海拔高度如何影响爬电距离与绝缘间隙

海拔高度如何影响爬电距离与绝缘间隙
海拔高度如何影响爬电距离与绝缘间隙

How Does Altitude Affect AC-DC Power Supplies?

Most AC-DC power supplies that meet the safety standards per UL/EN 60950-1 for ITE (Information Technology Equipment) applications are designed to operate at typical office and factory altitudes, which can vary from slightly above sea level to as high as 2,000 meters (6,562 feet). And, many power supply manufacturers provide units that are designed and rated for operation at higher altitudes, up to 3,000 meters (9,843 feet) so their supplies can be used in major cities located at higher elevations (e.g., Denver, Santa Fe, Mexico City, Bogota). Many broadcasting/communications stations/towers are located at altitudes up to 3,000 meters or higher in order to maximize their range.

Altitude affects the design of power supplies since ‘air’ is used as an electric insulating medium (aka, dielectric) in the construction of power supplies, as well as most electronic devices. The density and dielectric strength (insulating property) of air is very good at sea level, but at higher altitudes, the thinner air loses some of its dielectric strength, which needs to be compensated for. Switchmode power supplies operate off of high voltages (inputs of 90 to 265Vac) and internally generate even higher voltages (400Vdc or more), which need to be insulated and contained to prevent high voltage arcing or breakdown within the supply, and to protect the end-equipment and operating personnel.

The drawing below shows a cross section of a typical printed circuit board (PCB), which is comprised of copper electric conduction paths that our chemically etched on an insulated (dielectric) fiber board material (e.g., FR4, woven fiberglass cloth with epoxy resin), plus electronic components that are not shown in this drawing. As can be seen, the fiber board and air, combined with the distances between the etched conductive traces are the primary insulation mediums for the circuit board.

Drawing Credits: Mammano B, ‘Safety Considerations in Power Supply Design,

Underwriters Laboratory / TI

The term ‘Clearance’ refers to shortage path between the two conductive parts (circuit traces, components, etc.), measured through air.

The term ‘Creepage’ refers to the shortage path between two conductive parts measured along the surface of the insulation (PCB, insulating

materials/barriers, etc.).

What does this have to do with altitude? Since ‘air’ gets thinner (reduced barometric pressure) at higher altitudes and becomes less of an insulator, the PCB and component layouts have to be designed with sufficient safety spacing distances to prevent high voltage arcs or breakdowns between conductors and/or electronic components.

For example, typical power supply design practice may allow 8 mm spacing distance between primary and secondary circuits and 4 mm spacing distance between primary and ground. These spacing distances will vary depending upon the voltage levels between conductors and components and the expected humidity, temperatures, pollution levels, and attitudes.

For those power products that must be approved per the Chinese CCC organization (required to export supplies into China), the new Chinese Safety Standard GB 4943.1-2011, which is similar to UL/EN 60950, requires strict specs for creepage and clearance distances. As of December 1, 2012, the primary-to-secondary clearances must increase by a factor of 1.48 to qualify the supply for operation up to 5,000 meters, since many regions in China are located at high altitudes. The alternative for CCC certified power supplies is that they must clearly marked with a warning label that states that the power supply must be used below 2,000 meters (see table below).

The base design altitude for ITE power supplies is 2,000 meters. However, as mentioned before, as the altitude increases, the air becomes a poorer insulator and the spacing distances have to be increased per the following table (assuming an 8 mm clearance at 2000m).

As can be seen from this table, if a power supply is to be operated at 5,000 meters, its conductor/components clearances must be increased by 48% compared to a supply designed for 2,000 meters.

The other major effect of high altitudes on power supplies is that the less dense air does not conduct heat as well. To compensate for higher altitudes, power supplies need to be derated, or employ larger heat sinks, or have increased forced air flow, or a combination of these to insure proper cooling. In addition, the power supply must be designed with the proper conductor and component clearances as discussed above.

In summary, whenever an application requires that a power supply must operate at altitudes above 2,000 meters (6,562 feet), always check with the manufacturer to determine if this is acceptable, or if an alternate model that is designed for higher altitudes is required.

安规之电气间隙和爬电距离汇总

安规之电气间隙和爬电距离汇总

ZLG 致远电子 本文从安规距离基本定义入手,解析了IEC60950、GB4943-2011标准中的爬电距离和电气间隙的查询方法并描述了工作电压测试规范,最后针对实测电压波形图进行了分析与计算。从理论解析到实例分析,一步到位让你轻松了解开关电源的安规间距。 在IEC60950、GB4943-2011标准中,规定了不同电压等级需要的最小安全距离,而安全距离又包括电气间距和爬电距离两种。对于开关电源主要需要保证最小安全距离的地方有以下两个方面: 1、一次侧电路对外壳(保护地)的安全距离。 2、一次侧电路对二次侧电路之间的安全距离。 电气间隙 电气间隙是两个导电体之间在空气中的最短距离,而最小电气绝缘间隙主要由表格2J 、2K 和2L 来确定。具体查表方法如下: 1、根据交流电网电压有效值和过电压类别确认交流电网电源瞬态电压(由附录Z 和表2J 确定); 表2J 交流电网电源瞬态电压

