Investigations on glass-to-mold sticking in the hot forming process

Investigations on glass-to-mold sticking in the hot forming process
Investigations on glass-to-mold sticking in the hot forming process

Investigations on glass-to-mold sticking in the hot forming process

Daniel Rieser 1,Gerd Spie?,Peter Manns *

Fraunhofer-Institut fu ¨r Werksto?mechanik IWM,Wo ¨hlerstra?e 11,D-79108Freiburg i.Br.,Germany

Available online 11December 2007

Abstract

The sticking behavior of various mold materials and coatings for hot glass melt forming processes,like,e.g.glass container manu-facturing,was investigated using a new testing procedure.The mold material specimens under test were subjected to frequent contact

with hot viscous glass gobs in a pressing process with presetting well de?ned non-isothermal pressing parameters to simulate industrial working conditions.Three di?erent glass compositions were used in this investigation,soda-lime silicate glass,lead crystal glass,and borosilicate glass.The sticking characteristics of the tested mold materials and coatings were described by two quantities,a ‘lower’and an ‘upper’sticking temperature,which are speci?c for each mold material and type of glass in the non-isothermal pressing process.The ‘lower’sticking temperatures of uncoated mold materials were found to depend monotonically on the thermal e?usivity (heat pen-etration coe?cient)of the bulk mold materials.All of the coating materials applied to various substrate mold materials were found to reduce the ‘lower’sticking temperature as compared to the uncoated materials.Most of the coating materials were found to reduce also the ‘upper’sticking temperature.

ó2007Elsevier B.V.All rights reserved.

PACS:89.20.Bb;83.80.Ab;81.05.Kf;68.35.Np;46.80.+j

Keywords:Measurement techniques;Mechanical properties;Modeling and simulation;Oxide glasses;Surfaces and interfaces;Thermal properties;Viscosity and relaxation

1.Introduction

The phenomenon of glass-to-mold sticking is a major problem for industrial glass forming processes,like,e.g.container glass fabrication,as well as for precision mold-ing of optical components from inorganic glasses.The conditions,which lead to glass-to-mold sticking are not completely understood.Numerous investigations on stick-ing behavior of various mold materials with glass melts of di?erent compositions have been conducted during the past decades using di?erent experimental approaches [1–9].The results of several of those investigations are con-tradictory,and are even in contradiction with practical

experience in glass industry.Some of those discrepancies may be due to the fact that until now neither a precise de?nition of ‘the sticking temperature’nor a standardized or commonly accepted test procedure have been developed.

For systematic materials research and development of mold materials and coatings with regard to higher ‘sticking temperature’and improved wear behavior,a reliable test method is required,by which the service behavior of mold materials can be characterized with high relevance for industrial practice.In a ?rst step to overcome these di?cul-ties and to come to clearer results with respect to sticking behavior,a new testing method and a respective laboratory scale testing device were developed.By this method the sticking behavior of mold materials and coatings can be characterized,and in addition the corrosion and wear behavior of mold materials in hot forming of glass melts can be quanti?ed.

0022-3093/$-see front matter ó2007Elsevier B.V.All rights reserved.doi:10.1016/j.jnoncrysol.2007.02.095

*

Corresponding author.Tel.:+497615142135;fax:+497615142402.E-mail address:peter.manns@iwm.fraunhofer.de (P.Manns).1

Present address:RENA Sondermaschinen GmbH,D-78148Gu ¨ten-bach,Germany.

https://www.360docs.net/doc/e516261093.html,/locate/jnoncrysol

Available online at https://www.360docs.net/doc/e516261093.html,

Journal of Non-Crystalline Solids 354(2008)

1393–1397

2.Experimental setup

The testing method consists of a non-isothermal paral-lel-plate pressing process,a simpli?ed model of common industrial glass molding processes.The mold material spec-imens are subjected to pressing of series of small portions of hot glass melt at precisely de?ned process conditions.Sticking behavior as well as wear of the mold surfaces and surface quality of the pressed glass blanks are recorded as a function of the process parameters,i.e.glass tempera-ture,mold temperature,pressing pressure,pressing dura-tion,service time of the molds.

