250座级翼身融合布局客机气动设计与优化

250座级翼身融合布局客机气动设计与优化
250座级翼身融合布局客机气动设计与优化

仓库布局优化方案设计.doc

仓库布局优化方案设计1 《仓库布局优化方案设计》 课程作业 学院: 交通运输与物流学院专业年级: 2010级物流管理课程: 物流中心规划与管理成绩: 目录 1.方案设计目的…………………………….第(3)页 2.方案设计内容及要求…………………….第(3)页 3.方案设计分析步骤……………………….第(3)页 4.参考文献………………………………….第(13)页 H公司仓库布局优化方案 一、目的 1.发现和挖掘仓库管理存在的不合理方面 2.分析不合理的布局设计 3.优化公司的仓库布局,从而使仓库利用率最大化 二、内容以及要求 1.分析H公司仓库货物及货位利用情况

2.对H公司仓库原有货位利用状况进行调整并提出优化方案 3.小组单独提出的仓库布局方面的问题以及解决方案 三、分析步骤 1.原理(运用EIQ分析法等基础理论对H公司仓库布局优化方案设计) (1).EIQ分析法是以顾客导向为主,且针对具有不稳定或波动条件的物流 配送中心作业系统的一种分析方法。 (2).EIQ分析法的目的是协助设计者掌控物流作业特性,探讨其运作方式, 规划作业系统、拣货方式和储位划分。 (3).EIQ分析法的要素: ①E(Entry)是指订单件数; ②I(Item)是指货物品项或种类; ③Q(Quantity)是指每一笔订单、每一类货物所订购的数量资料,是结合 订单与类别的桥梁。 (4).EIQ 分析法流程图

2.步骤 (1). 运用EIQ分析(包括订单量(EQ)分析; 品项数量(IQ)分析; 订单品项数(EN)分析; 品项受订次数(IK)分析), (2).各种参数分析 ①H公司订单量(EQ)分析 EQ分析见表1所示 ②H公司品项数量(IQ)分析IQ分析见表2所示

基于遗传算法的翼型气动优化设计

第18卷第3期2000年9月 空 气 动 力 学 学 报 ACTA AER ODYNAMICA SINICA V ol.18,N o.3Sep.,2000收稿日期:1999205226;修订日期:1999211217. 基于遗传算法的翼型气动优化设计 王晓鹏,高正红 (西北工业大学,西安710072) 摘要:采用遗传算法进行跨声速翼型的反设计与阻力和升阻比的优化设计。翼型的反 设计达到了设计要求,优化设计后的翼型其气动特性也有显著的改善,这表明了遗传算法应 用于翼型气动优化设计的可行性。在优化设计的过程中,翼型由解析函数线形叠加法表示, 目标函数和个体的适应值由二维欧拉方程的流场解来提供。 关键词:翼型;遗传算法;气动优化设计;欧拉方程 中图分类号:V21111 文献标识码:A 文章编号:025821825(2000)0320324206 0 引 言 遗传算法是一种基于达尔文自然选择和进化规则的优化搜索方法。该方法通过模拟自然界生物适者生存、优胜劣汰的遗传法则使解的性能逐步趋优。它无需传统优化方法对搜索空间的苛刻要求,因而具有极强的鲁棒性。此外,采用遗传算法进行优化设计时,仅用到个体的目标函数值,不要求函数具有连续性和可导性,因此特别适合处理复杂的工程优化问题[1,2]。 本文应用遗传算法对跨声速翼型进行优化设计。首先进行翼型的反设计,使优化设计的翼型具有预先给定的压力分布,以验证优化设计方法和程序的正确性和有效性;然后优化翼型形状,使其在给定的约束条件下具有最小的阻力或最大的升阻比。 1 遗传算法 基于遗传算法的气动优化设计是由模拟生物的进化过程演变而来的一种飞行器外形设计方法。它是通过遗传算法中复制、杂交和变异算子的操作来实现的。复制是进化个体经过赌盘选择,使父代的优良个体以较大的概率在子代中得到继承的遗传过程。杂交是指父代中的个体随机的交换染色体中的基因而在子代中产生新的个体。变异是个体染色体中的基因以变异概率发生随机性改变的过程。可见,杂交和变异使后代中产生新个体,复制使父代的基因在子代中得以继承,从而使生物物种在继承的基础上不断进化。 采用简单遗传算法[3]进行优化设计时,需要确定设计变量及其变化范围,在此基础上对所有父代个体进行二进制编码,编码后的个体经过复制、杂交和变异算子的作用产生进化的子

飞机的气动布局和机翼几何参数

与机翼的几何参数 往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 白乘飞机,不知如何写佳作。是否同意写成如下: 帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 飞翔,必须做到: 的气动外形 的结构 的动力 定的速度 的操纵机构 系统 同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L V¥(升力与重力平衡) D//V¥(推力与阻力平衡) (俯仰力矩保持守恒)