2、首先确定污染等级,再根据实测两点峰值工作电压B 和上述确认的交流电网电源瞬态电压值可确定最小电气间隙为C1(由表2K 确定); 表2K 一次电路绝缘以及一次电路与二次电路之间绝缘最小电气间隙(海拔2000m 以下) 3、确定污染等级后,再根据实测两点峰值工作电压B 和电网电源瞬态电压确认附加电气间隙 C2(由表2L 确定); 表2L 一次电路的附加电气间隙(适用于海拔2000m 以下) 4、如果B 大于交流电网峰值则最小电气间隙为C1+C2,如果B 小于或等于交流电网峰值则最小电气间隙就等于C1。 爬电距离

爬电距离是两个导电体沿绝缘材料表面的最短距离,而最小爬电距离只由表格2N 来确定;具体查表方法如下: 1、确定污染等级; 2、再根据实测工作电压有效值和绝缘材料的材料组别确定最小爬电距离(由表2N 确定)。 表2N 最小爬电距离

电气间隙和爬电距离(图文分析)经典!

电气间隙和爬电距离(图文分析)经典! IEC 60335-1:2001《家用和类似用途电器的安全通用要求》(第四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和类似用途电器的安全XX特殊要求》很多还没有制订出来,所以目前还没有普遍使用200版本的《通用要求》。 与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间隙方面有了很多变化。可以预见这些变化将会影响全世界未来10年家用电器及类似产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测试方面人员的足够重视。 欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家标准GB4706.1相信很快更新。据悉全国家用电器标准化技术委员会已经于2003年9月在烟台召开了GB4706.1-XXXX标准的起草工作会议,有希望在今年内完成征求意见稿。 下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况,并重点对变化较大的第29章作简单介绍。 背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。 例如:对于230V和小于130V的危险带电部件与易触及部件之间都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要求。虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。 变化介绍: 第3章定义:在新的标准中引入了一些新的概念,原来的一些定义稍作了改动。l 3.3.5功能绝缘functional insulation:为实现电器正确功能,两导电体之间的绝缘,没有安全的功能。其实这也不是“新”的概念,在开关标准、电子产品标准早就有这个概念了。大家不妨打开GB4943-1995(idt IEC 60950-1:1991)《信息技术设备(包括电气事务设备)的安全》标准,我们就会发现有类似的概念 1.2.9.1“工作绝缘:设备正常工作所需的绝缘,并不起防电击作用”。 最常见的功能绝缘的例子:PCB板上带电件之间的绝缘,如图1中所示,

电气间隙与爬电距离区别

电气间隙与爬电距离 由于煤矿井下空气潮湿、粉尘较多、环境温度较高,严重影响电气设备的绝缘性能 为了避免电气设备由于绝缘强度降低而产生短路电弧、火花放电等现象,对电气设备的爬电距离和电气间隙作出了规定。 电气间隙和爬电距离是既有区别又有联系的两个不同概念。电气间隙是指两个裸 露的导体之间的最短距离,即:电气设备中有电位差的金属导体之间通过空气的最短距离。电气间隙通常包括: (1)带电零件之间以及带电零件与接地零件之间的最短空气距离; (2)带电零件与易碰零件之间的最短空气距离。电气间隙应符合表8-1-4 的规定。 只有满足电气间隙的要求,裸露导体之间和它们对地之间才不会发生击穿放电,才 能保证电气设备的安全运行。 爬电距离是指两个导体之间沿其固体绝缘材料表面的最短距离。也就是在电气设 备中有电位差的相邻金属零件之间,沿绝缘表面的最短距离。爬电距离是由电气设备的 额定电压、绝缘材料的耐泄痕性能以及绝缘材料表面形状等因素决定的。额定电压越 高,爬电距离就越大,反之,就越小。绝缘材料表面施加污染液或污垢杂质之后,在两个电极之间的电场作用下,这些导电液体或污垢杂质将产生微小的火花放电,使绝缘材料 发生局部破坏,那么绝缘材料抵抗这种破坏的能力就称为耐泄痕性能。防爆电气设备是 在有爆炸危险的场所使用的,环境中含有各种污染液和污垢杂质,设备绝缘材料的耐泄 痕性能是十分重要的。绝缘材料的耐泄痕性能通常是用耐泄痕指数来表示。耐泄痕指 数是指固体绝缘材料能够承受50 滴或100 滴以上的电解液而没有形成漏电的最高电 压。绝缘材料根据相对泄痕指数分为a、b、c、d 个级,a 级最高,d 级最低。常用绝缘材料耐泄痕指数分级见表8-1-5 。由此可见,绝缘材料耐泄痕性能越好,爬电距离就越 小,反之越大。防爆电气设备的最小爬电距离见表8-1-4 。

