labview中的混合信号曲线图

labview中的混合信号曲线图
labview中的混合信号曲线图

混合信号曲线图

当我们希望在LabVIEW中能够将模拟信号以及数字信号同时显示在一起,以便观察它们之间的时间关系的时候,我们就可以使用混合信号曲线图控件了。这个控件可以在LabVIEW的控件工具面板的Modern>>Graph子面板上面找到。一个混合信号曲线图控件的例子如下图所示:

这个曲线图的输入为一个簇,在这个簇里面包含了可以连接到波形图控件、XY曲线图控件、数字信号波形图控件的各种数据元素。上面VI的框图程序如下:

这个混合信号曲线图会在一个或多个曲线图区域绘出所有的这些元素。你可以在一个已有的曲线图区域上面点击鼠标右键,在右键菜单中选择Add Plot Area选项来增加曲线图区域。你也可以通过这种方法,通过在右键菜单选择Remove Plot Area来删除一个曲线图区域。混合信号曲线图的图例是一个树形控件,在这个树形控件中,每个曲线的名称与属性以曲线群名称的子节点显示的。你可以在两个曲线群之间通过使用鼠标拖拉的方式移动曲线,不过你不能将模拟信号曲线与数字信号曲线放到一个曲线群中。而在实际操作中,当你在程序框图中将数据联线到混合信号曲线控件时,如果你的信号中既有模拟信号也有数字信号的话,LabVIEW会强制启用至少两个曲线图区域来分别显示模拟与数字信号。

混合信号曲线图的组成如下图所示:

基于labview的低通滤波器设计要点

基于LabVIEW的低通滤波器设计 学号: 201220120214 姓名:敖智男 班级: 1221202 专业:测控技术与仪器 课程教师:方江雄 2015年6月14 日

目录 一.设计思路 (2) 二.设计目的 (2) 三.程序框图主要功能模块介绍 1.测试信号生成模块 (3) 2.滤波功能模块.................................................................. .3 3.频谱分析模块 (4) 4.While循环模块 (5) 四.进行频谱分析.................................................................6、7五.主要设计步骤..................................................................8、9六.运行结果.. (10) 七.设计心得 (11)

低通滤波器是指对采样的信号进行浦波处理,允许低于截至频率的信号通过,高于截止频率的信号不能通过,提高有用信号的比重,进而消除或减少信号的噪声干扰。 一.设计思路 本VI设计的低通滤波器主要是先将正弦信号和均匀白噪声信号叠加,利用Butterworth低通滤波器进行滤波处理,得到有用的正弦信号:再对经过低通滤波器处理后的信号及信号频谱与滤波前的进行比较分析,检测滤波后的信号是否满足用户的要求。 二.设计目的 基于LabVIEW虚拟平台,将“正弦波形”函数和“均匀白噪声”函数产生的信号进行叠加以产生原始信号,让其先通过一个高通滤波器,滤除白噪声的带外杂波,以便在后续程序中低通滤波器可以输出正弦波;然后经过低通滤波器滤波处理,对滤波前后的信号和信号频谱进行比较,从而对低通滤波器的滤波效果进行检验。

基于labview的语音信号采集系统

电气与自动化工程学院《LabVIEW编程实训》评分表课程名称:LabVIEW编程实训 题目:基于labview的语音信号采集系统设计 班级:1601131自动化学号:160113113姓名:刘德旺 指导老师: 年月日

常熟理工学院电气与自动化工程学院《LabVIEW编程实训》技术报告题目:基于LabVIEW的语音信号采集系统设计 姓名:刘德旺 学号:160113113 班级:自动化131 指导教师:陈飞 起止日期:2016年6月20日-7月8日

LabVIEW编程实训答辩记录 自动化专业 1601131班级答辩人刘德旺 题目基于LabVIEW的语音信号采集系统设计 说明:主要记录答辩时所提的问题及答辩人对所提问题的回答

目录 1.任务书 (1) 2.基于LABVIEW的数据采集系统概述 (3) 2.1虚拟仪器概念与传统仪器概念主要区别 (3) 2.1.1LabVIEW虚拟仪器简介 (3) 2.1.2LabVIEW虚拟仪器特点 (3) 2.2 LabVIEW图形化程序的组成与特点 (4) 2.2.1前面版 (4) 2.2.2程序框图 (4) 2.2.3图标和连接器 (5) 3.语音信号采集总体设计方案与硬件配置 (6) 3.1语音信号采集系统的功能分析 (6) 3.2语音信号采集系统的总体构成 (6) 3.3语音信号采集系统的硬件配置 (6) 4.语音信号采集系统的软件设计与功能实现 (11) 4.1语音信号采集系统的软件前面板设计 (11) 4.1.1语音信号采样信息界面 (11) 4.1.2语音采集控制按钮界面 (11) 4.1.3时域波形和频域波形显示界面 (11) 4.2语音信号采集系统的软件程序框图设计 (12) 5.语音信号采集系统的运行与分析 (18) 6.收获与体会 (21) 参考文献 (23)