必须具备的条件: 飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 的气动外形、受力大小和飞行姿态。 保持和改变飞行状态的能力。 布局 型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。 机的气动布局? 飞机主要部件的尺寸、形状、数量、及其相互位置。 件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 连接的相互位置分为:

有无上反角分为: 分为: 的相对纵向位置分为: 花八门、多种多样,有平直的,有三角的,有后掠的,也有前掠的等等。然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使良好的气动外形,是指升力大、阻力小、稳定操纵性好。

透平叶片的气动优化设计系统

第33卷 第1期2004年3月 热力透平 THER M A L T UR BI NE Vol.33No.1 Mar.2004透平叶片的气动优化设计系统 袁 新1,林智荣1,赖宇阳2,陈志鹏1 (1.清华大学热能工程系,北京100084;2.赛特达科技有限公司,北京100080) 摘 要: 发展了一个叶轮机械叶片全三维粘性杂交问题的气动优化设计系统。该系统包括分析技术与组合优化技术的耦合:前者基于高精度、鲁棒型的数值分析方法,已成功地用于蒸汽透平叶片的流动分析,并经详细考核已将其纳入到了实际的叶片气动设计体系;后者基于优秀的iSIGHT商用优化平台,通过对多种优化方法的集成从而发展了组合的叶片全三维气动优化策略。数值结果与试验数据的比较表明了这一气动优化设计系统真正纳入到工业设计体系是完全可能的。 关键词: 蒸汽透平;CFD;气动优化设计 中图分类号:T K263.3 文献标识码:A 文章编号:1672-5549(2004)01-0008-06 Aerodynamic Optimization System for Turbine Blade Design Y UA N Xi n1,L IN Zhi2rong1,L A I Y u2yang2,CHEN Zhi2peng1 (1.Department of Thermal Engineering,Tsinghua University,Beijing100084,China; 2.Sightna Corporation,Beijing100080,China) Abstract: An aerodynamic optimization system for the hybrid three2dimensional blade design,coupled with com2 putational fluid dynamic analysis and integrated optimization algorithms,was developed in Tsinghua University.The higher2order accurate robust CFD method has been utilized for develo pment of steam turbine blade flow analysis,its dependability has been validated by comparing the numerical results with model turbine test data.The h ybrid three2 dimensional optimization method based on iSIGHT commercial software has been develo ped for turbine blade design. The overall technical integration is starting to be used for further design optimizations and efficiency enhancement of steam turbines. K ey w ords: steam turbine;CFD;aerodynamic optimization design 1 三维粘性杂交问题的气动优化设计 蒸汽轮机是现代发电行业的核心动力机械之一。蒸汽透平的效率越高,其气动损失水平就越低,对环境的污染也就越小。为了提高透平叶片的设计水平以便能最大限度地提高其热效率,我们必须深入全面准确地了解透平内部的全工况流动状态,尽可能采用高精度的计算流体力学(CFD)分析手段来发展蒸汽透平叶片的气动优化设计方法。 近年来,清华大学与国内外蒸汽轮机制造厂家合作,在发展蒸汽透平通流部分设计方面开展了一些共同的研究,尤其在蒸汽透平叶片的流动分析与叶片气动优化设计技术方面开展了深入的研究工作。这主要源于两方面的原因:其一是我们在高精度的数值分析技术方面提出了独具特色的方法[1],不仅用于流动损失机理的研究,还将其作为一个强有力的分析工具纳入到了叶片气动优化设计体系;其二是我们将近年来发展起来的各种先进的优化技术与我们的分析技术耦合起来[2],由此生成了叶片三维粘性杂交问题气动优化平台。 图1显示了叶片全三维粘性杂交问题气动优化平台的要素框图。对于二维叶型成型,采用了非均匀有理B样条(Non2Uniform Rational B2 Splines)技术(简称NU RBS技术)进行叶片的参 收稿日期:2003-09-20 基金项目:国家重点基础研究发展规划(G1999022306)、国家自然科学基金(50076019)资助项目 作者简介:袁新(1956-),男,工学博士,清华大学教授,博士生导师,主要从事叶轮机械气动热力学、计算流体力学与现代优化设计、燃气轮机与蒸汽轮机技术等研究;目前主持有国家自然科学基金、国家973、国家863、航空领域、国际合作等项目及课题。