浅谈爬电距离地规定与设计

All empires fall, you just have to know where to push. IEC 60335-1: 2001新标准的变化简介 广州日用电器检测所陈灿坤罗军波 IEC 60335-1:2001《家用和类似用途电器的安全通用要求》(第 四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和 类似用途电器的安全XX特殊要求》很多还没有制订出来,所以目前还 没有普遍使用2001版本的《通用要求》。 与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间 All empires fall, you just have to know where to push. 隙方面有了 很多变化。可以预见这些变化将会影响全世界未来10年家用电器及类似 产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测 试方面人员的足够重视。 欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家 标准GB4706.1相信很快更新。据悉全国家用电器标准化技术委员会已 经于2003年9月在烟台召开了GB4706.1-XXXX标准的起草工作会议, 有希望在今年内完成征求意见稿。 下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况, 并重点对变化较大的第29章作简单介绍。 背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三

版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。 例如:对于230V和小于130V的危险带电部件与易触及部件之间都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要求。虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。 变化介绍: 第3章定义:在新的标准中引入了一些新的概念,原来的一些定义稍作了改动。 3.3.5功能绝缘functional insulation:为实现电器正确功能, 两导电体之间的绝缘,没有安全的功能。其实这也不是“新”的概念,在开关标准、电子产品标准早就有这个概念了。大家不妨打开GB4943-1995(idt IEC 60950-1:1991)《信息技术设备(包括电

关于爬电距离的说明

1.GB11022: 用GB/T 5582给出的一般规则选择绝缘子,它们在污秽条件下应当具有良好的性能。 位于相和地间、相间、断路器或负荷开关一个极的两个端子间的户外瓷或玻璃绝缘子,其外部的最小标称爬电距离用以下关系式确定: lt=a×lf×Ur×kD 式中:lt——最小标称爬电距离,(mm)(见注1); a——按表7选择的与绝缘类型有关的应用系数; lf——最小标称爬电比距,按GB/T 5582的表1(mm/kV)(见注2); Ur——开关设备和控制设备的额定电压; kD——直径的校正系数(见JB/T 5895) 对于中低压简单理解就是:相地a=1,相间a=√3; 按照2类设计lf为:瓷质材料18,有机材料20。 kD=1。 2.DL404: 5.1.2高压开关柜中各组件及其支持绝缘件的外绝缘爬电比距(高压电器组件外绝缘的爬电距离与最高电压之比)的规定如下: a.凝露型的爬电比距:纯瓷绝缘不小于1.4cm/kV,环氧树脂绝缘不小于 1.6cm/kV。 b.不凝露型的爬电比距:纯瓷绝缘不小于1.2cm/kV,环氧树脂绝缘不小于 1.4cm/kV。 3.DL/T593:

表1户内开关设备外绝缘最小公称爬电比距要求 污秽等级污秽导电率 μs等值盐密 mg/cm最小公称爬电比距 mm/kV 范围参考值范围参考值瓷质材料有机材料 Ⅰ5~10 7 0.01~0.02 0.015 14 16 Ⅱ12~16 14 0.02~0.04 0.03 18 20 注:根据实验室试验的经验,表列最小公称爬电比距值允许减小(例如,对特殊型式的耐污绝缘子)。 ——Ⅰ级污秽地区的对地爬电比距不得小于16mm/kV; ——Ⅱ级污秽地区的对地爬电比距不得小于20mm/kV; ——Ⅲ级污秽地区的对地爬电比距不得小于25mm/kV; ——Ⅳ级污秽地区的对地爬电比距不得小于31mm/kV。 GB 7251.1—1997 2.9.1电气间隙clearance 不同电位的两导电部件间的空间直线距离。[IEC 947-1的2.5.4.6][IEV 441-17-31] 2.9.2隔离距离(机械式开关电器一个极 的)isolatingdistance(ofapoleofamechanical switchingdevice) 满足对隔离器的安全要求所规定的断开触头间的电气间隙。[IEC 947-1的2.5.50][IEV 441-17-35]