利用LabVIEW实现信号处理

利用LabVIEW实现信号处理 摘要 信号处理几乎涉及到所有的工程技术领域,而频谱分析正是信号处理中的一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员携带。而基于LabVIEW设计的虚拟频谱分析仪,用软件代替硬件,价格低,便于工程技术人员完成现场信号的采集、处理及频谱分析。 现今最有代表性的图形化编辑软件——LabVIEW,用之模拟从DAQ板卡中采集到一路带有均匀白噪声的正弦信号,显示其波形,并分析、显示其幅频特性曲线以及相频特性曲线。另外本文还根据LabVIEW中的子程序,实现了语音信号的录音与播放。 关键词虚拟仪器数据采集总线LabVIEW 1.1 LabVIEW简介 LabVIEW (laboratory virtual instrument engineering wokbench——实验室虚拟仪器工程平台)的概念,是直观的前面板与流程图式的编程方法的结合,是构建虚拟仪器的理想工具。LabVIEW和仪器系统的数据采集、分析、显示部分一起协调工作, 是简化了而又更易于使用的基于图形化编程语言G的开发环境。 LabVIEW集成了很多仪器硬件库,如GPIB/VXI/PXI/基于计算机的仪器、RS232/485协议、插入式数据采集、模拟/数字/计数器I/O、信号调理、分布式数据采集、图像获取和机器视觉、运动控制、PLC/数据日志等。 与传统的编程方式相比,使用LabVIEW设计虚拟仪器,可以提高效率4~10倍。同时,利用其模块化和递归方式,用户可以在很短的时间内构建、设计和更改自己的虚拟仪器系统。 1.2用LabVIEW设计虚拟仪器的步骤 LabVIEW编程一般要经过以下几个步骤。 1、总体设计:根据用户需求,进行VI总体结构设计,确定面板布局与程序流程,并保证所使用的虚拟仪器硬件在LabVIEW函数库中有相应的驱动程序。 2、前面板设计:在LabVIEW的前面板编辑窗口内,利用工具模板和控件模板进行VI 前面板的设计。 3、方框图编程:在LabVIEW的方框图编辑窗口内,利用工具模板和函数模板进行方框

基于LabVIEW的数据采集与信号处理系统的设计_杜娟

基于L a b V I E W 的数据采集与信号处理系统的设计 杜 娟1,邱晓晖1,赵 阳2,颜 伟2,缪 飞1 (1.南京邮电大学通信与信息工程学院,江苏南京210003;2.南京师范大学电气与自动化工程学院,江苏南京210042) [摘要] 介绍了虚拟仪器领域中最具代表性的图形化编程开发平台L a b V I E W,并对基于L a b V I E W 编程环境实现数据采集进 行了研究,设计实现了一种基于L a b V I E W 8.5环境,以E M I 噪声分析仪为下位机的数据采集与信号处理系统的设计方法.该设 计方法主要实现了以R S 232为代表的串口通讯,数组转换及频谱分析等功能,结果表明应用该设计方法设计出的系统具有简 洁友好的人机界面,可直接在前面板上完成各种操作与观测.该设计方案较之目前大多数的设计方法相比有效地降低了程序的 运算量,节省了运算时间,成功实现了实时无差错的采集到由下位机发来的完整数据. [关键词] L a b V I E W,串口通讯,数组转换 [中图分类号]T M 461;T N 713+.7 [文献标识码]A [文章编号]1672-1292(2010)03-0007-04 D a t a A c q u i s i t i o n a n dS i g n a l P r o c e s s i n g S y s t e m B a s e do nL a b V I E W D u J u a n 1,Q i u X i a o h u i 1,Z h a o Y a n g 2,Y a n We i 2,Mi a o F e i 1 (1.C o l l e g e o f C o m m u n i c a t i o na n dI n f o r m a t i o nE n g i n e e r i n g ,N a n j i n g U n i v e r s i t y o f P o s t a n dC o m m u n i c a t i o n s ,N a n j i n g 210003,C h i n a ; 2.S c h o o l o f E l e c t r i c a l a n dA u t o m a t i o nE n g i n e e r i n g ,N a n j i n g N o r m a l U n i v e r s i t y ,N a n j i n g 210042,C h i n a )A b s t r a c t :L a b V I E W i s i n t r o d u c e di n t h i s p a p e r a s a k i n d o f m o s t r e p r e s e n t a t i v e g r a p h i c a l p r o g r a m m i n g p l a t f o r m s i n V i r - t u a l i n s t r u m e n t f i e l d ,a n dr e a l i z i n g d a t a a c q u i s i t i o n b a s e do n L a b V I E W p r o g r a m m i n g e n v i r o n m e n t i s s t u d i e d ,t h e n a d e - s i r e m e t h o d o f D a t a a c q u i s i t i o n a n dS i g n a l p r o c e s s i n g s y s t e m u s e dE M I n o i s e a n a l y z e r a s t h en e x t b i t m a c h i n e b a s e d o n l a b v i e w 8.5i s i n t r o d u c e d .T h es y s t e m r e a l i z e dR S 232s e r i a l c o m m u n i c a t i o n ,a r r a yc o n v e r s i o na n ds p e c t r a l a n a l y s i s f u n c t i o n s .T h e r e s u l t s h o w s t h a t t h e s y s t e m d e s i g n e d b y t h i s m e t h o d h a s a s i m p l e a n df r i e n d l y i n t e r f a c e ,a n d t h a t u s e r s c a n d o e v e r y o p e r a t i o na n do b s e r v a t i o n i n t h e f r o n t p a n e l d i r e c t l y .T h i s s c h e m e r e d u c e s t h e c a l c u l a t i o n p r o c e d u r e e f f e c - t i v e l y a n d s a v e t i m e ,a c h i e v e s t h e r e a l -t i m e a n d e r r o r -f r e e c o l l e c t e d t h e d a t a i n t e g r i t i l y . K e yw o r d s :l a b v i e w ,s e r i a l c o m m u n i c a t i o n ,a r r a y c o n v e r s i o n  收稿日期:2010-06-02. 基金项目:中国博士后基金(20080431126)、毫米波国家重点实验室开放基金(K 200903)、江苏省博士后基金(0702033B )、江苏省自然科 学基金(B K 2008429). 通讯联系人:邱晓晖,博士,副教授,研究方向:现代信号处理.E -m a i l :q i u x h @n j u p t .e d u .c n L a b V I E W (L a b o r a t o r y V i r t u a l I n s t r u m e n t E n g i n e e r i n g W o r k b e n c h )是基于图形编译G (G r a p h i c s )语言的虚拟仪器软件开发平台,具有数据采集、数据分析、信号发生、信号处理、输入输出控制等功能,是公认的标准数据采集和仪器控制软件.在L a b v i e w 环境下开发的应用程序称为V I (V i r t u a l I n s t r u m e n t ).一个完整的L a b V I E W 程序主要由前面板、程序框图和图标/连接端口3部分组成[1],前面板是交互式图形化用户界面,用于设置输入数值和观察输出量;程序框图是定义V I 功能的图形化源代码,包括前面板上没有但编程必须有的对象,如函数、结构和连线等,利用图形语言对前面板的控制量和指示量进行控制;图标/连接端口是用于把程序定义成一个子程序,以便在其他程序中加以调用.L a b V I E W 中自带450多个内置函数,专门用于从采集到的数据中挖掘有用的信息,用于分析测量数据及处理信号. 1 系统硬件结构部分 传导电磁干扰综合测量与分析系统可以对被测设备进行噪声诊断与抑制,包括硬件部分和软件部分[2,3].硬件部分的原理图如图1所示.系统硬件又分为模拟部分和数字部分,模拟部分由中心控制模块、第10卷第3期2010年9月 南京师范大学学报(工程技术版)J O U R N A LO FN A N J I N GN O R M A LU N I V E R S I T Y (E N G I N E E R I N GA N DT E C H N O L O G YE D I T I O N ) V o l .10N o .3S e p t ,2010

