高考数学函数与导数问题之存在性与恒成立问题常见题目

高考数学函数与导数问题之存在性与恒成立问题常见题目
高考数学函数与导数问题之存在性与恒成立问题常见题目

导数的应用

[不等式恒成立与存在性问题]

例1 (2008安徽.20)设函数

. (1) 求的单调区间;

(2) 已知对任意

成立,求实数a 的取值范围. 例2(2008湖南.21)已知. (1) 求的单调区间;

(2) 若不等式对于任意的都成立,求a 的最大值.

**********************************************

例1(2010宝鸡模拟)若函数满足:对于任意都有

恒成立,则a 的取值范围_________ 例2(2010辽宁)已知函数

. (1) 讨论函数的单调性;

(2) 设,如果对于任意

,,求a 的取值范围. 类题演练:

(2009辽宁卷理)(本小题满分12分)

已知函数f(x)=x -ax+(a -1),。 (1) 讨论函数的单调性;

解:在单调减少,在单调增加。

(2)证明:若,则对任意x ,x ,x x ,有。 例3(2010山东理数)(22)(本小题满分14分)

)10(ln 1)(≠>=x x x x x f 且)(x f a x x >1

2)1,0(∈x 1)1(ln )(2

2

+-+=x x x x f )(x f e n a n ≤++)11(*∈N n x a x x f 2331)(-=]1,0[,21∈x x 1)()(21≤-x f x f ]332,332[-1ln )1()(2+++=ax x a x f )(x f 1-

12ln x 1a >()f x ()f x (1,1)a -(0,1),(1,)a -+∞5a <12∈(0,)+∞1≠21212()()1f x f x x x ->--

已知函数. (Ⅰ)当时,讨论的单调性; (Ⅱ)设当时,若对任意,存在,使 ,求实数取值范围.

例4:已知函数

. (1) 求的单调区间;

(2) 设

,若对于任意的,均存在,使得,求a 的取值范围.

例5:已知函数.

(1) 若a=1,求函数

的极值; (2) 设函数

,求的单调区间; (3) 若在上存在一点,使得成立,求a 的取值范围.

例6:已知函数

(1) 若

是函数的一个极值点,求a 的值; (2) 求证:当时,在上是增函数;

(3) 若对于任意的,总存在

,使不等式成立,求实数m 的取值范围. 1()ln 1a f x x ax x

-=-+-()a R ∈12

a ≤()f x 2()2 4.g x x bx =-+14

a =1(0,2)x ∈[]21,2x ∈12()()f x g x ≥

b x x a ax x f ln 2)12(21)(2++-=

)(x f x x x g 2)(2-=]2,0(1∈x ]2,0(2∈x )()(21x g x f -++=a ax x ax x f 21=x 20≤

函数与导数历年高考真题

函数与导数高考真题 1.2log 510+log 50.25= A 、0 B 、1 C 、2 D 、4 2.2 2 (1cos )x dx π π-+?等于( ) A.π B.2 C.π-2 D.π+2 3.设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-3 4.设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( ) (A)13 (B)2 (C) 132 (D)213 75.已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( ) A .2- B .1 C .4 D .10 6.设正数a,b 满足4)(22lim =-+→b ax x x , 则=++--+∞ →n n n n n b a ab a 211 1lim ( ) A .0 B . 41 C .21 D .1 7.已知函数y =13x x -++的最大值为M ,最小值为m ,则m M 的值为 (A)14 (B)12 (C)22 (D)32 8.已知函数y =x 2-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 9.已知以4T =为周期的函数21,(1,1]()12,(1,3] m x x f x x x ?-∈-?=?--∈??,其中0m >。若方程 3()f x x =恰有5个实数解,则m 的取值范围为( ) A .158(,)33 B .15(,7)3 C .48(,)33 D .4(,7)3 10.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与 ()g x 至少有一个为正数,则实数m 的取值范围是 A . (0,2) B .(0,8) C .(2,8) D . (,0)-∞