开关电源爬电距离与电气间隙

开关电源"爬电距离"与"电气间隙" 爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。 电气间隙:在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。一般来说,爬电距离要求的数值比电气间隙要求的数值要大,布线时须同时满足这两者的要求(即要考虑表面的距离,还要考虑空间的距离),开槽(槽宽应大于1mm)只能增加表面距离即爬电距离而不能增加电气间隙,所以当电气间隙不够时,开槽是不能解决这个问题的,开槽时要注意槽的位置、长短是否合适,以满足爬电距离的要求。 元件及PCB 的电气隔离距离:(电气隔离距离指电气间隙和爬电距离的综合考虑)对于Ⅰ类设备的开关电源(●一类设备:采用基本绝缘和保护接地来进行防电击保护的设备。(外壳接地的开关电源属于此类设备);●二类设备:采用不仅仅依靠基本绝缘的其它方式(如采用双重绝缘或加强绝缘)来进行防电击保护的设备;●三类设备:不会产生电击的危险的设备),在元件及PCB 板上的隔离距离如下:(下列数值未包括裕量)。 a、对于AC—DC 电源(以不含有PFC 电路及输入额定电压范围为100-240V~为例)

b、对于AC—DC 电源(以含有PFC 电路及输入额定电压范围为100-240V~为例) c、对于DC—DC 电源(以输入额定电压范围为36-76V 为例) 一、变压器内部的电气隔离距离: 变压器内部的电气隔离距离是指变压器两边的挡墙宽度的总和,如果变压器挡墙的宽度为3mm,那么变压器的电气隔离距离值为6mm(两边的挡墙宽度相同)。如果变压器没有挡墙,那么变压器的隔离距离就等于所用胶纸的厚度。另外,对于AC-DC 电源,变压器初、次间绕组应用三层胶纸隔离,DC-DC 电源,可只用二层胶纸隔离。下列数值未包括裕量:

1、爬电距离与电气间隙_图文解释详解

电气间隙和爬电距离的测量方法 电气间隙Clearance 在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。 电气间隙的大小和老化现象无关。电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。 爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离;

爬电距离 在绝缘材料表面会形成泄漏电流路径。若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。 因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。根据基准电压、污染等级及绝缘材料组别来选择爬电距离。基准电压值是从供电电网的额定电压值推导出来的。

随着科学技术的迅猛发展,人们的生活水平的不断提高,越来越多的电子产品进入我们的家庭,为保证使用者的人身安全,世界各国均有相关法规以约束电器产品对人身造成的各种伤害。因此,安全性设计在产品的整个设计过程中有着至关重要的作用,其中安全距离是在产品设计中最重要的部分之一。在电气间隙、爬电距离实际测量中往往有不同的结果差异、本篇结合自身实际工作,就电气间隙,爬电距离的安全标准要求做一下概括总结,谈谈以下 几点理解。 一.名词解释: 1、安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。 2、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。

电气间隙和爬电距离

电气间隙和爬电距离 电气间隙是在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。 电气间隙的大小和老化现象无关。电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。 爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。 在绝缘材料表面会形成泄漏电流路径。若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。 因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。根据基准电压、污染等级及绝缘材料组别来选择爬电距离。基准电压值是从供电电网的额定电压值推导出来的。

随着科学技术的迅猛发展,人们的生活水平的不断提高,越来越多的电子产品进入我们的家庭,为保证使用者的人身安全,世界各国均有相关法规以约束电器产品对人身造成的各种伤害。因此,安全性设计在产品的整个设计过程中有着至关重要的作用,其中安全距离是在产品设计中最重要的部分之一。在电气间隙、爬电距离实际测量中往往有不同的结果差异、本篇结合自身实际工作,就电气间隙,爬电距离的安全标准要求做一下概括总结,谈谈以下几点理解。 1 名词解释 1、安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。 2、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。 3、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。

电气间隙与爬电距离

电气间隙与爬电距离 一、电气间隙和爬电距离 1爬电距离: 沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。 在绝缘材料表面会形成泄漏电流路径。若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。根据基准电压、污染等级及绝缘材料组别来选择爬电距离。基准电压值是从供电电网的额定电压值推导出来的。 2电气间隙: 在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。 电气间隙的大小和老化现象无关。电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。 可见,爬电距离和电气间隙实际是两个相关参数,都是针对电气绝缘性而来。特别是在继电器、开关等工控产品的选用中,需要遵守相关标准的同时,还要按实际的使用环境要求(气压、污染等),设定合适的爬电距离及电气间隙,以保障人民生命财产安全和电气性能的稳

关于爬电距离的规定

爬电距离与爬电间隙 爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。 电气间隙和爬电距离 (爬电间隙一般被称作电气间隙,因电气间隙决定了爬电情况的发生与否,所以电气间隙也常被称作爬电间隙。) 此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离;电气间隙:在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。 可见,爬电距离和电气间隙实际是两个相关参数,都是针对电气绝缘性而来。特别是在继电器、开关等工控产品的选用中,需要遵守相关标准的同时,还要按实际的使用环境要求(气压、污染等),设定合适的爬电距离及电气间隙,以保障人民生命财产安全和电气性能的稳定。 ● 3.3.5功能绝缘functional insulation:为实现电器正确功能,两 导电体之间的绝缘,没有安全的功能。其实这也不是“新”的概念,在 开关标准、电子产品标准早就有这个概念了。大家不妨打开 GB4943-1995(idt IEC 60950-1:1991)《信息技术设备(包括电气 事务设备)的安全》标准,我们就会发现有类似的概念1.2.9.1“工作 绝缘:设备正常工作所需的绝缘,并不起防电击作用”。 最常见的功能绝缘的例子:PCB板上带电件之间的绝缘,如图1中 所示,