基于LabVIEW的信号与系统实验平台的设计

2012年第05期 吉林省教育学院学报 No.05,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总305期) Total No .305 收稿日期:2012—03—01 作者简介:满江红(1971—),男,吉林长春人。中国网通集团有限公司长春分公司网络建设部,技术主管,研究方向:综合通信技术。 基于LabVIEW 的信号与系统实验平台的设计 满江红 (中国网通集团有限公司长春分公司,吉林长春130000) 摘要:近年来,随着电子、计算机和网络技术的发展及其在测量仪器上的应用,产生了一种新的测试理论和方法———虚拟仪器(VirtualInstrument ,VI )。所谓虚拟仪器,就是指用户通过计算机平台,根据自己的需求设计仪器的测试功能。虚拟仪器的出现打破了人们对仪器的传统观念,在测试系统和仪器设计中用户可以尽量用软件代替硬件,而无需购买大量的、昂贵的实验仪器设备。 关键词:LabVIEW ;信号与系统实验平台;设计中图分类号:TN911.6 文献标识码:A 文章编号:1671—1580(2012)05—0153—02 基于Lab VIEW 构建虚拟实验室正逐渐被越来越多的高校所采用, 本课题能避开硬件系统的不足,巧妙地运用软件来仿真硬件才能实现的实验结果, 大大降低了实验设备要求,节约了人力和财力,而且有很多的库函数可以在实验时直接调用,避免了用硬件做实验的局限性,可以更方便地做信号系统实验。 一、 LabVIEW 简介LabVIEW 是一种用图标代替文本行创建应用程序的图形化编程语言,采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。LabVIEW 提供很多外观与传统仪器(如示波器、信号发生器等)类似的控件,可以方便地创建用户界面。通过使用图标和连线编程对前面板上的对象进行控制,这就是图形化源代码,又称“G 代码”或 “程序框图代码”。LabVIEW 的核心是VI 。VI 有一个人机对话的用户界面— ——前面板(FrontPanel )和相当于源代码功能的框图程序(Diagram ),前面板接受来自框图程序的指令。LabVIEW 还包含了大量的工具与函数用于数据采集、分析、显示与存储等 二、整体设计该信号与系统实验台的整体设计方案是:根据LabVIEW 自上而下的设计思想,构建出整个实验平台的系统结构框图,先设计系统的主界面,再设计各 个实验子界面和实验模块,最后通过调用子VI 程序 来实现链接。主界面包括运行按钮, 停止按钮和三个实验模块选项栏,实验模块包括初级实验、中级实 验和高级实验。 (一 ) 平台系统结构图平台系统结构图如下所示: 图1平台系统结构图 (二)人机界面 点击运行按钮就出现操作界面,界面上包括初级实验、中级实验、高级实验等三部分,当点击相应实验就会出现各个实验题目,然后点击进入就可以进行相应实验了,实验完成点击停止按钮就可以结束本次实验。人机界面如下图所示: 3 51