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题, 也是高中数学非常重要的一个模块, 不管是小题,还 是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后, a f (x )恒成立,则有a f (X )max 2. 对于双变量的恒成立问题 f(x) min g(x)min 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的, (甚至我提出这样 一个观点,所有导数的题目95%3根结底就是带参数二次函数在已知定义域上根的讨论, 3%是 ax b 与ax 3 b 这种形式根的讨论,2%!观察法得到零点,零点通常是1,-,e 之类),所以如果 e 我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一?二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知f (x ) ■ 2x2 2ax a 1定义域为R ,求a 的取值围 思考:①引入定义域(非R ) ② 参数在二次项,就需考虑是否为0 1 ③ 引入高次(3次,4次,—,I nx , e x 等等) x ④ 引入a 2, a 3等项(导致不能分离变量) f (x )恒成立,则有a f ( x) min (若是存在性问题,那么最大变最小, 最小变最大) 如:化简后我们分析得到, a,b , f (x) 0恒成立,那么只需 f ( x) min a,b ,使得 f(x) 0,那么只需f (X )max 0 如:化简后我们分析得到, X i ,X 2 a,b , f(xj g(X 2),那么只需 f (X)min g ( X) max 如:化简后我们分析得到, X i a,b , x 2 c, d 使f (xj gg ),那么只需 如:化简后我们分析得到, X i a,b ,X 2 C,d 使 f (X i ) g(X 2),那么只需 f (X)max g(x)min 还有一些情况了,这里不一一列举, 一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题, 成立问题(2014.03锡常镇一模那题特别典型) 总之一句话 (双变量的存在性与恒成立问题,都是先处理 我们往往先根据函数的单调性,去掉绝对值,再转变成恒

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

导数中的恒成立和存在性问题

导数中的恒成立和存在性问题

技巧传播 1.恒成立问题的转化:()a f x >恒成立max ()a f x ?>;()a f x ≤恒成立min ()a f x ?≤; 2.能成立问题的转化:()a f x >能成立min ()a f x ?>;()a f x ≤能成立max ()a f x ?≤; 3.恰成立问题的转化:()a f x >在M 上恰成立()a f x ?>的解集为R ()()a f x M M a f x C M >???≤?在上恒成立在上恒成立 ; 另一转化方法:若x D ∈,()f x A ≥在D 上恰成立,等价于()f x 在D 上的最小值min ()f x A =, 若x D ∈,()f x B ≤在D 上恰成立,则等价于()f x 在D 上的最大值max ()f x B =; 4.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则min min ()()f x g x ≥; 5.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则max max ()()f x g x ≤; 6.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则max min ()()f x g x ≥; 7.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则min max ()()f x g x ≤; 8.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像上方; 9.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像下方;

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

第18讲 导数的应用——利用导数研究不等式恒成立问题备战2021年新高考数学考点精讲与达标测试

《导数的应用——利用导数研究不等式恒成立(能成立)问题》 达标检测 [A 组]—应知应会 1.已知函数f (x )=x +4 x ,g (x )=2x +a ,若?x 1∈????12,1,?x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( ) A .a ≤1 B .a ≥1 C .a ≤2 D .a ≥2 【解析】选A.由题意知f (x )min ??? ?x ∈????12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A. 2.(2020·吉林白山联考)设函数f (x )=e x ????x +3x -3-a x ,若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【解析】原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x (x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e. 3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1. (1)求函数y =f (x )的图象在x =1处的切线方程; (2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 【解析】(1)因为f ′(x )=1 x , 所以f ′(1)=1. 又f (1)=0,所以切线的方程为y -f (1)=f ′(1)(x -1), 即所求切线的方程为y =x -1. (2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0. ①当a ≥1时,f (x )≤g (x )≤ag (x ); ②当a ≤0时,f (x )>0,ag (x )≤0,所以不满足不等式f (x )≤ag (x ); ③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1 x -a ,

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

高考真题汇编(函数与导数)

函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为 A. B. C. D. 【答案】D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.

点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C. 点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D.