带电件1和带电件2之间的绝缘即为功能绝缘。而在IEC60335-1:1991版中,会把它当作基本绝缘来考核。 第13.3条:电气强度试验电压发生了变化。IEC60335-1:1991(第三版)标准的要求: 可以认为器具内部的部件工作电压都是小于250V,按额定电压小于250V的水平来考核的。但随着技术的发展,越来越多的白色家电采用新的技术,譬如家用空调变频技术,微波炉高压倍压电路等,器具使用的是220V的额定电源电压,但在器具内部可能出现高于电源电压的工作部件,有的部件工作电压高达数千伏。经过大量的实践,技术专家们觉得应该修改第三版标准不分工作电压考核的情况。请看标准中的表4: 表4-电气强度试验电压 我们可以看到,附加绝缘和加强绝缘的试验电压从原来的2750V和3750V分别下降到了1750V和3000V,但是增加了对工作电压大于250V 的部件/位置的试验。

浅谈爬电距离地规定与设计

push. IEC 60335-1: 2001 新标准的变化简介 广州日用电器检测所陈灿坤罗军波 IEC 60335-1 : 2001《家用和类似用途电器的安全通用要求》(第 四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和类似用途电器的安全XX特殊要求》很多还没有制订出来,所以目前还没有普遍使用2001版本的《通用要求》。 与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间 All empires fall, you just have to know where to push. 隙方面有了 很多变化。可以预见这些变化将会影响全世界未来10年家用电器及类似 产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测试方面人员的足够重视。 欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家标准GB4706.1相信很快更新。据悉全国家用电器标准化技术委员会已经于2003年9月在烟台召开了 GB4706.1-XXXX 标准的起草工作会议,有希望在今年内完成征求意见稿。 下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况, 并重点对变化较大的第29章作简单介绍。 背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。 例如:对于230V和小于130V的危险带电部件与易触及部件之间

都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要 求。虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。 变化介绍: 第3章定义:在新的标准中引入了一些新的概念,原来的一些定义稍作 了改动。 3.3.5功能绝缘functional insulation :为实现电器正确功能, 两导电体之间的绝缘,没有安全的功能。其实这也不是“新”的概念,在开关标准、电子产品标准早就有这个概念了。大家不妨打开GB4943-1995 ( idt IEC 60950- 1:1991 )《信息技术设备(包括电 气事务设备)的安全》标准,我们就会发现有类似的概念129.1 “工 作绝缘:设备正常工作所需的绝缘,并不起防电击作用”。 最常见的功能绝缘的例子:PCB板上带电件之间的绝缘,如图1中所示,

电气间隙和爬电距离

0、概论 1、产品资料的安规设计要求 2、安规元器件 3、安规标识 4、产品的安规设计要求 4.1、工作电压的测量 4.2、电气间隙和爬电距离 4.3、温升 4.4、抗电强度 4.5、输出过载及变压器过载 4.6、输出短路 4.7、风扇堵转及通风孔堵塞 4.8、元件故障试验 5、附录 5.1、附录A 电气间隙和爬电距离表 5.2、附录B 抗电强度试验电压表 5.3、附录C异常测试时变压器绕组和电感允许的温度限值

0、概论 应用安全标准的目的在于减少由于下列危险造成伤害或危害的可能性。 —电击; —与能量能关的危险; —着火; —与热有关的危险; —机械危险; —辐射; —化学危险。 设计者不仅要考虑设备的正常工作条件,还要考虑可能的故障条件以及随之引起的故障,可预见的误用以及诸如温度、海拔、污染、湿度、电网电源的过电压和通信线路的过电压等外界影响。 1、产品资料的安规设计要求 1.1产品规格书: 产品规格书应包括: 抗电强度的描述、输入输出线与端子的描述、冷却条件的说明(如为强迫风冷且又未自带风扇,则要详细说明风扇的规格和安装位置)、完整的标签等,还应规定额定输入电压(范围)、额定输入频率(范围)、额定输出电流(范围)、最大输入电流、工作环境温度;产品规格书应对产品的安装方式或条件、保护接地方式以及安全性警告予以说明,以使公司对于用户的不规范操作带来的危害可以免除责任。另外,产品规格书中的中英文应分开、独立。 关于产品规格书的制作和内容的具体要求如下。 1.1.1产品外形及主要规格: a.型号应为产品在市场销售的名称,而不能写成公司内部的型号,如D78的产品规格的型号应为PMA52F,而不能写成D78。 b.表示范围的符号应用“-”,而不能用“~”。这个要求也同样适用于整份规格书。 1.1.2使用环境: 散热方式的自然风冷或强制风冷的条件要写清楚。如果是强制风冷且未自带风扇,则应规定风扇的规格(型号、尺寸大小、电气额定值、风扇转速等)和安装位置以及其它说明,此信息可在“强制风冷环境”一节中详细描述。 另外,环境温度要注明清楚。 注:环境温度的最大温度会影响到安规的一些测试(如温升、异常测试等),所以在客户的要求内应尽量将环境温度的上限值取低一些。 1.1.3电气特性: a.如果产品的初级为危险电压的二次电路(例如DC-48V输入。如果难以判断是否为危险电压的二次电路,可询问安规工程师),且产品本身不能承受加强绝缘的抗电强度,则应在电压输入的备注栏增加说明:“本产品应由加强绝缘隔离的变压器或电池供电”。 注:安规上的危险电压指的是高于42.4VAC峰值或60VDC的电压。 b.额定输入电压(范围)、额定输入频率(范围)、额定输出电流(范围)、最大输入