The experimental setup consists of a melting crucible,a servo-electrical parallel shear,a transfer channel,a pressing unit with heated inserts of the mold material,a cooling device and a pushing mechanism for separating the pressed glass blanks from the mold,and equipment for controlling and recording the process parameters.A schematic draw-ing of the testing apparatus is shown in Fig.1.Technical details of the experimental setup and the testing method are described elsewhere [10,11].

The pressing unit itself consists of a symmetrical setup with a lower and upper die,and is operated by a pneumatic actuator.The mold specimens are clamped onto heating units which are controlled to achieve a preset steady state temperature of the molds.The temperature of each mold specimen is monitored continuously with a miniature ther-mocouple embedded in the center of the pressing area,2.5mm underneath the mold surface.The absolute overall accuracy of the temperature measurements was better than ±3K.The glass melt streaming from the melting crucible is portioned into small gobs of constant mass by an appropri-ately controlled shear.The temperature of the glass melt is monitored by a thermocouple in the spout of the melting crucible.The glass gobs are transferred into the pressing unit and are pressed semi-automatically.In order to insure that the pressed glass blanks would stick preferably to the

upper mold,the temperature of the lower mold was adjusted 20K lower than the temperature of the upper mold.The term ‘mold temperature’used in this paper denotes the steady-state temperature inside the upper mold, 2.5mm underneath the mold surface,before the glass gob is pressed against the mold surface.

The occurrence of sticking of a pressed glass blank to the surface of the upper mold was detected by a mechanical pushing mechanism,as sketched in Fig.1.The intensity of sticking was quanti?ed by recording the time interval nec-essary to detach a pressed glass blank from the mold sur-face while applying to the glass blank a de?ned cooling procedure with a jet of cold air combined with a mechani-cal separation procedure which avoids damaging of the mold surfaces.The time interval between the end of the pressing duration,i.e.opening of the pressing unit and lift-ing of the upper die,and the instant when the pressed glass blank is released from the mold surface is denoted by the term ‘sticking time’as used in Fig.2.3.Results and discussion

The intensity of sticking of glass blanks to the surface of the pressing molds was found to depend on numerous parameters:type of glass,glass temperature,size of the glass gob,size of shear mark,type of mold material,mold temperature,molding pressure,duration of pressing,mold surface roughness,etc.From the process parameters which may be set for each pressing cycle,the mold temperature appeared to be the most important and dominating param-eter.Initial surface roughness of the mold specimen (mirror polished),mass of the glass gob (2.5g),molding pressure (2.5MPa)and duration of pressing (5s)were kept constant throughout these investigations.While keeping all the other parameters constant,the intensity of sticking was found to increase monotonically with mold temperature.Sticking of the glass occurred only above some critical mold temperature,and the intensity of sticking

increased

Fig. 1.Schematic drawing of the testing device,which consists of a melting crucible,servo-electrical parallel shear,transfer channel,pressing unit with heated inserts,cooling and pushing mechanism for separating the pressed glass blanks from the mold,devices for controlling and recording the process

parameters.

Fig.2.Sticking curve for pressing soda-lime silicate glass melt (type B270)with mold material Stellite 12ò.The values of ‘lower’and ‘upper’sticking temperature are marked with arrows.

1394 D.Rieser et al./Journal of Non-Crystalline Solids 354(2008)1393–1397

steeply with increasing mold temperature within a rather small interval of mold temperature until the glass blank adhered very strongly,and in many cases even permanently to the mold surface.Fig.2shows a typical experimental sticking curve,recorded from pressing soda-lime silicate glass with commercial mold material Stelliteò,which is widely used for plungers in industrial glass container man-ufacturing.All the mold materials and coatings tested in this study were found to exhibit essentially very similar dependence of sticking intensity on mold temperature, but with distinct di?erences in the temperature of onset of sticking as well as in the slope of the steep part of the curves.Sticking curves for numerous mold materials tested with hot forming of three di?erent glass compositions, soda-lime silicate glass(optical glass B270),lead crystal glass containing24%PbO,and Pyrexò-type borosilicate glass,have been reported in[10].

