躲过线路最大负荷电流整定。随着调度自动化水平的提高,精确掌握每条线路的最大负荷电流成为可能,也变得方便。此方法应考虑负荷的自启动系数、保护可靠系数及继电器的返回系数。为了计算方便,将此三项合并为综合系数KZ。 即:KZ=KK×Kzp/Kf 式中KZ-综合系数 KK-可靠系数,取1.1~1.2 Izp-负荷自启动系数,取1~3 Kf-返回系数,取0.85 微机保护可根据其提供的技术参数选择。而过流定值按下式选择: Idzl=KZ×Ifhmax 式中Idzl-过流一次值 Kz-综合系数,取1.7~5,负荷电流较小或线路有启动电流较大的负荷(如大电动机)时,取较大系数,反之取较小系数 Ifhmax-线路最大负荷电流,具体计算时,可利用自动化设备采集最大负荷电流

②按躲过线路上配变的励磁涌流整定。变压器的励磁涌流一般为额定电流的4~6倍。变压器容量大时,涌流也大。由于重合闸装置的后加速特性(10kV线路一般采用后加速),如果过流值不躲过励磁涌流,将使线路送电时或重合闸重合时无法成功。因此,重合闸线路,需躲过励磁涌流。由于配电线路负荷的分散性,决定了线路总励磁涌流将小于同容量的单台变压器的励磁涌流。因此,在实际整定计算中,励磁涌流系数可适当降低。 式中Idzl-过流一次值 Kcl-线路励磁涌流系数,取1~5,线路变压器总容量较少或配变较大时,取较大值 Sez-线路配变总容量 Ue-线路额定电压,此处为10kV ③特殊情况的处理: a.线路较短,配变总容量较少时,因为满足灵敏度要求不成问题,Kz或Klc应选较大的系数。 b.当线路较长,过流近后备灵敏度不够时(如15km以上线路),可采用复压闭锁过流或低压闭锁过流保护,此时负序电压取0.06Ue,低电压取0.6~0.7Ue,动作电流按正常最大负荷电流整定,只考虑可靠系数及返回系数。当保护无法改动时,应在线路中段加装跌落式熔断器,最终解决办法是网络调整,使10kV 线路长度满足规程要求。 c.当远后备灵敏度不够时(如配变为5~10kV A,或线路极

低压配电线路中的电压损失

低压配电线路中的电压损失 刘延进蓝天环保设备工程公司 简小成中国美院风景建筑设计研究院 根据《低压配电设计规范》,选择电线或电缆截面应符合下列要求:1.线路电压损失应满足用电设备正常工作及起动时端电压的要求;2.按敷设方式及环境条件确定的导线载流量,不应小于计算电流;3.导体应满足动稳定和热稳定的要求;4.导体最小截面应满足机械强度的要求。一般情况下,哪些低压配电线路的电压损失是必须计算的呢?现分类阐述如下。 一、380/220V线路电压损失: 对于380/220V的三相平衡负荷线路,当负荷为终端负荷时,其电压损失用电流矩(A*Km)表示为: %*I*L ΔU%=ΔU a 当为多个负荷时,电压损失用电流矩(A*Km)表示为: ΔU%=ΣΔU %*I*L a 式中:ΔU%——线路电压损失百分数,%; ΔU %——三相线路每1安·公里的电压损失百分数,%/A·Km; a I——负荷计算电流,A; L——线路长度,Km; 对于相电压为220V的单相负荷线路,当负荷为终端负荷时,其电压损失用电流矩(A*Km)表示为: %*I*L ΔU%=2ΔU a 现以辐照交联聚乙烯绝缘电力电缆(YJV)为例,对不同截面的380/220V三相平衡终端负荷线路进行电压损失值校验。 (GB50052)《民用建筑电气设计规范》(JGJ/T1)第3.33条、《供配电系统设计规范》 第4.04条规定了各种情况下设备的电压损失允许值,现以通常情况取ΔU%=±5%。 根据《民用建筑电气设计规范》(JGJ/T16)8.4节表8.4.5.1-1,当实际环境温度取350C时,温度载流量校正系数取0.91(载流量计算条件:线芯长期工作温度为900C,环境温度为250C);根据表8.4.5.4,设共有12根电缆并列敷设,S(电缆中心距)=2d(电缆外径),则并列敷设载流量校正系数取值为0.8。