安规之电气间隙和爬电距离汇总

ZLG 致远电子 本文从安规距离基本定义入手,解析了IEC60950、GB4943-2011标准中的爬电距离和电气间隙的查询方法并描述了工作电压测试规,最后针对实测电压波形图进行了分析与计算。从理论解析到实例分析,一步到位让你轻松了解开关电源的安规间距。 在IEC60950、GB4943-2011标准中,规定了不同电压等级需要的最小安全距离,而安全距离又包括电气间距和爬电距离两种。对于开关电源主要需要保证最小安全距离的地方有以下两个方面: 1、一次侧电路对外壳(保护地)的安全距离。 2、一次侧电路对二次侧电路之间的安全距离。 电气间隙 电气间隙是两个导电体之间在空气中的最短距离,而最小电气绝缘间隙主要由表格2J 、2K 和2L 来确定。具体查表方法如下: 1、根据交流电网电压有效值和过电压类别确认交流电网电源瞬态电压(由附录Z 和表2J 确定); 表2J 交流电网电源瞬态电压

2、首先确定污染等级,再根据实测两点峰值工作电压B 和上述确认的交流电网电源瞬态电压值可确定最小电气间隙为C1(由表2K 确定);

表2K 一次电路绝缘以及一次电路与二次电路之间绝缘最小电气间隙(海拔2000m 以下) 3、确定污染等级后,再根据实测两点峰值工作电压B 和电网电源瞬态电压确认附加电气间隙 C2(由表2L 确定); 表2L 一次电路的附加电气间隙(适用于海拔2000m 以下) 4、如果B 大于交流电网峰值则最小电气间隙为C1+C2,如果B 小于或等于交流电网峰值则最小电气间隙就等于C1。 爬电距离 爬电距离是两个导电体沿绝缘材料表面的最短距离,而最小爬电距离只由表格2N 来确定;具体查表方法如下: 1、确定污染等级;

【爬电距离和电气间隙】

【爬电距离和电气间隙】 爬电距离Creepage Distance沿绝缘表面测得的两个导电零部件之间。在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象,此带电区的半径即为爬电距离。 定义 爬距=表面距离/系统最高电压.根据污秽程度不同, 爬的意思,可以看做一个蚂蚁从一个带电体走到另一个带电体的必须经过最短的路程,就是爬电距离。电气间隙,是一个带翅膀的蚂蚁,飞的最短距离。 国标里有具体规定,不同形状的绝缘,爬电距离的计算方法是不一样的。 (所以根据定义,爬电距离【爬距】任何时候不可以小于电气间隙【飞距】.当然对于两个带电体,是无法设计出爬电距离小于电气间隙来的。) 在GB/T 电工术语低压电器标准中对爬电距离有这样的定义:爬电距离具有电位差的两导电部件之间沿绝缘材料表面的最短距离。 安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、【电气间隙】(小) 两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。 2、【爬电距离】(大) 两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。 电气间隙的决定: 根据测量的工作电压及绝缘等级,即可决定距离 一次侧线路之电气间隙尺寸要求,见表3及表4 二次侧线路之电气间隙尺寸要求见表5 但通常:一次侧交流部分:保险丝前L—N≥,PE(大地)≥,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。

一次侧交流对直流部分≥ 一次侧直流地对大地≥ (一次侧浮接地对大地) 一次侧部分对二次侧部分≥,跨接于一二次侧之间之元器件 二次侧部分之电隙间隙≥即可 二次侧地对大地≥即可 附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定。 爬电距离的决定: 根据工作电压及绝缘等级,查表6可决定其爬电距离 但 原理 通常: (1)、一次侧交流部分:保险丝前L—N≥,大地≥,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。 (2)、一次侧交流对直流部分≥ (3)、一次侧直流地对地≥如一次侧地对大地 (4)、一次侧对二次侧≥,如光耦、Y电容等元器零件脚间距≤要开槽。 (5)、二次侧部分之间≥即可 (6)、二次侧地对大地≥以上 (7)、变压器两级间≥以上 3、绝缘穿透距离