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

导数之恒成立问题

应用导数研究函数的恒成立与存在性问题 例已知函数()()()21,ln 12 f x x x g x x a =+=+-. (1)若存在[]0,2x ∈,使得()()f x g x =,求实数a 的取值范围; (2)若存在[]0,2x ∈,使得()()f x g x >,求实数a 的取值范围; (3)若对任意[]0,2x ∈,恒有()()f x g x >,求实数a 的取值范围; (4)若对任意[]12,0,2x x ∈,恒有()()12f x g x >,求实数a 的取值范围; (5)若对任意[]20,2x ∈,存在[]10,2x ∈,使得()()12f x g x >,求实数a 的取值范围; (6)若对任意[]20,2x ∈,存在[]10,2x ∈,使得()()12f x g x =,求实数a 的取值范围; (7)若存在[]12,0,2x x ∈,使得()()12f x g x >,求实数a 的取值范围; (8)若存在[]12,0,2x x ∈,使得()()12f x g x =,求实数a 的取值范围;

(1)恒成立问题 ①. ①x①D,均有f(x)>A恒成立,则f(x)min>A; ①. ①x①D,均有f(x)﹤A恒成立,则f(x)ma xg(x)恒成立,则F(x)= f(x)- g(x) >0,① F(x)min >0; ①. ①x①D,均有f(x)﹤g(x)恒成立,则F(x)= f(x)- g(x) <0,① F(x) ma x <0; (2)存在性问题 ①. ①x0①D,使得f(x0)>A成立,则f(x) ma x >A; ①. ①x0①D,使得f(x0)﹤A成立,则f(x) min g(x0)成立,设F(x)= f(x)- g(x),① F(x) ma x >0; ①. ①x0①D,使得f(x0) g(x2)成立,则f(x)min > g(x)ma x; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x)m in > g(x)m in; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x)max > g(x)max.

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

利用导数解决恒成立能成立问题备课讲稿

利用导数解决恒成立能成立问题

利用导数解决恒成立能成立问题 一利用导数解决恒成立问题不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) (1)恒成立问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 1.若在x∈[1,+∞)上恒成立,则a 的取值范围是 ______ . 2.若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围 _________ . 3.设a >0,函数,若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g(x 2)成立,则a 的取值范围为 _________ . 4.若不等式|ax 3 ﹣lnx|≥1对任意x∈(0,1]都成立,则实数a 取值范围是 _________ .

15.设函数f(x)的定义域为D,令M={k|f(x)≤k恒成立,x∈D},N={k|f(x)≥k恒成立,x∈D},已知 ,其中x∈[0,2],若4∈M,2∈N,则a 的范围是_________ . 6.f(x)=ax3﹣3x(a>0)对于x∈[0,1]总有f(x)≥﹣1成立,则a的范围为_________ . 7.三次函数f(x)=x3﹣3bx+3b在[1,2]内恒为正值,则b的取值范围是_________ . 8.不等式x3﹣3x2+2﹣a<0在区间x∈[﹣1,1]上恒成立,则实数a的取值范围是__ . 9.当x∈(0,+∞)时,函数f(x)=e x的图象始终在直线y=kx+1的上方,则实数k的取值范围是_________ .10.设函数f(x)=ax3﹣3x+1(x∈R),若对于任意的 x∈[﹣1,1]都有f(x)≥0成立,则实数a的值为 _________ .

新课标全国III卷理科数学2016-2020年高考分析函数与导数大题

新课标全国III卷理科数学2016-2020年高考分析函数与导数大题 一、函数与导数大题: 函数与导数大题5年5考,每年1题.第1问一般考查导数的几何意义或函数的单调性,第2问考查利用导数讨论函数性质.若是在小题中考查了导数的几何意义,则在大题中一般不再考查.函数载体上:无论文科理科,基本放弃纯3次函数,对数函数很受“器重”!指数函数也较多出现!两种函数也会同时出现!但是,无论怎么考,讨论单调性永远是考查的重点,而且仅仅围绕分类整合思想的考查.在考查分离参数还是考查不分离参数上,命题者会大做文章!分离(分参)还是不分离(部参),的确是一个问题!!一般说来,主要考查不分离问题(部参).另外,函数与方程的转化也不容忽视,如函数零点的讨论.函数题设问灵活,多数考生做到此题,时间紧,若能分类整合,抢一点分就很好了.还有,灵活性问题:有些情况下函数性质是不用导数就可以“看出”的,如增函数+增函数=增函数,复合函数单调性,显然成立的不等式,放缩法等等,总之,导数是很重要,但是有些解题环节,不要“吊死”在导数上,不要过于按部就班!还有,数形结合有时也是可以较快得到答案的,虽然应为表达不严谨不得满分,但是在时间紧的情况下可以适当使用. 2016年我在考前曾经改编了一个导数为(1)() x --的题目,和当 x e a 年全国1高考题的导数(1)(2) x -+完全类似. x e a