先进气动布局设计技术

中文名称:先进气动布局技术 英文名称:Advanced aerodynamic configuration technology 相关技术:总体设计;机翼设计;综合设计 分类:飞机总体设计;气动布局;空气动力学; 定义与概念:为实现先进的气动性能和战术技术指标要求,对飞机气动设计中主要参数进行的综合性选择和规范。 气动布局的研究对象是主要气动参数(如升力、阻力、力矩系数和其它气动导数)以及主要气动参数与飞机外形参数的关系。研究的内容包括:飞机各主要部件的外形和相对配置,各种外形和配置下飞机的气动特性;此外,由于很多气动技术对飞机部件外形和配置的选择有很大影响,所以较重大的气动技术是气动布局研究的重要内容和基础。 气动布局的研究范围很广,大到飞机总体布局的类型和参数,小到机翼剖面外形、前后缘襟翼这类气动技术,都对飞机气动布局的选择和确定以及最终的飞机性能有根大影响。国外概况:冷战时期,前苏联的先进气动布局技术与美国并驾齐驱,如Su-27依靠优良的气动布局设计,使其气动性能超过了美国的第三代战斗机。但冷战后,俄罗斯由于经济上的原因,新技术的发展十分缓慢,第四代战斗机迟迟出不来,明显已落后于美国。而美国气动力技术的发展却未见减缓,仍然保持着冷战时的高速发展态势,不但第四代战斗机F-22和JSF 都已研制出来,而且已开始着手发展下一代战斗机的气动力和先进气动布局技术。因此,目前美国在气动布局技术方面处于领先地位。西欧则稍稍落后于美俄,保持着较高水平,又以其体现多用途的战斗机气动布局而独具特色,如EF-2000和法国的"阵风"。 美国空军认为,虽然近年来在提高战斗机机动能力的先进气动布局方面作了一些工作,隐身气动设计和隐身能力也得到很大提高,但他们确实忽视了先进气动布局的研究和发展。在轰炸机方面,B-2的飞翼布局是40年代和50年代提出的概念的现代翻版。随着现代计算流体力学的进展和流动控制技术的提高,先进气动布局研究有可能获得新生。今后先进气动布局研究主要沿着如下两个方向: 第一,对过去提出的方案进行系统化研究。对亚音速飞机,这些方案包括带支撑机翼、翼身融合体、环翼、多机身飞机等。对超音速飞机,通过有利干扰降低阻力的布局已经提出但尚未进行系统的研究。这些方案过去都曾提出但没能研究下去,原因包括:设计工具和数据库不合适,稳定性和控制问题(现在可以成功地与现代结构和控制技术一起考虑),缺乏总体发展和实际验证。 第二,全新的布局概念研究,尤其是同时利用流动控制技术和现代结构和控制概念的布局研究。这些概念可能包括:带嵌入式层流控制吸气系统的复合材料机翼蒙皮;用于控制旋涡和边界层的机敏蒙皮;将层流控制、推进和结构设计综合在一起的翼型;其它等等。由于计算流体力学提供了探索和预测有利非线性干扰效应的能力,并且有了旋涡、粘流效应和分离的控制技术,全新气动布局概念的潜力是可以发挥的。 未来先进气动布局研究必须沿着多学科的路线进行。新布局的早期方案研究必须考虑推进一体化以及结构和控制方案。设计一体化技术的发展将使新方案的快速分析成为可能。 涉及先进气动布局的研究计划将为飞机性能的提高开创新的可能性,也许能开发出新的应用。不仅如此,这样的研究计划对诸如流动控制、设计方法和多学科综合这样的基础领域的研究来说,还将起到指南的作用,从而使先进气动布局的所有支撑技术能够同时成熟。从这一点来看,先进气动布局将重新发挥其作为气动技术推动力的作用。 美国90年代中期进行了"新世界展望"(New World Vistas)和"2025年的空军"(AF 2025)等对未来军事技术的预测研究,其研究结果最近已经过综合,并开始在美国空军的"航空器科学技术"(Air Vehicles S&T)的范围内进行技术开发。1997年,美国空军启动"未来飞机

FH公司线缆仓库布局优化方案设计

FH公司线缆仓库布局优化方案设计 1 目的 1.对FH公司线缆仓库的使用进行优化布局,提出合理的可行性方案; 2.发现和挖掘FH公司线缆仓库存在的有关问题,并进行延伸研究。 2 原理 运用EIQ分析法等基础理论对FH公司仓库布局优化方案设计。 3 仓库的EIQ分析 3.1 订单量(EQ)分析。 将EQ按照Q量的大小进行排序,如图3-1所示。 表3-1 EQ分析表 EQ分析表列1 列2 列3 列4 列5 列6 列7 E 70122a 70123a 70124a 70127a 70125a 70128a 70127p Q 36186.2 30313.2 30053.2 28597 26054 25762.2 23108 EQ分析表列8 列9 列10 列11 列12 列13 列14 E 70124p 70122p 70125p 70123p 70126a 70128p 70126p Q 21988.2 19234.8 17925 15741.6 13197 9920 7152 根据表3-1,我们可以进行ABC分类,A类为E70122a、E70123a、E70124a、E70127a 和E70125a。对于A类订单,要进行重点管理。为了更直观的了解,可以将其上表绘制成图的形式,如图3-1、3-2所示。