基于Labview的信号采集与处理

基于Labview的信号采集与处理 实验目的:了解、掌握连续时间信号数字化处理的原理、过程及分析方法; 实验环境:Labview软件平台、信号采集卡(DAQ, Data Acquisition),信号源及示波器等; 实验方案: 信号处理示意图 信号采集与恢复流程图 实验准备: 连接信号源、采集卡、示波器,要求用示波器观测处理前后的信号波形。 连线:采用采集卡的输入端口信号源(68正,34负)和输出端口示波器(22正,55负) 其中输入端口连信号源,输出端口连示波器

做实验前必须先确定采样频率(10倍),采样点数(时域默认3000点)以及恢复滤波器的截止频率(相当于第二个)等。 实验内容: 1.实现正弦波信号的采样恢复处理。信号频率分别选500Hz, 1kHz,, 观察信号的时、频域分布,并比较分析信号处理前后的波形变化。 2.实现周期性方波信号的采样恢复处理。信号的基波频率分别选1kHz, 10kHz, 观察信号的时、频域分布,并比较分析信号处理前后的波形变化。 3.把基波频率为10kHz的周期性方波信号进行采样,最终输出为10kHz 的正弦信号,在示波器中进行观察分析。 4.一个频率为2kHz的正弦波混杂了一个50Hz的工频干扰,试用数字滤波器进行滤波处理,输出纯净的正弦波形。 (注:市电电压的频率为50Hz,它会以电磁波的辐射形式,对人们的日常生活造成干扰,我们把这种干扰称之为工频干扰。) 思考题: 1.对欲采集处理的信号首先必须确定哪些技术指标? 2.采样点数的选取怎样影响信号的频率特性? 3.信号经过采集处理,恢复后与原信号有何不同? 4.通过本次实验有什么收获和建议?请写出你的实验小结。

labview信号处理完美版

第一章系统开发平台 1.1硬件平台 硬件平台是虚拟仪器的物理基础,所以为了完成虚拟仪器的设计,首先必须要选择合适的硬件平台。本文设计的系统,硬件平台主要由两部分组成:数据采集卡(DAQ)、PC机。硬件平台的结构如图1-1所示。 图1-1 硬件结构平台 1.1.1数据采集卡的选取 由于计算机所能识别的信号是数字信号,振动、温度、湿度等信号经过传感器和放大器可以输出为模拟电信号,必须经过离散化和数字化才能被计算机所识别,数据采集卡就是实现这一转换功能,为整个后续对信号处理中起到了乘前启后的关键作用。一般常用的数据采集卡(DAQ)的结构如图1-2 所示。 图1-2(a)共用一个A/D

图1-2(b)多个A/D 一般数据采集设备的两个主要指标: 1.采样率 对数据采集设备来说,采样率是A/D芯片转换的速率,不同的设备具有不同 的采样率,进行测试系统设计时应该根据测试信号的类型选择适当的采样率,盲 目提高采样率,会增加测试系统的成本。 2.分辨率 分辨率是数据采集设备的精度指标,用A/D转换的数字位数表示。如果把数 据采集设备的分辨率看作尺子上的刻度,同样长度的尺子上刻度线越多,测量就 越精确。同样的,数据采集设备A/D转换的位数越多,把模拟信号划分得就越细, 可以检测到的信号变化量也就越小。在图1-3所示中用一3位的A/D转换芯片去转换振幅为5V的正弦信号,它将峰—峰为10V的电压分成32=8段,则每次采样的模拟信号转换为其中的一个数字段,用000~111之间的码来表示。而用它得到 正弦波的数字图象是非常粗糙的。若改用16位的A/D转换芯片,则将10V电压2=65536段,经过A/D转换之后的数字图象是相当精细,完全能反映出原分成16 始的模拟信号。 图1-3 A/D芯片的位数对反映原始信号的影响

基于LabVIEW的数据处理和信号分析

基于LabVIEW的数据处理和信号分析 Liu Y an Y ancheng Institute of Technology, Y ancheng, 224003, China E-mail: yanchengliu@https://www.360docs.net/doc/e416020723.html, ·【摘要】虚拟仪器技术是一种数据采集和信号分析的方法,它包括有关硬件,软件和它的函数库。用虚拟仪器技术进行数据采集和信号分析包括数据采集,仪器控制,以及数据处理和网络服务器。本文介绍了关于它的原则,并给出了一个采集数据和信号分析的例子。结果表明,它在远程数据交流方面有很好的表现。 【关键词】虚拟仪器,信号处理,数据采集。 ·Ⅰ.引言 虚拟仪器是一种基于测试软硬件的计算机工作系统。它的功能是由用户设计的,因为它灵活性和较低的硬件冗余,被广泛应用于测试及控制仪器领域,。与传统仪器相比,LabVIEW 广泛应用于虚拟仪器与图形编程平台,并且是数据收集和控制领域的开发平台。它主要应用于仪器控制,数据采集,数据分析和数据显示。不同于传统的编程,它是一种图形化编程类程序,具有操作方便,界面友好,强大的数据分析可视化和工具控制等优点。用户在LabVIEW 中可以创建32位编译程序,所以运行速度比以前更快。执行文件与LabVIEW编译是独立分开的,并且可以独立于开发环境而单独运行。 虚拟仪器有以下优点: A:虚拟仪表板布局使用方便且设计灵活。 B:硬件功能由软件实现。 C:仪器的扩展功能是通过软件来更新,无需购买硬件设备。 D:大大缩短研究周期。 E:随着计算机技术的发展,设备可以连接并网络监控。 这里讨论的是该系统与计算机,数据采集卡和LabVIEW组成。它可以分析的时间收集信号,频率范围:时域分析包括显示实时波形,测量电压,频率和期刊。频域分析包括幅值谱,相位谱,功率谱,FFT变换和过滤器。另外,自相关工艺和参数提取是实现信号的采集。 ·II.系统的设计步骤 软件是使用LabVIEW的AC6010Shared.dll。包中的三个功能被使用。分别用AC6010- AD.VI,与AC6010- DI.VI和AC0610- DO.VI实现数据采集,数据输入和数据输出。测试范围的选择,对测试通道和测试时间的设置是由与AC6010- AD.VI完成的。在这里,测试范围为3-5V电压。由于LabVIEW的强大,一些额外的功能可以被添加到系统中。用户必须做几个步骤:

基于Labview的虚拟信号发生器的设计(毕设)

课题名称基于LabVIEW8.0的虚拟函数信号发生器的设计 指导教师姓名肖俊生 学生姓名刘增辉 专业自动化 学号 0967106205

基于LabVIEW的虚拟函数信号发生器的设计 摘要 本文实现了基于LabVIEW8.5的虚拟正弦波、方波、三角波、锯齿波以及任意信号波形的信号发生。操作人员可以根据需要,改变波形的频率、幅值、相位、偏移量等参数,并可保存波形的分析参数到指定文件。本论文首先简介了虚拟函数信号发生器的开发平台,及虚拟信号发生器的设计思路,并且给出了基于LabVIEW的虚拟信号发生器的前面板和程序设计流程图,讲述了功能模块的设计步骤,提供了虚拟发生器的前面板。本仪器系统操作简便,设计灵活,具有很强的适应性。 【关键词】:虚拟仪器,LabVIEW,信号发生器 第一章虚拟仪器(Virtual Instrument) 1.1 虚拟仪器概念 虚拟仪器的起源可追溯到20世纪70年代。“虚拟”的含义主要是强调了软件在这类仪器中的作用,体现了虚拟仪器与主要通过硬件实现各种功能的传统仪器的不同。由于虚拟仪器结构形式的多样性和适用领域的广泛性,目前对于虚拟仪器的概念还没有统一的定义。美国国家仪器公司(National Instruments Corporation,NI)认为,虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通信及图形用户界面的软件组成的测控系统,是一种计算机操纵的模块化仪器系统。 虚拟仪器主要由通用的计算机资源(例如微处理器、内存、消声器)、应用软件和仪器硬件(例如A/D\、D/A、数字I/O、定时器、信号调理等)等构成。使用者利用应用软件将计算机资源和仪器硬件结合起来,通过友好的图形界面来操作计算机,完成对测试信号的采集、分析、判断、显示和数据处理等功能。虚拟仪器中的硬件主要用于解决信号的调理以及输入、输出问题。而软件主要用于实现对数据的提取、分析处理、显示以及对硬件的控制等功能,这些功能在传统电子仪器中往往通过硬件来实现。图1-1给出了一种利用数据采集卡实现的虚拟

labview信号与系统

信号与系统课程设计周期三角波的合成设计与实现

目录 引言 (3) 2虚拟仪器开发软件LabVIEW8.6入门 (4) 2.1LabVIEW8.6介绍 (4) 2.1.1LabVIEW的定义: (4) 2.1.2LabVIEW的用途: (4) 2.1.3LabVIEW的发展历程: (4) 2.2利用LabVIEW8.6编程完成的一些习题设计 (5) 3利用LabVIEW8.6实现周期性三角波信号的叠加的设计 (22) 3.1 周期性三角波信号的叠加的基本原理 (22) 3.2 周期性三角波信号的叠加的编程设计及实现 (23) 结论 (28) 参考文献 (29)

引言 “最初只存在机器语言,计算机的世界里一片黑暗。可是不久,汇编语言问世了,给计算机的世界投下了一缕曙光。后来,Fortran 的出现带来了光明。”LabVIEW 图形化编程语言的出现终于把人们——尤其是工程师和科学家们从繁杂的编程工作中解放出来,使他们能够真正专心于自己所关注的事情。 虚拟仪器系统是由计算机、应用软件和仪器硬件三大要素构成的。计算机与仪器硬件又称为VI 的通用仪器硬件平台。 传统仪器 虚拟仪器 能厂商定义功能 用户定义功能 关键字:虚拟仪器 LabVIEW 图形化 计算机 P R O C E S S O R B U S C o n d i t i o n i n g T i m i n g A / D D /A D I /O T I /O DISPLAY AND CONTROL 488 P O R T 礟 M a t h M E M O R Y 礟R O M

2虚拟仪器开发软件LabVIEW8.6入门 2.1LabVIEW8.6介绍 2.1.1LabVIEW的定义: LabVIEW(Lab oratory V irtual I nstrument E ngineering W orkbench)是一种用图标代替文本行创建应用程序的图形化编程语言。传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而LabVIEW则采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。它用图标表示函数,用连线表示数据流向。 LabVIEW程序被称为VI(Virtual Instrument),即虚拟仪器。 LabVIEW的核心概念就是“软件即是仪器”,即虚拟仪器的概念。 LabVIEW还包含了大量的工具与函数用于数据采集、分析、显示与存储等。 2.1.2LabVIEW的用途: LabVIEW在测试、测量和自动化等领域具有最大的优势,因为LabVIEW提供了大量的工具与函数用于数据采集、分析、显示和存储。用户可以在数分钟内完成一套完整的从仪器连接、数据采集到分析、显示和存储的自动化测试测量系统。它被广泛地应用于汽车、通信、航空、半导体、电子设计生产、过程控制和生物医学等各个领域。LabVIEW不仅可以用来快速搭建小型自动化测试测量系统,还可以被用来开发大型的分布式数据采集与控制系统 2.1.3LabVIEW的发展历程:

第七章 labview信号分析与处理

第七章信号分析与处理 7.1概述 LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze子模板和Methematics子模板。这里主要涉及前者。 进入Functions模板Analyze》Signal Processing子模板。 其中共有6个分析VI库。其中包括: ①.Signal Generation(信号发生):用于产生数字特性曲线和波形。 ②.Time Domain(时域分析):用于进行频域转换、频域分析等。 ③.Frequency Domain(频域分析): ④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。 ⑤.Digital Filters(数字滤波器):用于执行IIR、FIR 和非线性滤波功能。 ⑥.Windowing(窗函数):用于对数据加窗。 在labview\examples\analysis目录中可找到一些演示程序。 7.2信号的产生 本节将介绍怎样产生标准频率的信号,以及怎样创建模拟函数发生器。参考例子见examples\analysis\sigxmpl.llb。 信号产生的应用主要有: ●当无法获得实际信号时,(例如没有DAQ板卡来获得实际信号或者受限制无法访 问实际信号),信号发生功能可以产生模拟信号测试程序。 ●产生用于D/A转换的信号 在LabVIEW 6i中提供了波形函数,为制作函数发生器提供了方便。以Waveform>>Waveform Generation中的基本函数发生器(Basic Function Generator.vi)为例,其图标如下: 其功能是建立一个输出波形,该波形类型有:正弦波、三角波、锯齿波和方波。这个VI会

利用LabVIEW实现信号处理

利用LabVIEW实现信号处理

————————————————————————————————作者: ————————————————————————————————日期:

利用LabVIEW实现信号处理 摘要 信号处理几乎涉及到所有的工程技术领域,而频谱分析正是信号处理中的一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员携带。而基于LabVIEW设计的虚拟频谱分析仪,用软件代替硬件,价格低,便于工程技术人员完成现场信号的采集、处理及频谱分析。 现今最有代表性的图形化编辑软件——LabVIEW,用之模拟从DAQ板卡中采集到一路带有均匀白噪声的正弦信号,显示其波形,并分析、显示其幅频特性曲线以及相频特性曲线。另外本文还根据LabVIEW中的子程序,实现了语音信号的录音与播放。 关键词虚拟仪器数据采集总线LabVIEW 1.1 LabVIEW简介 LabVIEW (laboratory virtual instrument engineering wokbench——实验室虚拟仪器工程平台)的概念,是直观的前面板与流程图式的编程方法的结合,是构建虚拟仪器的理想工具。LabVIEW和仪器系统的数据采集、分析、显示部分一起协调工作, 是简化了而又更易于使用的基于图形化编程语言G的开发环境。 LabVIEW集成了很多仪器硬件库,如GPIB/VXI/PXI/基于计算机的仪器、RS232/485协议、插入式数据采集、模拟/数字/计数器I/O、信号调理、分布式数据采集、图像获取和机器视觉、运动控制、PLC/数据日志等。 与传统的编程方式相比,使用LabVIEW设计虚拟仪器,可以提高效率4~10倍。同时,利用其模块化和递归方式,用户可以在很短的时间内构建、设计和更改自己的虚拟仪器系统。 1.2用LabVIEW设计虚拟仪器的步骤 LabVIEW编程一般要经过以下几个步骤。 1、总体设计:根据用户需求,进行VI总体结构设计,确定面板布局与程序流程,并保证所使用的虚拟仪器硬件在LabVIEW函数库中有相应的驱动程序。 2、前面板设计:在LabVIEW的前面板编辑窗口内,利用工具模板和控件模板进行VI 前面板的设计。 3、方框图编程:在LabVIEW的方框图编辑窗口内,利用工具模板和函数模板进行方