值得一提的是2017年(作为山东文科卷的关门题,还是给下一步的导数命题提供了一个新的思路,留下了一些回忆,也列在表中)山东文科的考法,学习了2016全国1的考法,却比全国1卷更上一层,这个导数为()()(sin ).f x x a x x '=-- 以上告诉大家,导数题命题关键是如何构造一个导数,使这个导数的讨论层次体现选拔性,达到压轴的目的.

导数中含参数问题与恒成立问题的解题技巧

函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结: 1、分类讨论思想 2、判别法 3、分离参数法 4、构造新函数法 一、分离讨论思想: 例题1: 讨论下列函数单调性: 1、()x f =();1,0,≠>-a a a a x 2、()x f =)0,11(1 2≠<<--b x x bx 二、判别法 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022a a a 或 (2)?? ???<-=-=-040)2(202a a 解(1)得???<<-<2 22a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习1. 已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。 三、分离法参数: 分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.即: (1) 对任意x 都成立()min x f m ≤ (2)对任意x 都成立。 例3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题16 函数与导数(2)(解析版)

专题16 函数与导数(2) 函数与导数大题:10年10考,每年1题.函数的载体上:对数函数很受“器重”,指数函数也较多出现,两种函数也会同时出现(2015年).第2小题:2019年不等式恒成立问题,2018年证明不等式,2017年不等式恒成立问题,2016年函数的零点问题,2015年证明不等式,2014年不等式有解问题(存在性),2013年单调性与极值,2012年不等式恒成立问题,2011年证明不等式,2010年不等式恒成立问题. 1.(2019年)已知函数f (x )=2sin x ﹣x cos x ﹣x , f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【解析】(1)∵f (x )=2sin x ﹣x cos x ﹣x ,∴f ′(x )=2cos x ﹣cos x +x sin x ﹣1=cos x +x sin x ﹣1, 令g (x )=cos x +x sin x ﹣1,则g ′(x )=﹣sin x +sin x +x cos x =x cos x , 当x ∈(0,2π)时,x cos x >0,当x ∈(2 π,π)时,x cos x <0, ∴当x =2π时,极大值为g (2π)=12π->0, 又g (0)=0,g (π)=﹣2, ∴g (x )在(0,π)上有唯一零点, 即f ′(x )在(0,π)上有唯一零点; (2)由(1)知,f ′(x )在(0,π)上有唯一零点x 0,使得f ′(x 0)=0, 且f ′(x )在(0,x 0)为正,在(x 0,π)为负, ∴f (x )在[0,x 0]递增,在[x 0,π]递减, 结合f (0)=0,f (π)=0,可知f (x )在[0,π]上非负, 令h (x )=ax , 作出图象,如图所示:

利用导数解决恒成立能成立问题

利用导数解决恒成立能成立问题 一利用导数解决恒成立问题不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) (1)恒成立问题 若不等式A x f 在区间D 上恒成立,则等价于在区间D 上min f x A 若不等式B x f 在区间D 上恒成立,则等价于在区间D 上max f x B 1.若在x ∈[1,+∞)上恒成立,则a 的取值范围是______ . 2.若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围_________ . 3.设a >0,函数,若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,则a 的取值范围为_________ . 4.若不等式|ax 3﹣lnx|≥1对任意x ∈(0,1]都成立,则实数a 取值范围是_________ . 15.设函数f (x )的定义域为D ,令M={k|f (x )≤k恒成立,x ∈D},N={k|f (x )≥k恒成立,x ∈D},已知,其中x ∈[0,2],若4∈M ,2∈N ,则a 的范围是_________ . 6.f (x )=ax 3﹣3x (a >0)对于x ∈[0,1]总有f (x )≥﹣1成立,则a 的范围为_________ . 7.三次函数f (x )=x 3﹣3bx+3b 在[1,2]内恒为正值,则b 的取值范围是_________ . 8.不等式x 3﹣3x 2+2﹣a <0在区间x ∈[﹣1,1]上恒成立,则实数a 的取值范围是__ .