10kv线路保护整定计算公式汇总教学文案

继电保护整定计算公式汇编 为进一步规范供电系统继电保护整定计算工作,提高保护的可靠性快速性、灵敏性,为此,将常用的继电保护整定计算公式汇编如下,仅供参考。有不当之处希指正: 一、电力变压器的保护: 1、瓦斯保护: 作为变压器内部故障(相间、匝间短路)的主保护,根据规定,800KV A以上的油浸变压器,均应装设瓦斯保护。 (1)重瓦斯动作流速:0.7~1.0m/s。 (2)轻瓦斯动作容积:S b<1000KV A:200±10%cm3;S b在1000~15000KV A:250±10%cm3;S b在15000~100000KV A:300±10%cm3;S b>100000KV A:350±10%cm3。 2、差动保护:作为变压器内部绕组、绝缘套管及引出线相间短路的主保护。包括平衡线圈I、II及差动线 圈。 3、电流速断保护整定计算公式: (1)动作电流:Idz=Kk×I(3)dmax2 仅供学习与参考

仅供学习与参考 继电器动作电流:u i d jx K dzj K K I K K I ???=2 max ) 3( 其中:K k —可靠系数,DL 型取1.2,GL 型取1.4 K jx —接线系数,接相上为1,相差上为√3 I (3)dmax2—变压器二次最大三相短路电流 K i —电流互感器变比 K u —变压器的变比 一般计算公式:按躲过变压器空载投运时的励磁涌流计算速断保护值,其公式为: i e jx K dzj K I K K I 1??= 其中:K k —可靠系数,取3~6。 K jx —接线系数,接相上为1,相差上为√3 I 1e —变压器一次侧额定电流 K i —电流互感器变比 (2)速断保护灵敏系数校验:

低压配电线路的防雷技术(一)

低压配电线路的防雷技术(一) 为了防止雷电过电压在电气设备的端子之间产生火花放电,文章提出了降低雷电过电压的措施,以及能限制和断开续电流等措施。 1、电力线路发生雷电过电压的频率 在非常广地区的低压配电网络上发生雷电过电压受到该地区的地形、气象条件雷雨日数、雷云的移动路径、雷击电流峰值的颁高低压配电线路的架设密度和对地雷击密度等的影响。在这些因素中,对在低压配电线路上发生雷电过电压峰值的频率颁发问的清楚统计是重要的。 根据观测结果,计算出低压配电线路上发生的概率值。在研究耐雷设计中,要有最基本的雷电过电压的频率分布曲线。在这项观测中,从 2kv以上的雷电过电压中,担心在低压配电设备的端子板或者设备内部会发生火花放电的雷电过电压假定为10kv限值,在超过10kv以上所观测到的累计频率为10%左右,而在5kv以下所观测到的累计频率为70%左右。 还有另一个观测结果,在一个非常狭窄的面积范围内,在同样的低压配电线路上装了电涌计数器进行了187次累计观测。将这两次观测结果的雷电过电压累积频率颁进行比较,它们各自的频率分布双对数曲线都近似于一条直线。但是两条直线不是完全一致的。这是因为在电涌计数器上设定的雷电过电压的下限值有区别。 2、雷电过电压的情况分析 从配电线路上一直彩的防雷措施进行的研究来看,已考虑到在低压配

电线路上发生雷电过电压的因素有:①直击雷(直接雷击到低压配电线路上);②感应雷(雷击到低压配电线路附近的地区时,对配电线路感应生成的感应雷);③高压侧的雷电过电压是侵入低压侧的雷电过电压的原因,由于避雷器动作使大地(接地)电位上升,从柱上变压器的高压侧过渡到低压侧的雷电过电压。 实际上,除了在低压配电线路上发生雷电过电压之外,还有雷击电流直接侵入配电线路附近的建筑物上设置的避雷针,使得大地电位上升影响到配电设备的接地系统的场合应考虑这些是产生雷电过电压的合成原因。 2.1从高压侧过渡到低压侧的雷电过电压压配电线路上发生雷电过电压各种情况进行一般的研究,将高压配电线路上的雷电过电压侵入低压配电线路上发生雷电过电压所产生的各种情况,进行一些试验性的研究。这些研究中,应在实际规模的高压配电线路上施加了雷电脉冲电压。 由于配电用避雷器的放电使大地电位上升,通过柱上变压器的过渡电压,使低压配电线路上发生雷电过电压。 2.2感应雷过电压作为对象,对有关低压配电线路上发生雷电过电压的情况的试验进行研究。为了模拟在近处有雷击时的配电线路和雷电通道,架设一条按现行配电线的1/4比例大小的模型线路,还从气球上吊下电线。这根电线有脉冲电流渡过,这时,测定在配电线路的导体上感应的电压波形。