Summarizing the observations from the pressing exper-iments conducted throughout this investigation,from the sticking curves of the tested mold materials and coatings in each case two quantities,‘lower’and‘upper’sticking temperature were extracted.The position of these two characteristic temperatures in a typical pressing experi-ment are indicated in the sticking curve of Fig.2.The ‘lower sticking temperature’was de?ned as the lowest mold temperature at which pressed glass blanks would stick to that mold material.Below this characteristic tem-perature no sticking of glass blanks to the mold was observed,above the‘lower sticking temperature’all of the pressed glass blanks did always stick to the mold. The‘upper sticking temperature’was de?ned as the lowest mold temperature at which glass blanks would stick very ?rmly to the mold surface with sticking time of more than 60s.The values of‘lower’and‘upper’sticking tempera-tures were determined to an accuracy of approximately ±5K by conducting multiple pressing experiments in the respective temperature ranges.Statistical analysis on the observation of occurrence and duration of sticking in the region of the‘lower’sticking temperature is re?ected in[10–12].

The determined values of the‘lower’sticking tempera-tures for a variety of mold materials employed for pressing of three di?erent types of silicate glasses are plotted versus the thermal e?usivity(heat penetration coe?cient)of the mold materials in Fig.3.The expression de?ning the ther-mal e?usivity

b?

????????????????kác páq p

;

comprises heat conduction coe?cient k,speci?c heat c p, and density q of the material[13].The numerical values of thermal e?usivity of metallic mold materials were taken from the literature[14]and data sheets provided by the var-ious producers of the respective materials,and were extrap-olated to the temperature region of these pressing experiments,450–750°C.As Fig.3shows,the‘lower’sticking temperature of mold materials appears to increase monotonically with thermal e?usivity of the mold materials.

For the interpretation of this dependency and the appar-ent di?erences in‘lower’sticking temperature of di?erent mold materials for pressing of di?erent types of glass a mathematical model for the heat exchange process in the glass-mold interface was applied assuming‘ideal contact’of glass melt and mold surface.For such pressing condi-tions which lead to sticking,it is assumed that the viscous glass melt essentially comes into very close contact with the mold surface without any gap in between,in the very?rst instant of the pressing process.This assumption is sup-ported by the experimental observation that an air-?lled gap of some300nm width can be detected only after the sticking glass blanks were at least partially released from the molds.

For the mathematical model it is also assumed that the temperatures inside the glass blank and the mold body are initially homogeneous,and the two bodies are brought into contact instantly.Starting with di?erent temperatures of glass and mold,the resulting temperature distribution inside the glass and mold as function of time and distance from the interface can be derived[13].This model yields the mathematical parameter‘contact temperature’in the inter-face,which is independent of time,and must not be misun-derstood as the actual surface https://www.360docs.net/doc/e516261093.html,ing the experimentally determined values of the‘lower’sticking temperatures to calculate‘contact temperatures’at the onset of sticking,the model yields equal values of glass vis-cosity for all mold materials and types of glass tested.The experimental and mathematical results of this investigation lead to the conclusion that sticking will occur,if the glass viscosity which corresponds to the‘contact

temperature’Fig.3.Lower sticking temperatures of various mold materials for three di?erent glass types(borosilicate glass,soda-lime glass,lead crystal glass) plotted as a function of the thermal e?usivity of the mold materials.The numbers at the data points denote the respective mold materials:(1) Stellite12ò,(2)Cast iron GGG40,(3)Steel1.7335with JetCode,(4)Steel 1.7335boronized,(5)Bronze NiBz15,(6)AlN sintered ceramic,(7)CrNi-Steel1.4057,(8)Steel1.4057coated with TiAlN,(9)ODS-Nickel based ST015,(10)Nickel based Alloy30ò,and(11)ODS-Iron based ST020.The dashed lines are drawn as a guide to the eye.

D.Rieser et al./Journal of Non-Crystalline Solids354(2008)1393–13971395

in the glass-mold interface is less than the unique value of g c %108.8Pa s [15].The experimental results of this investi-gation on bulk mold materials are in very good qualitative agreement with the empirical experiences in industrial glass manufacturing,thus providing evidence for the suitability of this testing method.The applied model proves capable to explain the experimentally determined values of ‘lower’sticking temperature for bulk materials and di?erent types of glass.