基于LabVIEW的振动信号测试与系统的开发

第5期(总第174期) 2012年10月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.5 Oct. 文章编号:1672-6413(2012)05-0040-0 2基于LabVIEW的振动信号测试与分析系统的开发 何政军,王晓龙,庞尔军 (华北电力大学机械工程系,河北 保定 071003 )摘要:以图形化编程语言LabVIEW作为开发平台,设计并搭建了虚拟振动测试分析系统,介绍了各功能模块可以实现的功能,配合必要的硬件设备,实现了对简支梁振动信号的采集、处理和分析。关键词:LabVIEW;振动测试;信号中图分类号:TP273 文献标识码:A 收稿日期:2012-05-14;修回日期:2012-05-2 5作者简介:何政军(1988-) ,男,浙江衢州人,在读硕士研究生,研究方向:数字化设计制造与虚拟仪器。0 引言 虚拟仪器是由美国国家仪器公司(National Instruments,NI)最早提出的概念,由于其具有开发周期短、 可扩展、性价比高等优点,使得虚拟仪器逐渐取代了传统仪器[1 ]。本文充分利用虚拟仪器技术、数据采集和信号分析处理技术,搭建了振动测试分析系统。1 振动测试分析系统硬件构成 振动测试分析系统硬件结构框图如图1所示。系统硬件由9101压电式加速度传感器、YE5852电荷放大器和NI9234数据采集卡及装有LabVIEW软件的计算机组成。 图1 振动测试分析系统硬件结构框图 NI9234采集卡有4个模拟信号输入通道和1个 模拟信号输出通道,精度均为24位, 并且其增益可由软件控制,采样速率最高可达51.2kS/s ,对于双极性信号,输入电压信号范围在±5V之间。YE5852电荷放大器增益为0.01mV/pC~1 000mV/pC,精度为±1%。9101压电式加速度传感器为通用型宽频带传感 器,其电荷灵敏度为30pC/ms2 ,频率范围为0.2kHz~ 10kHz,谐振频率为27kHz,输出电压为±10V。2 振动测试分析系统软件设计由于LabVIEW基于模块化程序设计思想,因此在振动测试系统的开发过程中也基本上遵循这一思 想, 在总体方案确定后,根据所需的不同功能分别组建各种功能模块,最后再进行集成和调试。 根据振动测试的需要和层次化及面向对象的编程思想,把整个系统分成数据采集、信号预处理、时域分 析、频域分析和频响分析5个模块。系统软件设计的总体方案如图2所示。 测试分析系统的前面板包括数据分析处理结果显示、 模块选择和数据采集参数设置3部分。在前面板中可以通过点击右侧下拉列表和转动旋钮来设置数据采集过程的采样点数、采样频率、采样电压和保存实测数据的文件路径;点击左侧的模块选择标签可以切换 不同的分析处理结果, 包括激励信号、响应信号和滤波信号的显示以及信号的相关性分析、功率谱分析、FFT 变换、频响分析和统计分析的结果。 图2 系统软件设计的总体方案 程序框图是完成程序功能的图形化原代码,包括 前面板上控件的连线端子以及连线编写程序等。通过指定程序框图中输入、输出的信号数据,可以完成对虚拟仪器的操作与控制,实现其具有的信号采集、数据分析处理等功能。 3 实际振动信号的采集与分析 配合测试系统所需的必要硬件,利用搭建的振动测试分析系统采集由LC130力锤激励简支梁(固有频率50Hz左右) 产生的振动信号,其中采样频率为2  048Hz,对采集的振动信号进行分析处理,并进一步说明各模块可实现功能的划分。

Labview心电信号处理

Labview心电信号处理 目录 一.概述 (2) 二.心电信号预处理 (3) 2.1 消除基准漂移 (4) 2.2 消除宽带噪声 (6) 三.对心电信号进行特征提取 (7) 3.1 QRS综合波检测 (8) 3.2 胎儿心电信号提取 (9) 四.总结 (13)

一.概述 心电图是一种记录心脏产生的生物电流的技术。临床医生可以利用心电图对患者的心脏状况进行评估,并做出进一步诊断。ECG记录是通过对若干电极(导联)感知到的生物电流进行采样获得的。图1中显示了典型的单周期心电图波形。 图1典型的单周期心电图波形 通常说来,记录的心电信号会被噪声和人为引入的伪影所污染,这些噪声和伪影在我们感兴趣的频段内,并且与心电信号本身有着相似的特性。为了从带有噪声的心电信号中提取出有用的信息,我们需要对原始的心电信号进行处理。 从功能上来说,心电信号的处理可以大致分为两个阶段:预处理和特征提取(如图2所示)。预处理阶段消除和减少原始心电信号中的噪声,而特征提取阶段则从心电信号中提取诊断信息。

图2典型的心电信号处理流程图 使用LabVIEW和相关工具箱,如高级信号处理工具箱(ASPT)和数字滤波器设计工具箱(DFDT)等,用户可以方便地创建针对两个阶段的信号处理应用,包括消除基线漂移、清除噪声、QRS综合波检测、胎儿心率检测等。本文着重讨论使用LabVIEW 进行典型的心电信号处理的方法。 二.心电信号预处理 心电信号预处理可以帮助用户去除心电信号中的污染。广义上讲,心电信号污染可以分为如下几类: ?电源线干扰 ?电极分离或接触噪声 ?病人电极移动过程中人为引入的伪影 ?肌电(EMG)噪声 ?基准漂移 在这些噪声中,电源线干扰和基准漂移是最为重要的,可以强烈地影响心电信号分析。除了这两种噪声,其它噪声由于可能是宽频带的且复杂的随机过程,也会使心电信号失真。电源线干扰是以60 Hz (或 50 Hz)为中心的窄带噪声,带宽小于1Hz。通常,心电信号的采集硬件可以消除电源线干扰。但是,基准漂