低压配电规范

低压配电规范 低压配电装置及线路设计规范 GBJ 54-83 主编部门:中华人民共和国机械工业部 批准部门:中华人民共和国国家计划委员会 试行日期:1984年6月1日 第一章总则 (1) 第二章电器和导体的选择 (1) 第一节电器的选择 (1) 第二节导体的选择 (2) 第三章配电装置的布置 (3) 第一节一般规定 (3) 第二节对建筑物的要求 (4) 第四章配电线路的保护 (4) 第五章配电线路的敷设 (5) 第一节绝缘导线布线 (5) 第二节裸导体布线 (7) 第三节插接式母线安装 (8) 第四节电缆敷设 (8) 第一章总则 第1.0.1条低压配电装置及线路设计必须认真执行国家的技术经济政策,并应做到保障人身安全、供电可靠、电能质量合格、技术先进和经济合理。 第1.0.2条低压配电装置及线路的设计,应做到安装维护方便。 第1.0.3条低压配电装置及线路的设计,应节约有色金属,并应认真贯彻以铝代铜的技术政策。 第1.0.4条本规范适用于新建工程的1000伏以下的配电装置及线路设计。 第1.0.5条低压配电装置及线路设计,尚应符合现行的有关国家标准和规范的

规定。 第二章电器和导体的选择 第一节电器的选择 第2.1.1条选择低压电器时,应符合下列要求: 一、符合工作电压、电流、频率、准确等级和使用环境的要求; 二、配电电器应尽量满足在短路条件下的动稳定和热稳定; 三、断开短路电流用的电器,应尽量满足在短路条件下的通断能力。 第2.1.2条验算电器在短路时的通断能力,应采用短路电流的周期分量有效值,并应考虑电动机的反馈影响。 第2.1.3条确定短路电流时所采用的计算接线方式,应为可能发生最大短路电流的正常接线方式。同时,可只计及高压系统阻抗、变压器阻抗和低压线路阻抗,且考虑短路时低压侧短路电流不衰减。 第二节导体的选择 第2.2.1条绝缘导体和电缆的型号,应按工作电压和使用环境等要求选择。 第2.2.2条选择导体截面时,应符合下列要求: 一、导体的允许载流量不应小于线路的负荷计算电流; 二、从变压器低压侧母线至用电设备受电端的线路电压损失,一般不超过用电设备额定电压的5%; 三、绝缘导线线芯的最小截面,应符合本规范第2.2.7条的规定。 第2.2.3条三相四线制中零线的允许载流量不应小于线路中最大的不平衡负荷电流,同时还应符合本规范第 4.0.3、4.0.4条的规定。用于接零保护的零线,其电导不应小于该线路中相线电导的50%。 第2.2.4条导体的允许载流量,应根据敷设处的环境温度进行校正。温度校正系数应按下式确定: (2.2.4) 式中---温度校正系数;

10kV配电线路保护的整定计算(工程科技)