PCB Layout爬电距离 电气间隙的确定

PCBLayout爬电距离、电气间隙的确定 一般来说,爬电距离要求的数值比电气间隙要求的数值要大,布线时须同时满足这两者的要求(即要考虑表面的距离,还要考虑空间的距离),开槽(槽宽应大于1mm)只能增加表面距离即爬电距离而不能增加电气间隙,所以当电气间隙不够时,开槽是不能解决这个问题的,开槽时要注意槽的位置、长短是否合适,以满足爬电距离的要求。 对于Ⅰ类设备的开关电源(本公司的大部分开关电源均为Ⅰ类设备),在元件及PCB板上的隔离距离如下:(下列数值未包括裕量) a、 b、)

c、 变压器内部的电气隔离距离是指变压器两边的挡墙宽度的总和,如果变压器挡墙的宽度为3mm,那么变压器的电气隔离距离值为6mm(两边的挡墙宽度相同)。如果变压器没有挡墙,那么变压器的隔离距离就等于所用胶纸的厚度。另外,对于AC-DC电源,变压器初、次间绕组应用三层胶纸隔离,DC-DC 电源,可只用二层胶纸隔离。下列数值未包括裕量: 注:变压器的引脚如果没有套上绝缘套管,那么在引脚处的隔离距离可能也仅为胶纸加挡墙的厚度,所以变压器的引脚需要套上绝缘套管且套管要穿过挡墙。

空间距离(Creepagedistance):在两个导电组件之间或是导电组件与物体界面之间经由空气分离测得最短直线距离; 沿面距离(clearance):沿绝缘表面测得两个导电组件之间或是导电组件与物体界面之间的最短距离. 沿面距离(clearance)不满足标准要求距离时:PCB板上可采取两个导电组件之间开槽的方法,导电组件与外壳、可触及部分之间距离不够,则可将导电组件用绝缘材料包住。将导电组件用绝缘材料包住既解决了空间距离(Creepagedistance)也解决了沿面距离(clearance)问题,此方法一般用在电源板上变压器和周边组件之间距离不够时,将变压器包住。 另外可在不影响产品功能的情况下适当降低两导体之间的电压差 电气间隙的决定: 根据测量的工作电压及绝缘等级,即可决定距离 一次侧线路之电气间隙尺寸要求,见表3及表4 二次侧线路之电气间隙尺寸要求见表5 但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.NPE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。 一次侧交流对直流部分≥2.0mm 一次侧直流地对大地≥2.5mm(一次侧浮接地对大地) 一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件 二次侧部分之电隙间隙≥0.5mm即可 二次侧地对大地≥1.0mm即可

爬电距离与电气间隙

安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离 1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离. 2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离. 电气间隙的决定: 根据测量的工作电压及绝缘等级,即可决定距离 一次侧线路之电气间隙尺寸要求,见表3及表4 二次侧线路之电气间隙尺寸要求见表5 但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源. 一次侧交流对直流部分≥2.0mm 一次侧直流地对大地≥2.5mm(一次侧浮接地对大地) 一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件 二次侧部分之电隙间隙≥0.5mm即可 二次侧地对大地≥1.0mm即可 附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定. 爬电距离的决定: 根据工作电压及绝缘等级,查表6可决定其爬电距离 但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源. (2)、一次侧交流对直流部分≥2.0mm (3)、一次侧直流地对地≥4.0mm如一次侧地对大地 (4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽. (5)、二次侧部分之间≥0.5mm即可

(6)、二次侧地对大地≥2.0mm以上 (7)、变压器两级间≥8.0mm以上 3、绝缘穿透距离: 应根据工作电压和绝缘应用场合符合下列规定: ——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求; ——附加绝缘最小厚度应为0.4mm; ——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm. 如果所提供的绝缘是用在设备保护外壳内,而且在操作人员维护时不会受到磕碰或擦伤,并且属于如下任一种情况,则上述要求不适用于不论其厚度如何的薄层绝缘材料; ——对附加绝缘,至少使用两层材料,其中的每一层材料能通过对附加绝缘的抗电强度试验;或者: ——由三层材料构成的附加绝缘,其中任意两层材料的组合都能通过附加绝缘的抗电强度试验;或者: ——对加强绝缘,至少使用两层材料,其中的每一层材料能通过对加强绝缘的抗电强度试验;或者: ——由三层绝缘材料构成的加强绝缘,其中任意两层材料的组合都能通过加强绝缘的抗电强度试验. 4、有关于布线工艺注意点: 如电容等平贴元件,必须平贴,不用点胶 如两导体在施以10N力可使距离缩短,小于安规距离要求时,可点胶固定此零件,保证其电气间隙. 有的外壳设备内铺PVC胶片时,应注意保证安规距离(注意加工工艺) 零件点胶固定注意不可使PCB板上有胶丝等异物. 在加工零件时,应不引起绝缘破坏. 5、有关于防燃材料要求: 热缩套管 V—1或VTM—2以上;PVC套管 V—1或VTM—2以上