依据EQ分布图的类型分析,其图标为一般物流配送中心常见模式,由于数量分布具有一定的两极化趋势,可利用ABC做进一步分类处理。规划时可将订单作ABC分类,对于次数少数量大的订单可以作重点管理。 3.2 品项数量(IQ)分析。 将IQ分析按照Q量的大小进行排序,如表3-2所示。 表3-2 IQ分析表 IQ分析表列1 列2 列3 列4 列5 列6 列7 列8 I 005 004 006 009 007 003 001 002 Q 154800 40912 28898 23049 17285.6 16000 11050 6600 IQ分析表列9 列10 列11 列12 列13 列14 列15 I 012 013 015 011 010 014 008 Q 4350 897.8 701 330 280 50 29 根据表3-2,同样要进行ABC分类,A类为I005。这种货物的订货数量较大,应重点管理,保证其货源充足,定期查看库存,对于此货物不应出现缺货情况,另外,应尽量将此货物安放在出入口,以便加速货物流转,节省资源。B类为IOO4、I006和I009。对于此类货物,重视程度应该仅次于A类。其余货物划分为C类。对于此类货物,可允许偶尔缺货,重视程度次于A类和B类货物。 为了更直观的了解,可以将表3-2绘制成如下图3-3所示的形式。从下图3-3中可以看出,IQ分布图类型为一般物流配送中心常见模式,由于分布趋两极化,可利用ABC作进一步分类。规划时可将订单作ABC分类,将次数少数量大的订单作重点管理;将产品分类以分区式存储,按各类产品存储单位、存货设定水平的不同,可分级使用拣货设备。

仓库布局优化方案设计

仓库布局优化方案设计 1 《仓库布局优化方案设计》 课程作业 学院: 交通运输与物流学院专业年级: 2010 级物流管理课程: 物流中心规划与管理成绩: 目录 1?方案设计目的 .................... ?第(3)页 2?方案设计内容及要求 .............. ?第(3)页 3?方案设计分析步骤 ................ ?第(3)页 4?参考文献 ........................ ?第(13)页 H 公司仓库布局优化方案 一、目的 1.发现和挖掘仓库管理存在的不合理方面 2.分析不合理的布局设计 3.优化公司的仓库布局,从而使仓库利用率最大化 二、内容以及要求

1.分析H 公司仓库货物及货位利用情况 2.对H 公司仓库原有货位利用状况进行调整并提出优化方案 3.小组单独提出的仓库布局方面的问题以及解决方案 三、分析步骤 1.原理(运用EIQ 分析法等基础理论对H 公司仓库布局优化方案设计) (1).EIQ 分析法是以顾客导向为主,且针对具有不稳定或波动条件的物流 配送中心作业系统的一种分析方法。 (2).EIQ 分析法的目的是协助设计者掌控物流作业特性,探讨其运作方式, 规划作业系统、拣货方式和储位划分。 (3).EIQ 分析法的要素: ①E(E ntry)是指订单件数; ②l(ltem)是指货物品项或种类; ③Q(Qua ntity)是指每一笔订单、每一类货物所订购的数量资料,是结合 订单与类别的桥梁。 (4).ElQ 分析法流程图

2.步骤 (1).运用EIQ分析(包括订单量(EQ)分析;品项数量(IQ)分析; 订单品项数(EN)分析;品项受订次数(IK)分析), (2).各种参数分析 ①H公司订单量(EQ)分析 EQ 分析见表 1 所示 ②H公司品项数量(IQ)分析IQ 分析见表 2 所示

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行就是从模仿鸟类飞行开始的。但就是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许就是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力与升力面分开考虑,而发明了固定翼飞机。 飞机就是二十世纪人类史最伟大的科学成就。就是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会与国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,她立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。就是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行就是依靠与空气的相对运动,而产生作用在飞机上的力与力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V¥ (升力与重力平衡) F=D D//V¥ (推力与阻力平衡) M=0 (俯仰力矩保持守恒)

飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行就是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也就是取源于空气。 (2)必须存在一定的飞行速度(飞机与空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小与飞行姿态。 (4)必须存在保持与改变飞行状态的能力。 1、飞机的气动布局 不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局就是不同的。 何为飞机的气动布局? 广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。 飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 按机翼与机身连接的相互位置分为: 按机翼弦平面有无上反角分为:

仓储管理优化方案设计.doc

仓储管理优化方案设计4 摘要 仓库作为物流的核心功能之一,在整个物流系统中具有非常重要的作用,是社会物质生产的必要条件。良好的仓库布局环境能够对货物进入下一个环节前的质量起保证作用,能够为货物进入市场作好准备。 本文主要介绍了兰州苏宁电器仓储管理现状,包括仓库布局、出入库、在库保管、盘点和退货几个方面,在现状中发现仓库功能分区不明确、没有入库作业考核指标、盘点制度不完善和货物验收不仔细的问题,针对这些问题进行了优化,让兰州苏宁电器的仓库布局更合理,从而使仓库内的各项工作实现省时、省力、省成本的目的,给苏宁带来更多的经济利益。 关键词:仓库;优化方案;管理 Abstract As one of the core functions of logistics warehouse, has a very important role in the whole logistics system, is the necessary condition of social material production. Good warehouse layout environment to the quality of the goods before entering the next link guarantee role, can to prepare for the goods into the market. This paper mainly introduces the pre sent situation of suning appliance in lanzhou warehouse management, including loading and unloading, in the custody, warehouse layout, inventory and return from several aspects, found in the present situation of the warehouse is not clear, no functional pa rtition, inventory, warehousing homework evaluation indexes system is imperfect and