10kV配电线路微机保护的整定计算 10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV 变电所出线;有的线路上的配电变压器很小,最大不过100kVA,有的线路上却有上万kVA 的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。 对于输电线路,由于其比较规范,一般无T接负荷,至多有一、二个集中负荷的T接点。因此,利用规范的保护整定计算方法,各种情况均可一一计算,一般均可满足要求。对于配电线路,由于以上所述的特点,整定计算时需做一些具体的特殊的考虑,以满足保护"四性"的要求。 10kV配电线路微机保护,一般采用电流速断、过电流、重合闸、过流加速段、过负荷报警等构成。下面将分别从这几点展开讨论。 1 电流速断保护: 由于10kV线路一般为保护的最末级,或最末级用户变电所保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。 ①电流定值按躲过线路上配电变压器二次侧最大短路电流整定。 实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定,或直接把最大变压器置于线路首端计算其二次侧最大短路电流。 在进行10kV线路短路计算时,不可以简单认为线路每公里阻抗为0.4Ω/公里,因为10kV线路大部分是由LGJ-210及以下导线构成,电阻值与电抗值之比均大于0.3,LGJ-70及以下导线电阻值均已超过电抗值,所以线路电阻不能再忽略,需采用公式 。电阻R的计算需每种型号导线电阻的相加,可以借助Excel表格来计算 由于电网的不断变化,最大配变容量可比实际最大配变大一些,比如实际最大配变为1000kVA,最大配变容量可根据配电地区经济发展态势选择为1250kVA或1600kVA。

10kV线路保护的整定值计算

10kV线路保护的整定值计算 摘要:对10 kV线路继电保护的整定计算中存在的特殊问题,提出了解决的方法。 关键词:10 kV线路继电保护整定计算 10 kV配电线路结构复杂,有的是用户专线,只接一两个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几十米,有的线路长到几十千米;有的线路上配电变压器容量很小,最大不超过100 kV A,有的线路上却达几千千伏安的变压器;有的线路上设有开关站或用户变电站,还有多座并网小水电站等。有的线路属于最末级保护。陕西省镇安电网中运行的35 kV变电站共有7座,主变压器10台,总容量45.65 MV A;35 kV线路8条,总长度135 km;10 kV线路36条,总长度1240 km;并网的小水电站41座(21条上网线路),总装机容量17020 kW。 1 10 kV线路的具体问题 对于输电线路而言,一般无T接负荷,至多T接一、两个集中负荷。因此,利用规范的保护整定计算方法,各种情况都能够计算,一般均满足要求。但对于10 kV配电线路,由于以上所述的特点,在设计、整定、运行中会碰到一些具体问题,整定计算时需做一些具体的、特殊的考虑,以满足保护的要求。 2 保护整定应考虑系统运行方式来源:https://www.360docs.net/doc/e514552106.html, 按《城市电力网规划设计导则》,为了取得合理的经济效益,城网各级电压的短路容量应该从网络的设计、电压等级、变压器的容量、阻抗的选择、运行方式等方面进行控制,使各级电压下断路器的开断电流以及设备的动热稳定电流得到配合,该导则推荐10 kV短路电流I k≤16 kA。 系统最大运行方式,流过保护装置短路电流最大的运行方式(由系统阻抗最小的电源供电)。 系统最小运行方式,流过保护装置短路电流最小的运行方式(由系统阻抗最大的电源供电)。 在无110 kV系统阻抗资料的情况时,由于3~35 kV系统容量与110 kV系统比较,相对较小,其各元件阻抗相对较大,则可近似认为110 kV系统容量为无穷大,对实际计算结果没有多大影响。 选取基准容量Sjz = 100 MV A,10 kV基准电压Ujz = 10.5kV,10 kV基准电流Ijz = 5.5 kA,10 kV基准阻抗Zjz = 1.103Ω。 3 整定计算方案 10 kV配电线路的保护,一般采用瞬时电流速断(Ⅰ段)、定时限过电流(III段)及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它