The testing method was then also used for testing of coated mold specimens.Coatings of thin ?lms of various metallic and ceramic coating materials (Cr,TiAlN,AlN)were applied by di?erent techniques onto various substrate mold materials.From pressing experiments with these coated molds it was found that all tested coatings lead to a signi?cant lowering of the ‘lower’sticking temperature as compared to the uncoated mold materials,see Fig.4.The e?ect of lowered sticking temperature appeared very pronounced for the specimen of sintered ceramic material AlN with thin layers (0.5l m)of ceramic PVD-AlN coat-ings on the substrate mold material (see data points 9–11in Fig.4).The observed reduction of ‘lower’sticking tem-perature leads to the conclusion that the heat penetration from the glass body into the substrate mold material was substantially reduced by the coatings applied to the sub-strate material surface,thus shifting the contact tempera-ture towards higher values and reducing the contact viscosity in the glass-mold interface below the critical value for onset of sticking,g c %108.8Pa s [16].The presently used approximation in the mathematical model as well as the data base of thermal properties of thin ?lm composites will

have to be extended in order to predict the in?uence of mold coatings and surface layers on sticking correctly.The experimentally determined ‘upper’sticking temper-atures of several mold materials,uncoated and coated with various metallic and ceramic coating materials,are plotted versus thermal e?usivity of the respective substrate mold materials in Fig.5.Most of the coating materials also lead to a signi?cant lowering of the ‘upper’sticking tempera-ture.However,one type of coating material was identi?ed by this testing method,which apparently raises the ‘upper’sticking temperature to a large extent of approximately 50K,see marked data points 3–4in Fig.5.This type of thin ?lm ceramic coating containing compositions of chro-mium deposited on a nickel based alloy substrate has also proved to exhibit advantageous properties in isothermal precision molding of glasses for optical components [17,18].

4.Summary and outlook

Using a newly developed testing procedure,the sticking behavior of various mold materials (metals,ceramics,and coatings)was investigated for non-isothermal pressing of glass melts.The sticking characteristics of the tested mold materials and coatings were described by two quantities,the ‘lower’and the ‘upper’sticking temperatures.The ‘lower’sticking temperatures were found to depend mono-tonically on thermal e?usivity of the mold materials,but not on chemical composition of the glass or mold material.This tendency is explained in terms of a critical viscosity g c %108.8Pa s of the glass melt in the glass-mold interface from a mathematical model assuming ‘ideal contact’.The ‘upper’sticking temperatures depend on additional param-eters,which have not been quanti?ed completely

yet.

Fig. 4.‘Lower’sticking temperatures from pressing soda-lime silicate glass using various mold materials with bare surface (open symbols)and with surface coating (?lled symbols)plotted versus thermal e?usivity of the substrate materials.The arrows indicate that all of the tested coatings lead to a lowering of the ‘lower’sticking temperature.The numbers at the data points denote the respective mold materials:(1)Stellite12ò,(2)TiAlN on Stellite,(3)Nickel-base alloy,(4)Coating containing chromium on Nickel-base alloy,(5)Cast iron GGG40,(6)TiAlN/ZrN (superlattice)on Cast iron,(7)Stainless steel 1.4057,(8)TiAlN on Stainless steel,(9)AlN ceramic,(10)AlN coating on AlN ceramic,and (11)Two layers of AlN coating on AlN

ceramic.

Fig. 5.‘Upper’sticking temperatures from pressing soda-lime silicate glass using various mold materials with bare and coated surfaces.Most of the thin ?lm coatings lead to a lowering of the ‘upper’sticking temperature.Only one type of coating containing compositions of chromium (marked with solid arrow)raises the ‘upper’sticking temper-ature signi?cantly (>50K).The numbers at the data points denote the respective mold materials,same as in Fig.4.

1396 D.Rieser et al./Journal of Non-Crystalline Solids 354(2008)1393–1397

Coating materials(metallic and ceramic thin?lms) deposited onto various substrate mold materials did not lead to an improvement of sticking behavior with respect to raising sticking temperatures for non-isothermal https://www.360docs.net/doc/e516261093.html,pared to the uncoated mold materials,all types of coatings reduced the‘lower’sticking temperatures of the molds.And almost all of the coating materials also reduced the‘upper’sticking temperature.With some coat-ing compositions,however,improvements towards higher values of the‘upper’sticking temperature were observed. Therefore future investigations will focus on the develop-ment of such coating materials which would raise the ‘upper’sticking temperature,and on the development of an advanced quantitative testing method for such coatings. Acknowledgments

These investigations were conducted with the kind sup-port of the Arbeitsgemeinschaft industrieller Forschungs-vereinigungen(AiF),Ko¨ln,(AiF-No.13508N)under the auspices of the Hu¨ttentechnische Vereinigung der Deut-schen Glasindustrie(HVG),O?enbach/Main,utilizing re-sources provided by the Bundesministerium fu¨r Wirtschaft und Arbeit(BMWA),Berlin.Thanks are due to all these institutions.