翼型多目标气动优化设计方法

翼型多目标气动优化设计方法 王一伟钟星立杜特专 (北京大学力学与工程科学系,北京 100871) 摘要本文将数值优化软件modeFRONTIER同计算流体力学(CFD)软 件相结合,对NACA0012翼型的气动性能进行优化。计算采用N-S方程作 为主控方程以计算翼型气动性能,分别采用多目标遗传算法(MOGA)和多 目标模拟退火算法(MOSA)作为翼型的气动性能优化算法。计算结果表明, 优化后的翼型相对于优化前的翼型的气动性能有很大提高(升阻比增幅可达182%)。 关键字气动优化设计多目标NS方程遗传算法模拟退火算法 Abstract: The combination of the optimization software, modeFRONTIER, and the commercial CFD software is used to optimize the aerodynamic functions of the airfoil, NACA0012.The NS equations are adopted for calculating the airfoil aerodynamic properties (Cl, Cd and etc). Two kinds of optimization algorithm, the Multi-Object Genetic Algorithm(MOGA) and the Multi-Object Simulated Annealing(MOSA), are used in the optimization process respectively. The optimized airfoils show remarkable improvement of its aerodynamic functions (The ratio of lift to drag increases up to 282%) relative to its original one. Key words Aerodynamic Optimization Design, NS Equation, Genetic Algorithm, Simulated Annealing 一、研究背景 翼型的气动力设计是现代飞机设计的核心技术。对于某种原始翼型,使用者往往要求改善其气动力参数(升阻力系数,升阻比等)以提高飞机性能。从已有的大多数算例来看,设计中有两个比较关键的因素[8]: 一,优化算法的选择对最终优化结果具有决定性影响。数值优化方法(Numerical Optimization Method)是与反设计法[9]、余量修正法以及基于现代控制理论方法的气动设计法等方法相并列的一种优化算法。该方法大致可以分为两类[2,6]。第一类是采用一种先后顺序搜索的方式的确定性算法,优点是在少参量时优化搜索速度快,可获得高精度的解,缺点是容易陷入局部最优,计算次数随参量增多而迅速增加。另一类是基于全局搜索的随机性算法。该方法不受搜索空间的限制,不要求诸如连续性、单峰性等假设,比较容易达到全局最优解,但是搜索所耗费的时间相对较长[7]。 二,数值计算的精确性是能够得到准确优化结果的前提条件。数值模拟在工业技术、国防军事以及科学研究中,已经成为一种重要手段。相对于传统的实验方法,数值计算具有很多优点,如节省费用,分析速度快,能给出详细完整的资料,可以不受物理条件限制来模拟真实条件等。目前计算流体力学(CFD)在空气动力学方面起到了越来越重要的作用。CFD可以准确的计算出不同攻角和马赫

飞机气动布局简介.

飞机气动布局简介 想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。 大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。 各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。 常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。 常规气动布局机型——我国的ARJ21祥凤支线客机

仓库布局优化方案设计任务书-林科大

仓库布局优化方案设计任务书 中南林业科技大学交通运输与物流学院 2014年3月

仓库布局优化方案设计任务书 一、设计任务与要求 (一)目的 能够对一个具体的企业的仓库使用进行优化布局,并发现和挖掘有关问题进行延伸研究。 (二)内容及要求 1.分析企业仓库货物及货位利用情况; 2.对企业仓库原有货位利用状况进行调整并提出优化方案。 3.自选问题研究,即对设计中遇到的关键问题或自己特别有感悟的问题单独在报告后面作为一个问题提出并进行理论深化探索。 (三)原理及步骤 1.原理 运用EIQ分析法等基础理论对H公司仓库布局优化方案设计。 2.步骤 (1)运用EIQ分析:包括订单量(EQ)分析; 品项数量(IQ)分析; 订单品项数(EN)分析; 品项受订次数(IK)分析 (2)仓库区现有布局数据分析:包括各类货物在仓库中占用面积; 各类货物出货次数降序排列; 各类货物出货量降序排列; (3)存在问题分析:包括仓库规划问题; 仓库布局问题; 货位利用问题等。 (4)根据上述分析提出多个(不少于3个)仓库布局可行优化方案及其特点。 (5)筛选最优方案。 (6)提出或抽象自选问题并研究。 (四)注意事项 可以是2人一组,注意分工各自提出不同方案,通过充分讨论形成共识确定最优方案。也可以是1人单独完成。 (五)结果分析及报告要求: 提出分析结果和报告,要求图表清晰,叙述有条有理。 (六)成绩评定 根据报告确定成绩。同等报告质量条件下,单独1人完成的比2人共同完成的成绩要高。 二、设计数据资料 H公司是国内制造通讯设备的上市企业,2001年8月,该公司8800万A股股票在上海证券交易所上市。H公司拥有亚洲一流的生产基地和先进的生产工艺,引进了国际先进水平的各种技术装备和生产线,年生产产品总值达50亿人民币。 发展线缆产业是H公司的一个重要战略,其规模近年不断扩大,已经跻身于行业的前三甲。但其物料仓库从建厂到现在,非但没有随产能的增加而扩大,反而由于扩产占用了部分原有仓库的位置。仓储布局经过几年的变化后显得凌乱、无序,仓库操作效率得不到有效提