关于乌阿接触网绝缘子的说明

关于兰新铁路接触网绝缘子的説明 一、棒形悬式复合绝缘子 主要用于接触网电分段(绝缘锚段关节下锚支、接触网下锚、分段绝缘器处承力索),软横跨上下不固定绳卡绝缘(包括中间站台、上下行分段处)。 1、FQXSG—25/120—738UH(悬挂耐张式、双绝缘、爬 电距离1600mm、工作电压25kv、拉伸破坏负荷120K N、长度738mm、双耳—单耳连接)。 2、FQXG—25/120—738UH(悬挂耐张式、爬电距离1600mm、工作电压25kv、拉伸破坏负荷120K N、长度738mm、双耳—单耳连接)。 3、FQX—25/120—600HH(悬挂耐张式、爬电距离1200mm、工作电压25kv、拉伸破坏负荷120K N、长度600mm、单耳—单耳连接) 4、FQXSG—25/120—890QH(悬挂耐张式、双绝缘、爬电距离1600mm、工作电压25kv、拉伸破坏负荷120K N、长度890mm、帽窝—单耳连接)。 5、FQXSG—25/120—800QT(悬挂耐张式、双绝缘、爬电距离1600mm、工作电压25kv、拉伸破坏负荷120K N、长度800mm、帽窝—脚球连接)。 6、FQXSG—25/120—800QT(悬挂耐张式、双绝缘、爬电距离1600mm、工作电压25kv、拉伸破坏负荷120K N、

长度800mm、帽窝—脚球连接)。 7、FQX—25/120—890UH(悬挂耐张式、爬电距离1200mm、 工作电压25kv、拉伸破坏负荷120K N、长度890mm、双耳—单耳连接)。 8、FQX—25/120—800H H(悬挂耐张式、爬电距离1200mm、 工作电压25kv、机械强度120K N、长度890mm、(单耳—单耳连接)。 二、电气化铁路腕臂棒形瓷绝缘子 主要用于接触网绝缘和固定腕臂等。 1、QBZ2—25/16(双重绝缘、重污型、爬电距离1400mm、工作电压25kv、弯曲负荷16KN)。 2、QBZ2—25S/16(双重绝缘、重污型、水平棒形、爬电距离1400mm、工作电压25kv、弯曲负荷16KN)。 3、QBN2—25/16(耐污性单绝缘、爬电距离1400mm、工作电压25kv、弯曲负荷16KN)。 4、QBN2—25S/16(耐污性单绝缘、水平棒形、爬电距离1400mm、工作电压25kv、弯曲负荷16KN)。 5、QBZ2—25/12(双重绝缘、重污型、爬电距离1400mm、工作电压25kv、弯曲负荷12KN)。 6、QBZ2—25S/12(双重绝缘、重污型、水平棒形、爬电距离1400mm、工作电压25kv、弯曲负荷12KN)。 7、QBN2—25/12(耐污性单绝缘、重污型、爬电距离

电气间隙和爬电距离(图文分析)经典!知识讲解

电气间隙和爬电距离(图文分析)经典!

电气间隙和爬电距离(图文分析)经典! IEC 60335-1:2001《家用和类似用途电器的安全通用要求》(第四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和类似用途电器的安全 XX特殊要求》很多还没有制订出来,所以目前还没有普遍使用200版本的《通用要求》。 与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间隙方面有了很多变化。可以预见这些变化将会影响全世界未来10年家用电器及类似产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测试方面人员的足够重视。 欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家标准GB4706.1相信很快更新。据悉全国家用电器标准化技术委员会已经于2003年9月在烟台召开了GB4706.1-XXXX标准的起草工作会议,有希望在今年内完成征求意见稿。 下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况,并重点对变化较大的第29章作简单介绍。 背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。 例如:对于230V和小于130V的危险带电部件与易触及部件之间都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要

求。虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V 绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。 变化介绍: 第3章定义:在新的标准中引入了一些新的概念,原来的一些定义稍作了改动。 l 3.3.5功能绝缘functional insulation:为实现电器正确功能,两导电体之间的绝缘,没有安全的功能。其实这也不是“新”的概念,在开关标准、电子产品标准早就有这个概念了。大家不妨打开GB4943-1995(idt IEC 60950-1:1991)《信息技术设备(包括电气事务设备)的安全》标准,我们就会发现有类似的概念1.2.9.1“工作绝缘:设备正常工作所需的绝缘,并不起防电击作用”。 最常见的功能绝缘的例子:PCB板上带电件之间的绝缘,如图1中所示,

相关文档
最新文档