References

[1]J.A.Kapnicky,H.V.Fairbanks,W.A.Koehler,J.Am.Ceram.Soc.

32(10)(1949)305.

[2]H.V.Fairbanks,in:Symposium sur le Contact du verre Chaud avec le

Me′tal;Scheveningen26.-29.05.1964.Union Scienti?que Continentale du Verre,Charleroi,1964,p.575.

[3]A.Smrcek,Silica′ty11(1967)267,339,345.

[4]W.-D.Kluge,Ein Beitrag zum Kontaktverhalten von Glas mit

Formgebungswerkzeugen(A contribution to contact behavior of glass with molding tools),Dissertation,Sektion Verfahrenstechnik und Silicattechnik,Bergakademie Freiberg,1989.

[5]P.Manns,W.Do¨ll,G.Kleer,Glastech.Ber.Glass Sci.Technol.68

(12)(1995)389.

[6]M.Falipou,C.Donnet,F.Mare′chal,J.-C.Charenton,Glastech.Ber.

Glass Sci.Technol.70(5)(1997)137.

[7]H.Wakatsuki,I.Satoh,Heat Trans.,Asian Res.30(8)(2001)660.

[8]K.Pahnke,Klei Glass Keram.23(3)(2002)10.

[9]J.Pech,G.Berthome′,M.Jeymond,N.Eustathopoulos,Glass Sci.

Technol.78(2)(2005)54.

[10]D.Rieser,Untersuchungen zum Klebe-und Abriebverhalten von

Formenwerksto?en fu¨r die Hei?formgebung von anorganischem Glas (Investigations on sticking and wear behavior of mold materials for hot forming of inorganic glass),Dissertation,Fakulta¨t fu¨r Maschi-nenbau,Universita¨t Karlsruhe,Karlsruhe,2004(URL:). [11]P.Manns,D.Rieser,G.Spie?,W.Do¨ll,G.Kleer,Eur.J.Glass Sci.

Technol.Part A,in press.

[12]D.Rieser,P.Manns,Sklar a Keramik53(11&12)(2003)285.

[13]H.S.Carslaw,J.C.Jaeger,second Ed.,Oxford,Clarendon,1959.

[14]Stahl-Eisen-Liste,Du¨sseldorf,Stahleisen,1990.

[15]D.Rieser,P.Manns,G.Spie?,G.Kleer,in:J.A.Varner,T.P.

Seward,H.A.Schae?er(Eds.),Advances in Fusion and Processing of Glass III:Proceedings of the7th International Conference on Advances in Fusion and Processing of Glass,Rochester,USA,27.-

31.07.2003,American Ceramic Society,Ceramic Transactions,Vol.

141,2004,p.281.

[16]D.Rieser,G.Spie?,P.Manns,in:79Glastechnische Tagung;

Wu¨rzburg23.-25.05.2005.O?enbach/Main:Deutsche Glastechnische Gesellschaft2005,CD-ROM:Referate der Vortra¨ge und Poster,S1-1725-Rieser.

[17]M.Hock, E.Scha¨?er,W.Do¨ll,G.Kleer,Surf.Coat.Technol.

163&164(2003)689.

[18]G.Kleer,W.Do¨ll,M.Hock,P.Manns, E.Scha¨?er,in:W.

Pannhorst,J.Deubener(Eds.),DGG Symposium Processing and Applications of Optical Components;Leipzig27.-28.05.2003,Deut-sche Glastechnische Gesellschaft e.V.,O?enbach,2003,p.7.