仓库布局优化与设计

《仓库布局优化方案设计》 课程作业 2014年3月24日

目录 1.………………………………………课程设计目的 2.………………………………………课程设计步骤 3.………………………………………EIQ原理利用与具体分析 4.………………………………………仓库现有数据分析与问题 5.………………………………………仓库改进具体方案 6.………………………………………提出问题与具体研究 7. ………………………………………参考文献

一.课程设计目的 (1)能够对一个具体的企业的仓库使用进行优化布局 (2)发现和挖掘有关问题进行延伸研究。 二.课程科技设计步骤 (1)分析企业仓库货物及货位利用情况; (2)对企业仓库原有货位利用状况进行调整并提出优化方案。(3)对设计中遇到的关键问题或自己特别有感悟的问题提出并进行理论深化探索。 三.EIQ原理利用与具体分析 1.订单量(EQ)分析。 将EQ按Q量的大小进行排序如下表 根据ABC分类法对各订单进行分类,得出:70122a,70123a,70124a 的订单比为21.4%,数量比为31.6%,确定为A类订单; 70127a,70125a,70128a,70127p,70124p订单比为35.7%,数量比为41.1%,确定为B类订单; 22p,25p,23p,26a,28p,26p的订单比为

42.9%,数量比27.3%,确定为C类订单。 将上表绘制成图的形式如下图 根据EQ分布图的类型分析,其图表为一般物流配送中心常见模式,由于数量分布趋两级分化,可利用ABC做进一步的分析。仓库规划时,应保证A订单优先处理,保证A订单的订货信息快速准确地传递,该仓库可将订单分类管理,以实现合理迅速而迅速的订单分割。 2品项数量(IQ)分析 将IQ分析按Q数量的大小进行排序如下表 根据上表,同样进行ABC分类。其中品相005、004、006品项比重为

飞机的常见气动布局

飞机的常见气动布局 亲爱的同学们 大家好: 今天,我想和大家讲一讲,飞机的常见气动布局。大家知道的都有哪些呢? 目前我们所知的可行的飞机的空气动力布局方式有:常规、鸭式、三翼面、变后掠、无尾、飞翼、前掠翼。这些布局方式各有特色各有长短,我将为大家逐个讲解。 首先是常规,常规布局也就是主翼在前,水平尾翼在后,有一个或两个垂尾的气动布局方式。使用这种气动布局设计的具有代表性的战斗机有,美国——洛克希德马丁公司:F22猛禽。俄罗斯——苏霍伊设计局:苏27侧卫。但其实,我们常见的客货机几乎全是这种设计的。常规布局的优点是技术成熟,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡。只是由于均衡所以也没有特别出色的地方。 然后是鸭式。因为当初这种气动布局的飞机飞起来像鸭子,故此得名。说到鸭式布局,我们就不得不说世界上第一架飞机——莱特兄弟的飞行者一号。它所使用的布局其实就是鸭式布局。鸭式布局也是主翼在后面,前面加个小机翼叫做鸭翼。简单地来看,鸭式布局就是将常规布局中的水平位移移到了主翼前方,但鸭翼与平尾并不是一个概念。虽然鸭

翼也承担着控制俯仰的责任,但除此之外,鸭翼还会产生涡流。这些涡流吹过主翼会带来强大的增升效果,也就是说,鸭翼能提供额外的升力。如此,鸭式布局的飞机的短距起降性能更强,因为它们在低速度状况下也能获得较高的升力。鸭式布局的飞机在高速飞行中有着更高的稳定性,机动性也要比常规布局飞机更加出色。有时鸭式布局飞机还会在机身的后下方增加两片叫做腹鳍的翼面,以增加大迎角情态下的飞行稳定性,这是因为在大迎角情态下,常规布局的飞机的垂尾还会接触到由主翼和平尾的间隙间吹过的气流,而鸭式布局的飞机的主翼往往会阻断流往垂尾的气流,如此垂尾便不能很好地控制飞机的水平方向稳定,而在机身下方增加的腹鳍则能解决这个问题。这也是鸭式布局飞机的一个不同之处。鸭式布局设计的代表战机有:中国成飞歼20,欧洲双风:阵风、台风。而鸭式布局正是我国擅长,欧洲钟情的飞机气动布局方式。这里补充一个鸭翼与平尾的不同之处:鸭翼与主翼的耦合一般是不允许二者处于同一平面的:鸭翼的位置要高于主翼。如此鸭翼才会体现它的特性。而常规布局的飞机的平尾和主翼是可以,或者说一般都是处在同一平面的。可这样一来,我们知道,使用鸭式布局的我国歼20属于第四代隐身战机。而鸭翼的这种耦合方式会对飞机的外形隐身带来很大的负面影响。所以我们的歼20身上鸭翼与主翼的耦合方式变为了鸭翼上反和主翼下反。这样做确实压抑了鸭