380V220V低压配电线路施工技术规范标准

380V220V低压配电线路施工技术规范 一.基本技术原则: (三).低压电缆: 1.临主干道或重点地区(保护文物、绿化区等)选用低压电缆穿管敷设,低压电缆选用比低线线径大1—2个线级。 2.电缆宜采铠装交联电缆,截面按最大工作电流作用下缆芯温度允许值选择,并按热稳定条件校验。主杆线线芯截面不宜小于35平方毫米。 (六).避雷装置: 配变高低压侧均安装避雷器。 (七).接地装置: 按有关设计技术规程要求配变100kV A以上接地电阻不超过4Ω,100kV A以下接地电阻不超过10Ω,重复接地电阻不超过10Ω。二.施工技术规范: (一).导线架设: 1.电杆架设线路档距不宜大于30m,如有特殊的大跨越应采用钢芯铝塑线均采用特殊设计。线间距离不小于0.15m,沿墙敷设档距不宜大于6m,线间距离不小于0.1m。每个耐张段不超过200m。 2.同一档距内,每根导线只允许一个接头,接头距导线固定点不应小于0.5m,不同规格,不同金属和绞向的导线严禁在一个耐张段内连接。 3.耐张导线固定要紧贴绝缘子周边,跳引线弧度要流畅,不得变折为角。 4.导线连接应原则上使用接线端子连接,使用导电脂。 5.跨越街道的导线至路面中心的垂直距离不应小于下列数值:5.1.对非居民区:5m 5.2.通车街道、居民区:6m 5.3.通车困难的街道、人行道:3.5m 5.4.胡同(巷、里、弄):3m。接户线受电端的对地面距离,

不应小于2.5m。 5.5.建筑物:垂直0.3m;水平0.6m。 5.6.树木:垂直0.3m;水平0.6m。 6.导线与建筑物有关部份的距离不应小于列数值。 6.1.与导线下方窗户的垂直距离0.3m。 6.2.与导线上方阳台或窗户的垂直距离0.8m。 6.3.与阳台或窗户的水平距离0.75m。 6.4.与墙壁、构架的距离0.05m。 6.5.考虑线路与建筑物的安全距离,要避免今后建筑物的装饰装修成为障碍物。 7.线路与弱电线路的交叉跨越,一般导线架设在弱电线路上方,交叉距离不应小于下列数值: 7.1.导线在弱电线路上方0.6m。 7.2.导线在弱电线路下方0.3m,如不能满足上述要求,应采取隔离措施。 7.3.导线与一级弱线路交叉角应大于45度,与二级弱电线路交叉角应大于30度。 8.低压线路与低压线路交叉跨越最小距离:0.5m。 9.铝芯线:单股小截面可采用钎焊法或压接法,多股采用压接法。 10.接头、导线绝缘层损伤点应用耐气候型的自粘性橡胶带至少缠绕5层作绝缘。 (二).杆塔支架: 1.三相四线导线截面35mm2及以上,耐张杆、转角杆用Φ150系列,直线杆用Φ120系列;导线截面35mm2以下,电杆用Φ120系列。电杆埋设深度=杆长/6m。电杆长度不小于7米。 2.横担、支架角铁全部要求热镀锌,并不应小于以下规格: 2.1.横担不小于L50×5; 2.2.支架不小于L40×4,1m高以上的主材用L63×6。

10kV 配电线路保护 整定计算

10kV 配电线路保护整定计算 摘要:10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV变电所出线;有的线路上的配电变压器很小,最大不过100kVA,有的线路上却有几千kVA的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。 关键词:10kV 配电线路保护整定计算 110kV配电线路的特点 10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV 变电所出线;有的线路上的配电变压器很小,最大不过100kVA,有的线路上却有几千kVA 的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。 2问题的提出 对于输电线路,由于其比较规范,一般无T接负荷,至多有一、二个集中负荷的T接点。因此,利用规范的保护整定计算方法,各种情况均可一一计算,一般均可满足要求。对于配电线路,由于以上所述的特点,整定计算时需做一些具体的特殊的考虑,以满足保护"四性"的要求。 3整定计算方案 我国的10kV配电线路的保护,一般采用电流速断、过电流及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护(如:保护Ⅱ段、电压闭锁等)。下面的讨论,是针对一般保护配置而言的。 (1)电流速断保护:

低压配电系统中正确使用断路器

低压配电系统中正确使用断路器 断路器广泛应用于低压配电系统中,是一种保护电器元件。在设计低压配电系统时,应注意断路器的选择性,对断路器过流脱扣器额定电流进行选择和整定,确保充分发挥过电流脱扣器的作用;当环境温度大于或小于校准温度值时,应根据制造商提供的温度与载流能力修正系数来调整低压断路器的额定电流值。 一、断路器的几种电流参数 断路器的额定电流In,是指脱扣器能长期通过的电流,也就是脱扣器额定电流。 断路器壳架等级额定电流Inm,用基本几何尺寸相同和结构相似的框架或塑料外壳中所装的最大脱扣器额定电流表示。它决定了所能安装的脱扣器的最大额定电流值。例如,DW15—1600 额定电流800A的断路器,1600 A是断路器的壳架等级额定电流Inm,断路器的额定电流In为800A。 过电流脱扣器可分为过载脱扣器和短路(电磁)脱扣器,有长延时动作电流(Ir1)、短延时动作电流(Ir2)和瞬时动作电流(Ir3)之分。如正泰产DW15—1600的Ir1为(0.7~1)In,Ir3为(1~3)In,没有短延时脱扣器;常熟产CW2—1600A 的Ir1为(0.4~1)In,Ir2为(0.4~15)In+OFF,短延时时间0.1s—0.4s,共4级,Ir3为1.6KA~35 KA+OFF。 断路器的额定极限短路分断能力(Icu):按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力;也就是断路器规定的试验电压及其它规定条件下的极限短路分断电流值,不考虑断路器继续承载它的额定电流。 极限短路分断能力Icu的试验程序为O—t—CO。其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA的短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。t为间歇时间,一般为3min,此时线路处于热备状态(试验按钮仍在按下状态),断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。此程序即为CO。断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功。 额定运行短路分断能力Ics ,是指断路器在规定的试验电压及其它规定条件下的一种比额定极限短路分断电流小的分断电流值,在按规定的试验程序O—t—CO—t—CO动作之后,断路器应有继续承载它的额定电流的能力。它比Icu 的试验程序多了一次CO。Ics是Icu的一个百分数。对于万能式和塑壳式断路器,Ics值略有不同,塑壳式允许Ics最小可以是25%Icu,万能式允许Ics最小是50%的Icu ,Ics=Icu的断路器是很少的。我国的DW45智能型万能式断路器的Ics为62.5%~65%Icu,国际上,ABB公司的F系列,施耐德的M系列也不过是70%左右。

10KV配电线路保护的整定

10KV配电线路保护的整定 柴冬青任海燕惠保安 (山东华聚能源股份有限公司济二矿电厂,山东济宁273500) [摘要] 针对10kV配电线路的结构特点及存在的问题,介绍10kV配电线路的保护配置及其整定方案。 [关键词] 10kV 配电线路保护整定计算 1 10kV配电线路的特点 10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV变电所出线;有的线路上的配电变压器很小,最大不过100kVA,有的线路上却有几千kVA的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。 2 问题的提出 对于输电线路,由于其比较规范,一般无T接负荷,至多有一、二个集中负荷的T接点。因此,利用规范的保护整定计算方法,各种情况均可一一计算,一般均可满足要求。对于配电线路,由于以上所述的特点,整定计算时需做一些具体的特殊的考虑,以满足保护"四性"的要求。 3 整定计算方案 我国的10kV配电线路的保护,一般采用电流速断、过电流及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护(如:保护Ⅱ段、电压闭锁等)。下面的讨论,是针对一般保护配置而言的。 (1)电流速断保护: 由于10kV线路一般为保护的最末级,或最末级用户变电所保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。在以下两种计算结果中选较大值作为速断整定值。 ①按躲过线路上配电变压器二次侧最大短路电流整定。实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定。 Idzl=Kk×Id2max 式中:Idzl-速断一次值;

低压配电线路的接地故障保护的技术措施

低压配电线路的接地故障保护的技术措施 低压配电线路中的单相短路,回路中相线、中性线连接不良,这种情况容易发现,例如灯会不亮或者熄灭。而占短路80%的接地故障,相线与PE线、电气设备的外露导电部分或大地间的短路却难于觉察。例如PE线PEN线连接松动灯照样亮,如PEN线迸发火花,则容易酿成火灾。配电线路应设置接地故障保护,在发生故障时,保护元件必须能及时自动切断电源,防止人身电击伤亡、电气火灾和线路损坏。 TN系统发生接地故障时,用电设备金属外壳接触电位低,故障电流大,一般过电流保护电器可快速切断故障线路,TN系统的低压配电线路采用过电流保护兼作接地故障保护需满足:ZaXIa<220V的动作特性以及切断故障电流的时间上的要求。 式中Za--接地故障回路阻抗(Ω) Ia--保护电器在规定时间内自动切断故障回路的电流(A)Ia值应取低压断路器相应过电流脱扣器额定电流的1.3倍。 其切断故障电流的时间应符合:(1)配电干线和只供电给固定式用电设备的末级配电线路不应大于供电给手握式和移动式用电设备的末级配电线路不应大于0.4s。动作时间可从低压断路器的动作特性读取。 当过电流保护电器不能满足上式要求时,可采用带有单相接地保护的断路器或设零序电流保护措施。断路器的单相接地保护功能的实现原理有剩余电流型和零序电流型两种。剩余电流型是利用四个电流互感