D.Rieser et al./Journal of Non-Crystalline Solids354(2008)1393–13971397

跨文化传播的基本理论命题

跨文化传播的基本理论命题 2014年03月11日10:45 来源:华中师范大学学报作者:单波字号 内容摘要:跨文化传播的基本理论命题围绕文化与传播、人与人的传播关系、他者的意义等问题展开,包括文化与传播的同构、人是传播关系的总和、他者是主体建构自我意义的必备要素。本文认为,文化与传播同构是用来观察文化的偏向与传播的偏向的理论命题,我与他者的关系根本不是传播主体和传播客体的关系,而是同一传播活动中共生的两个主体,我们应该理解并接受差异性,在差异中理解自我的意义,在对话中建立互意性理解。 关键词:跨文化传播;他者;传播关系 基金项目:教育部211工程项目“社会转型与中国大众媒介改革” 跨文化传播如何可能?这是不同文化背景的人与人之间理解与沟通的难题(problems),以及在解决难题的过程中需要质疑的问题(question)。当我们寻找解决这些难题和问题的可能性时,跨文化传播理论也就被我们创造出来了。不过,跨文化传播研究史表明,所有的理论都只是一种相对的解决方案,而且每一种理论都与现实的其他问题相冲突,也与其他理论相矛盾。于是,我们感觉到跨文化传播的理论基础和实践基础很不可靠,又回到文化、传播、语言、社会、陌生人、文化认同、文化多元化、文化适应等概念里寻找基础。其实,跨文化传播的基础不是什么概念化的东西,而是需要我们创造的东西。世事变幻,我们不可能固守某种概念以及由概念形成的理念、规则去进行跨文化传播,否则就是“缘木求鱼”。我们只能创造彼此交流的基础,即共同面对跨文化传播的难题和可质疑的问题,形成可讨论、争辩的对象性问题(issues)。本文试图提出来的就是这样一些集problems、question与issues于一身的基本理论命题,它们围绕文化与传播、人与人的传播关系、他者的意义等问题展开。我们只有在实践中辨析这些问题,才能发现跨文化传播的可能路径。 一、文化与传播的同构 文化与传播的同构通常表述为“文化即传播,传播即文化”。这一观点被语言学家萨丕尔(Edward Sapir)表述过,也在爱德华?霍尔的《沉默的语言》一书中出现过[1],他们之后的许多学者也多次重复这一表述。有人据此从传播的角度把文化定义为:由特定传播媒介所负载、并由人们设计的传播结构加以维护、推行的社会价值观念体系,以及由传播网络限定的社会行为模式;与此同时,又相应地把传播界定为:社会赖以存在发展的通讯、交流形式和文化的信息储存、放大、删减、封锁的活动机制[2]。这种定义并不周全,可它让我们建立起一种真实的想象:传播既是文化画面展开的形式、又是文化生产的“工厂”。当我们注意画面时,必定会看到传播的偏向;当我们走进“工厂”时,可感受到传播创造文化以及文化间的关系,体会到在传播中按照文化存在和发展的需要去设计文化。这样一来,“文化与传播同构”所表现的难题就在于,当文化的偏向与传播的偏向互现的时候,不同文化背景的人与人之间的理解与沟通就会显得相当艰难。如果这个问题不解决,“文化与传播同构”的实际意义就变得非常可疑。 1.传播是创造、修改和转变一个共享文化的过程 把文化与传播扯在一起曾经受到雷蒙?威廉姆斯和斯图尔特?霍尔的质疑和反对。特别是

跨文化传播学理论笔记(1)