9.当x ∈(0,+∞)时,函数f (x )=e x 的图象始终在直线y=kx+1的上方,则实数k 的取值范围是_________ . 10.设函数f (x )=ax 3﹣3x+1(x ∈R ),若对于任意的x ∈[﹣1,1]都有f (x )≥0成立,则实数a 的值为_________ . 11.若关于x 的不等式x 2+1≥kx 在[1,2]上恒成立,则实数k 的取值范围是_________ . 12.已知f (x )=ln (x 2+1),g (x )=()x ﹣m ,若?x 1∈[0,3],?x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是() A .[,+∞) B .(﹣∞,] C .[,+∞) D .(﹣∞,﹣] 13.已知,,若对任意的x 1∈[﹣1,2],总存在x 2∈[﹣1,2],使得g (x 1)=f (x 2),则m 的取值范围是() A .[0,] B .[,0] C .[,] D .[,1] 二利用导数解决能成立问题若在区间D 上存在实数x 使不等式A x f 成立,则等价于在区间D 上max f x A ;若在区间D 上存在实数x 使不等式 B x f 成立,则等价于在区间D 上的 min f x B.如14.已知集合A={x ∈R|≤2},集合B={a ∈R|已知函数f (x )=﹣1+lnx ,?x 0>0,使f (x 0)≤0成立},则A ∩B=()

高二数学导数中的恒成立问题专题学案(含答案)

1 第 讲 导数中的恒成立问题 时间: 年 月 日 刘满江老师 学生签名: 一、 兴趣导入 二、 学前测试 §1. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率 ,相应的切线 方程是 . §2.几种常见函数的导数 ①'C = ;②'()n x = ; ③'(sin )x = ; ④'(cos )x = ; ⑤'()x a = ; ⑥'()x e = ; ⑦'(log )a x = ;⑧'(ln )x = §3.导数的运算法则 (1)'()u v ±= . (2)'()uv = . (3)' ()u v = .(0)v ≠ §4.复合函数求导法则 复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=?,即y 对x 的 导数等于y 对u 的导数与u 对x 的导数的乘积. 解题步骤:分层—层层求导—作积还原. §5.函数的极值 (1)极值定义: 极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极 值; 极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极 值. (2)判别方法: ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极 值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极 值. 三、 方法培养

2007年高考数学试题分类详解函数与导数

2007年高考数学试题分类详解函数与导数 1、(全国1文理8)设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为 1 2 ,则a = A B .2 C . D .4 解.设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之分别为 log 2,log 1a a a a =,它们的差为 12,∴ 1 log 22 a =,a =4,选D 。 2、(全国1文理9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x , ()g x 均为偶函数”是“()h x 为偶函数”的 A .充要条件 B .充分而不必要的条件 C .必要而不充分的条件 D .既不充分也不必要的条件 解.()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,若“()f x ,()g x 均为偶函数”,则“()h x 为偶函数”,而反之若“()h x 为偶函数”,则“()f x ,()g x 不一定均为偶函数”,所以“()f x ,()g x 均为偶函数”,是“()h x 为偶函数”是充分而不必要的条件,选B 。 3、(山东文理6)给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,, ()() ()1()() f x f y f x y f x f y ++= -.下列函数中不满足其中任何一个等式的是( ) A .()3x f x = B .()sin f x x = C .2()log f x x = D .()tan f x x = 【答案】:B 【分析】:依据指、对数函数的性质可以发现A 满足()()()f x y f x f y +=, C 满足()()()f xy f x f y =+,而 D 满足()() ()1()() f x f y f x y f x f y ++=-, B 不满足其中任何一个等式. 4、(山东文11)设函数3 y x =与2 12x y -?? = ? ?? 的图象的交点为00()x y ,, 则0x 所在的区间是( ) A .(01), B .(12), C .(23), D .(34),

相关文档
最新文档