基于LABVIEW的多通道数据采集系统信号处理

目:基于LabVIEW的多通道数据采集系统 2010年03月20日 互联网会议PPT资料大全技术大会产品经理大会网络营销大会交互体验大会 毕业设计开题报告 1.结合毕业论文课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1.本课题的研究背景及意义 近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置原来越多的被个人计算机所占据。其中,软件系统是计算机系统的核心,设置是整个测控系统的灵魂,应用于测控领域的软件系统成为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统在很多领域得到了广泛的应用,并形成了一套完整的理论。2.本课题国内外研究现状 早期的测控系统采用大型仪表集中对各个重要设备的状态进行监控,通过操作盘进行集中式操作;而计算机系统是以计算机为主体,加上检测装置、执行机构与被控对象共同构成的整体。系统中的计算机实现生产过程的检测、监督和控制功能。由于通信协议的不开放,因此这种测控系统是一个自封闭系统,一般只能完成单一的测控功能,一般通过接口,如RS-232或GPIB接口可与本地计算机或其他仪器设备进行简单互联。随着科学技术的发展,在我国国防、通信、航空、气象、环境监测、制造等领域,要求测控和处理的信息量越来越大、速度越来越快。同时测控对象的空间位置日益分散,测控任务日益复杂,测控系统日益庞大,因此提出了测控现场化、远程化、网络化的要求。传统的单机仪器已远远不能适应大数量、高质量的信息采集要求,产生由计算机控制的测控系统,系统内单元通过各种总线互联,进行信息的传输。 网络化的测控技术兴起于国外,是在计算机网络技术、通信技术高速发展,以及对大容量分布的测控的大量需求背景下发展起来,主要分为以下几个阶段:第一阶段: 起始于20世纪70年代通用仪器总线的出现,GPIB实现了计算机与测控系统的首次 结合,使得测量仪器从独立的手工操作单台仪器开始总线计算机控制的多台仪器的测控系统。此阶段是网络化测控系统的雏形与起始阶段。第二阶段:

LabVIEW的数据采集与信号处理

LabVIEW的数据采集与信号处理 摘要: 针对虚拟仪器技术具有性能高, 易于实现硬件和软件集成等特点, 将虚拟仪器技术和LabvIEW 应用于测试领域。以计算机和NI 9201 数据采集卡为硬件, 以LabVIEW8. 6 软件作为开发平台, 构建了数据采集与信号处理的虚拟测试系统。系统由信号源和信号处理模块组成。 关键词:虚拟仪器; LabVIEW; 数据采集; 信号处理 虚拟仪器是指以通用计算机作为系统控制器, 由软件来实现人机交互和大部分仪器功能的一种计算机仪器系统。NI 公司开发的LabVIEW 是目前最为成功的虚拟仪器软件之一, 它是一种基于G 语言的32 位编译型图形化编程语言, 其图形化界面可以方便地进行虚拟仪器的开发, 并在测试测量、数据采集、仪器控制、数字信号处理等领域得到了广泛的应用。 1虚拟仪器测试系统的结构 以美国国家仪器公司N I 的LabV IEW8. 6 作为开发平台, 配合NI 公司的N I 9201 数据采集卡作为硬件实现该测试系统的设计。该系统可实现单、双通道的模拟信号的采集、虚拟信号的产生, 同时完成对信号的分析与处理, 测试系统的核心是前端数据采集和后续信号处理。虚拟仪器测试系统的结构框图如图1 所示。 图1 虚拟仪器测试系统的结构框图 2 程序设计模块 该测试系统体现了NI公司提出的软件即是仪器的思想, 以LabVIEW8.6为平台, 设计的虚拟仪器能够完成对数据采集卡采集的模拟信号进行分析与处理, 同时, 利用LabVIEW 的强大功能, 开发了虚拟信号发生器模块, 使得该虚拟仪器对仿真信号进行分析与处理。也即该测试系统的信号源包括: 数据采集卡采集的模拟信号; 虚拟信号发生器模块产生的仿真信号。据采集与信号处理系统的结构框图如图2 所示。 图2数据采集及信号处理系统的结构框图 2. 1. 1 数据采集卡采集的模拟信号 以NI 公司的NI 9201 数据采集卡作为硬件, 实现该数据采集系统的设计。NI 9201 提供8 个

基于labview的数字信号处理

基于LABVIEW的数字信号处理 摘要:LabVIEW 是建立测试、测量和自动化应用的图标语言,使用灵活方便。本文介绍了利用LabVIEW8.6 实现多路数据检测和分析方法的实现。构建一集信号采集、存储、分析和处理的检测系统。该系统可以同时检测三路电压和一路加速度信号。并可以对检测到的信号进行滤波、曲线拟合和小波分析等运算。系统界面友好,操作简单。 关键词:LABVIEW 多路信号滤波谐波分析 0 引言 本文设计的虚拟多路检测系统是基于虚拟仪器平台所开发的应用系统,主要完成了如何充分利用虚拟仪器平台的功能控件构建一个电压、频率信号的采集、存储、分析和处理为一体的多路检测系统。建立在DAQ 采集卡基础上的虚拟仪器具有一机多用、用户自定义功能和使用维护方便等特点,代表了今后仪器的发展方向。LabVIEW2012是虚拟仪器图形编程语言,它以软件为中心,利用计算机强大的计算、显示和处理能力,在计算机屏幕上组建用户自己的仪器和仪表。实现了将仪器装入计算机。 1 系统的总体设计 基于LABVIEW2012的多路采集系统设计包含以下部分:控制对象建模、数据采集、数据传输、数据处理、控制信号输出接口电路设计及其它附属功能的设计。本设计采用虚拟仪器技术搭建基于LABVIEW2012软件开发平台的多路检测系统总体结构如图1 所示。 图1 系统总体结构图 2 模拟信号选择 采集的模拟信号主要分为三个部分组成,第一、均匀白噪声,第二50hz的干扰信号,第三45hz的参考信号。在初始调试过程中可以用labview中信号合成单元将这三个信号经过合成,调试成模拟的采集信号,这样可以方便调试. 3 自适应滤波器

相关文档
最新文档