器分别检测三相电流和中性线(N线)的电流。无论三相电流平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄露电流);Ia+Ib +Ic+当发生某一相接地故障时,故障电流会通过保护线PE及与地相关连的金属构件,即;Ia+Ib+Ic+此时电流为接地故障电流加正常泄露电流。接地电流达到脱扣器整定电流时,即可报警或驱动短路器动作,实现单相接地保护。零序电流型是在三相上各安装一个电流互感器,检测三相的电流矢量和,即零序电流+Ib+Ic +In=Io。当发生某一相接地故障时,此时电流为接地故障电流加正常泄露电流,与脱扣器整定值比较,即可区分出接地电流,实现单相接地保护。带有单相接地保护的断路器到底是剩余电流型,还是零序电流型,以产品样本为准。 单相接地保护的断路器主要是针对配电线路的干线、主干线和近变压器端的单相对地短路保护,在线路的末端,通常都装漏电电流保护电器(RCD),其动作时间为0.1s。采用RCD时,因为TN-C接地系统中保护线PE和中性线N合用一根线PEN,PEN在正常工作时流过三相不平衡电流,当单相接地时产生的接地故障电流Id也从PEN线上流过,RCD根本无法检测出是不平衡电流还是接地故障电流。所以TN-C系统应按TN-C-S或局部TT接地处理。 TT系统中性点接地与PE线接地分开,中性线N与PE线无连接,供电线路一般较长,相-地回路阻抗较大。发生接地故障时,故障电路内包含外露导电部分接地极和电源接地极的接地电阻(R+RA),阻抗大,

线路继电保护整定计算

单侧电源网络相间短路保护整定计算 前言 1、电力系统短路危害 1、当电力系统出现故障时,继电保护装置应能快速、有选择性的将故障元件从系统中切除,使故障元件免受损坏,保证系统其他部分继续运行。 2、当系统出现不正常工作状态时,继电保护能及时反应,一般发出信号,告诉值班人员予以处理,在无人值班的情况下,保护装置可作用于减负荷或跳闸。 2、电网最大最小运行方式 系统最大运行方式:在相同地点发生相同类型的短路时流过保护安装处最大电流的系统运行方式,系统阻抗最小Zs=Zmin。 系统最小运行方式:在相同地点发生相同类型的短路时流过保护安装处的电流最小的系统运型方式,系统阻抗最大Zs=Zmax。

一、 电流速断保护 2、电流速断保护的整定原则 式中: .1 I set I ——保护动作电流 I rel K ——可靠系数,取1.2 ..max k c I ——母线C 处的最大三相短路电流 继电器动作电流:..max .1I I k c setj rel jx L I I K K n 式中:.1I setj I ——二次保护继电器动作电流 L n ——电流互感器TA 变比 jx K ——接线系数,当继电器接于相上为1

(4)电流速断保护的灵敏系数,按被保护线路末端母线两相短路来校验: ..min 1 22k c lm set I K I = ≥ e.线路避雷器的正常放电时间约为半个周波,但可能延续1—1.5个周波,并可能经过很短的时间间隔多次动作,在这种情况下,对没有附加延时的速断保护有可能引起误动作。

二、限时电流速断保护 2 限时电流速断保护的整定 (1)启动电流的整定 保护2的限时电流速断保护范围不应超过保护1的瞬时电流速断保护范围。因此,在单侧电源供电情况下,它的启动电流就应该整定为: .2II set I ≥.1I set I 所以,限时电流速断保护(电流II 段保护)动作电流整定公式如下: .2II set I =II rel K .1 I set I 式中:.1I set I ——保护1(下级线路保护)瞬时电流速断动作电流 II rel K ——可靠系数,取1.1-1.15 .2 II set I ——限时电流速断保护(电流II 段保护)动作电流计算值