(完整版)仓库规划与布局

仓库规划与布局 仓库规划与设计 一、仓库规划原则 仓库规划方案应能做到以尽可能低的成本,实现货物在仓库内快速、准确地流动。这个目标的实现,要通过物流技术、信息技术、成本控制和仓库的组织结构的一体化策略才能达到。仓储系统的物流规划原则不是一成不变的,要视具体情况而定。在特定场合下,有些原则是互相影响的,甚至互相矛盾。为了做出最好的设计,有必要对这些原则进行选择和修改。 1、系统简化原则 要根据物流标准化做好包装和物流容器的标准化,把杂货、粮食、饮料、食盐、食糖、饲料等散装货物、外形不规则货物的组成标准的储运集装单元,实现集装单元与运输车辆的载重量、有效空间尺寸的配合、集装单位与装卸设备的配合、集装单位与仓储设施的配合,这样做会有利于仓储系统中的各个环节的协调配合,在异地中转等作业时,不用换装,提高通用性,减少搬运作业时间、减轻物品的损失、损坏,从而节约费用,同时也简化了装卸搬运子系统,降低系统的操作和维护成本,提高系统的可靠性,提高仓储作业的效率。 2、平面设计原则 若无特殊要求,仓储系统中的物流都应在同一平面上实现,从而减少不必要的安全防护措施,减少利用率和作业效率低和能源消耗较大的起重机械,提高系统的效率。 3、物流和信息流的分离原则 现代物流是在计算机网络支持下的物流,物流和信息流的结合解决了物流流向的控制问题,提高了系统作业的准确率,从而提高了系统作业效率。如果不能实现物流和信息流的尽早分离,就要求在物流系统的每个分、合节点均设置相应的物流信息识读装置,这势必造成的冗余度,增加系统的成本;如果能实现物流和信息流的尽早分离,将所需信息一次识别出来,再通过计算机网络传到各个节点,即可降低系统的成本。 4、柔性化原则 仓库的建设和仓储设备的购置,需要大量的资金。为了保证仓储系统高效工作,需要配置针对性较强的设备;而社会物流环境的变化,又有可能使仓储货物品种、规格和经营规模发生改变。因此,在规划时,要注意机械和机械化系统的柔性和仓库扩大经营规模的可能性。 5、物料处理次数最少原则 不管是以人工方式还是自动方式,每一次物料处理都需要花费一定的时间和费用,通过复合操作,或者减少不必要的移动,或者引入能同时完成多个操作的设备,就可减少处理次数。 6、最短移动距离,避免物流线路交叉原则 移动距离越短,所需的时间和费用就越低;避免物流线路交叉,即可解决交叉物流控制和物料等待时间问题,保持物流的畅通。 7、成本与效益原则 在建设仓库和选择仓储设备时,必须考虑投资成本和系统效益原则。在满足作业需求的条件下,尽量降低投资。 仓库选址