10kV配电线路保护的整定

10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV 变电所出线,有的线路由110kV变电所出线;有的线路上的配电变压器很小,最大不过100kV A,有的线路上却有几千kV A的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。 关键词:10kV 配电线路保护整定计算 110kV配电线路的特点 10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV变电所出线;有的线路上的配电变压器很小,最大不过100kV A,有的线路上却有几千kV A的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。 2问题的提出 对于输电线路,由于其比较规范,一般无T接负荷,至多有一、二个集中负荷的T接点。因此,利用规范的保护整定计算方法,各种情况均可一一计算,一般均可满足要求。对于配电线路,由于以上所述的特点,整定计算时需做一些具体的特殊的考虑,以满足保护"四性"的要求。 3整定计算方案 我国的10kV配电线路的保护,一般采用电流速断、过电流及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护(如:保护Ⅱ段、电压闭锁等)。下面的讨论,是针对一般保护配置而言的。 (1)电流速断保护: 由于10kV线路一般为保护的最末级,或最末级用户变电所保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。在以下两种计算结果中选较大值作为速断整定值。 ①按躲过线路上配电变压器二次侧最大短路电流整定。实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定。 Idzl=Kk×Id2max 式中Idzl-速断一次值 Kk-可靠系数,取1.5

低压配电与线路布置设计

低压配电与线路布置设计 住宅低压配电系统设计: 1.住宅建筑单相用电设备由三相电源供配电时,应考虑三相负荷平衡。 2.住宅建筑每个单元或楼层宜设一个带隔离功能的开关电器,且该开关电器可独立设置,也可设置在电能表箱里。 3.采用三相电源供电,套内每层或每间房的单相用电设备、电源插座宜采用同相电源供电。 4.每栋住宅建筑的照明、电力、消防及其他防灾用电负荷,应分别配电。 5.住宅建筑电源进线电缆宜地下敷设,进线处应设置电源进线箱,箱内应设置总保护开关电器。电源进线箱宜设在室内,当电源进线箱设在室外时,箱体防护等级不宜低于IP54。 6.六层及以下的住宅单元宜采用三相电摞供配电,当住宅单元数为3及3的整数倍时,住宅单元可采用单相电源供配电;七层及以上的住宅单元应采用三相电源供配电,当同层住户数小于9时,同层住户可采用单相电源供配电。 7.每套住宅应设置自恢复式过、欠电压保护电器。 8.线缆选择: A.高层住宅建筑中明敷的线缆应选用低烟、低毒的阻燃类线缆。 B.建筑高度为100m或35层及以上应用矿物绝缘电缆 C.建筑高度为50m~100m且19层~34层的一类高层住宅建筑,用于消防设施的供电干线应采用阻燃耐火线缆. D.10层~18层的二类高层住宅建筑,用于消防设施的供电干线应采用阻燃耐火类线缆。 E.19层及以上的一类高层住宅建筑,公共疏散通道的应急照明应采用低烟无卤阻燃的线缆。 F.10层~18层的二类高层住宅建筑,公共疏散通道的应急照明宜采用低烟无卤阻燃的线缆。 G.建筑面积大于60m2的住户,进户线不应小于10mm2,照明插座回路不应小于 2.5mm2。 中性导体和保护导体截面的选择 住宅配电线路布线系统设计: 1.住宅建筑套内配电线路布线可采用金属导管或塑料导管。暗敷的金属导管管壁厚度不应小于1.5mm,暗敷的塑料导管管壁厚度不应小于 2.0mm。 2.敷设在钢筋混凝土现浇楼板内的线缆保护导管最大外径不应大于楼板厚度的1/3,敷设在垫层的线缆保护导管最大外径不应大于垫层厚度的1/2。 3.线缆保护导管暗敷时,外护层厚度不应小于15mm;消防设备线缆保护导管暗敷时外护层厚度不应小于30mm。 4.当电源线缆导管与采暖热水管同层敷设时,电源线缆导管宜敷设在采暖热水管的下面,并不应与采暖热水管平行敷设。电源线缆与采暖热水管相交处不应有接头。

相关文档
最新文档