基于遗传算法的飞机气动优化设计_王晓鹏

收稿日期:2000205228;修改稿收到日期:20012112081 作者简介:王晓鹏(19742),男,博士,现为西北工业大学与 上海航天技术研究院博士后1 第19卷第2期 2002年5月 计算力学学报  Ch i nese Journa l of Com puta tiona l M echan ics V o l .19,N o .2 M ay 2002 文章编号:100724708(2002)022******* 基于遗传算法的飞机气动优化设计 王晓鹏 (1.西北工业大学飞机系,西安710072;2.上海航天技术研究院,上海200233) 摘 要:建立了一种以实数编码技术为基础的遗传算法模型,并把它与通过工程估算的气动分析方法相结合,进行飞机气动外形的单点和多点优化设计。优化设计中,设计变量取为机翼、机身和尾翼的外形及三者之间的相对位置,优化目标是使飞机在跨音速和超音速飞行状态下获得配平状态下最大的升阻比。设计结果表明该优化设计方法是十分有效的,可以用来对具有正常布局形式的飞机进行气动外形的优化设计。关键词:遗传算法;气动外形;优化设计中图分类号:V 21113 文献标识码:A 1 引 言 气动外形设计的目的是设计最合理的气动外形,使飞机在给定的约束条件下获得最优良的气动性能。提高气动性能的基本要求是减小阻力、增加升力和提高升阻比。对于战斗机来说,气动外形设计的成功与否,直接关系到飞机性能的优劣和任务完成的质量。 在借助数值优化方法进行气动外形优化设计时,所选用的优化方法和气动分析方法是否适当,会严重影响到气动优化设计的结果。就数值优化方法而言,梯度法、约束变尺度法、序列二次规划法等传统算法的优化效率较高,但优化的最终结果往往是局部最优的,不能保证达到全局最优解;遗传算法、模拟退火算法、M on te 2Carlo 法等随机性方法的全局性较好,但计算量要比传统算法大得多。迄今为止,已经有人以求解速势方程或Eu ler 方程作为气动分析方法,以遗传算法作为数值优化方法进行翼型和机翼的气动优化设计 [123] ,但是还没有出 现把Eu ler 或N avier 2Stokes 方程求解与遗传算法相结合进行翼身组合体和整机的气动外形优化设计的文献。这其中最主要的原因还在于计算量过大。为了既保证优化结果具有较好的全局性,又尽可能减小优化过程的计算量,有人提出了混合演化策略的概念。所谓的混合演化策略,就是把遗传算法等全局性优化方法与梯度法等局部性优化方法 结合起来,实现优化质量和优化效率的良好折衷。目前,对于混合演化策略的研究尚处于初期,设计理论和方法还不完善。鉴于这种情况,把数值优化方法与气动分析相结合进行飞机气动外形优化设计主要有两种比较现实的思路:要么数值优化方法采用梯度法等传统算法,气动分析采用较精确的Eu ler 或N avier 2Stokes 方程解法;要么数值优化 方法采用遗传算法或模拟退火算法等随机性方法,气动分析则采用计算量较小的工程估算方法或速势方程解法。 由于本文的设计意图是以某型战斗机作为基准,在满足给定约束的情况下进行轻型战斗机的气动优化设计,希望在给定的设计空间中搜索出最优的飞机气动外形,所以选择遗传算法做为优化方法,以保证设计具有全局性最优的特点。在选择气动分析方法时,由于采用较精确的Eu ler 或N avier 2Stokes 方程解法进行气动分析时计算量过 大,对整机的设计显然是不现实的,所以文中以Am es 研究中心A xelson J A 发展的气动估算方 法[426]来进行飞机的气动分析。 2 方法简介 211 遗传算法 基于遗传算法的数值优化方法是由模拟生物的进化过程演变而来的。遗传算法的优化原理是:从随机生成的初始群体出发,采用基于优胜劣汰的选择策略选择优良个体作为父代;通过父代个体的复制(R ep roducti on )、杂交(C ro ssover )和变异(M u tati on )来繁衍进化的子代种群。经过多代的进

现代飞机常见气动外形特点及发展

摘要 我们看到任何一架飞机,首先注意到的就是气动布局。飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。关系到飞机的飞行特征及性能。故将飞机外部总体形态布局与位置安排称作气动布局。简单地说,气动布局就是指飞机的各翼面,如主翼、尾翼等是如何放置的,气动布局主要决定飞机的机动性,至于发动机、座舱以及武器等放在哪里的问题,则笼统地称为飞机的总体布局。 飞机的设计任务不同,机动性要求也不一样,这必然导致气动布局形态各异。现代作战飞机的气动外形有很多种,平直机翼布局、后掠翼布局、变后掠翼布局、无尾翼布局、鸭式布局、三翼面布局、前掠翼布局等。而以巡航姿态为主的运输机等大型飞机,其气动布局就相对比较单一,主要以常规布局为主 关键词:翼型;尾翼;气动外形;空气动力

目录 引言 (1) 一、现代飞机常见气动外形 (2) (一)作战飞机气动外形 (2) (二)非作战飞机气动外形 (7) 二、国内飞机常见气动外形 (7) (一)作战飞机气动外形 (7) (二)非作战飞机气动外形 (9) 三、飞机气动外形发展 (11) (一)作战飞机气动外形的发展 (11) (二)非作战飞机气动外形的发展 (11) 四、我国大飞机气动布局设计的发展建议 (15) 致谢 (17) 参考文献 (18)

引言 自从莱特兄弟发明第一架飞机以来,航空科技一直伴随着科技革命的推进迅速发展,由于该行业属于技术密集型,因此也使得航空科技一直云集着该时代最先进的科技成果,和众多的行业精英。因此航空技术往往代表着一个时代的科技水平,也促进和引领着科技进步。而一个时代的航空科技水平则主要体现在该时期的航空器上,飞机作为数量最多、最为常见的航空器,当然代表着一个时代航空科技的水平。而一个时代飞机的技术水准,则直观的体现在飞机的气动外形上。从飞机的气动外形我们就可以看出:这个时代航空科技的总体水平,这个时代的设计理念,甚至这个时代的军事政治战略格局等等。因此,研究飞机的气动外形及其发展,对于我们学习航空科技进而了解世界科技、历史、军事、政治等方面知识有着深远的意义。

相关文档
最新文档