跨文化传播学理论笔记 1、爱德华·霍尔的非语言传播理论 1955年在《科学美国》(Scientific A merican)发表了第一篇跨文化的非语言传播论文,即《举止人类学》(The Anthropology of Manners),通过日常沟通行文来分析文化。扩展此文章思路,形成通俗读物《沉默的语言》(The Silent Language)。他将文化看作是“人们的生活方式,以及他们所习得的行为模式、态度和物质的总和”,并认为他从深层持续稳定地控制着人们的行为方式,也掩藏着人们行为方式的很多层面。 分析方法:通过定义文化的基本单位或“元素”(isolate),然后把这些元素联系到生物基础上,这样就能在不 同文化间进行对比,从而建立统一的文化理论。 核心意义:学习理解眼意识层面的交流过程,即理解我们的潜意识文化(unconscious culture),因为“理解和洞见他人心理过程的工作比我们多少人愿意承认的困难得多而且情况也严重得多。”霍尔所揭示的作为文化隐藏之物的无声的语言——声调、手势、表情、时间与空间等,无不蕴藏这跨文化交流过程中的文化心理,尤其是非语言传播的文化无意识特点。 其他著作:《潜藏的层面》(The Hidden Dimension,1966)、《超越文化》(Beyond Culture 1976)、《理解文化差异》(Understanding Cultural Difference: Germans, French and Americans, 1990)等。 归纳出两种奠基性的跨文化传播学思想与方法: 1、将人类学对单一文化的研究扩展为比较文化研究,关注不同文化的人之间如何互动。最具启发的思想是:文 化是人类之间的联系纽带,也是他们与他者互动的方式。(这成为后来文化差异与互动研究的理论来源,如丁允珠的“面子协商”理论) 2、将文化研究从宏观视野转为微观视野转向了微观分析,其中最重要的是界定了文化的“基本讯息系统”(Primary Message Systems),即互动、联合、生存、两性、领土、时间、学习、消遣、防卫、利用,构成了对文化的立体化理解。其空间行为模式(proxemics)把空间当做文化的特殊表现方式,认为来自不同的感官世界中,一种文化中的人根据其文化感知模式而获得的体验会完全不同于其他文化。同时,在文化身份确认笼罩下的人们往往把他者视为他们自己的不可预测的、不可控制的一部分,从而形成交流障碍,为此,必须超越文化,把自己从潜意识中的文化网络中解脱出来。 2、霍夫斯特德的“文化差异的维度” 荷兰学者霍夫斯特德(Greet Hofstede)在20世纪70年代末,进行了一次迄今世界上最大规模的文化价值调查研究,调查了66个国家117000位IBM员工

网络与跨文化传播问题初探

网络与跨文化传播问题初探 作为一个全球性的传播媒介,网络给不同国家、不同民族之间的交流,带来了前所未有的便利,也因此大大扩展了跨文化传播的场合、范围。关注网络中的跨文化传播现象,对于我们针对不同的对象采取恰当的传播策略,以提高传播效果,有着十分重要的意义。同时,也有助于我们认识网络环境下文化发展的走向。在跨文化传播方面,各国学者已经开展了很多研究,其研究的角度有大众传播、人际传播、组织传播、营销传播等多方面,也提出了“区分文化价值观的四个维度”、“语境”等重要概念。这些研究成果,为我们研究网络中存在的跨文化传播问题,提供了一个很好的基础。当然,目前直接针对网络进行的跨文化传播研究与分析,似乎还不多见。本文也只是想起一个抛转引玉的作用。值得强调的是,在从跨文化传播视野研究网络时,我们不应该把网络单纯看作是一种大众传播媒介。网络是集人际传播、群体传播、组织传播与大众传播于一体的一种全新媒介,而跨文化传播现象在每一种传播层面上都存在着。只在把所有这些现象联系在一起认识,才可能真正理解跨文化传播的全部内涵。一、文化价值观的差异对网络传播的影响美国学者海尔特·霍夫斯泰德在《美国的动机、领导和组织的管理理论适用于外国吗?》一文中指出,文化不是个人的特征,而是包括由相同教育和生活经历共同造就的一群人的特征。文化可以是多层次的,家庭、社会、群体、地区、职业环境以及国家。而区分不同国家文化,有四种维度:1.权力差距,即一个社会成员接受在机构里和组织里权力分配不平等这一事实的程度。下图所示的权力差距小与权力差距大的文化是两个极端。霍夫斯泰德认为大多数国家都处于这两者之间。权力差距小权力差距大社会上的不平等应缩小世上存在不平等的秩序,每人在世界上都有自己恰当的位置:人们地位的高低由该秩序保护所有的人都应当相互依赖一些人应当独立,大多数人应依靠他人等级制度意味着角色的不平等,建立它是为了便利等级制意味着存在的不平等上级认为下级是“和我一样的人” 上级认为下级是和我不同一类的人下级认为上级是“和我一样的人” 下级认为上级是和我不同一类的人上级是可以接近的人上级是不可接近的人权力的运用应当正当合法,并服从于权力运用的好坏与否的判断标准权力是不论好歹的社会的基本事实,与其正当合法性不相关一切人都拥有平等的权力掌权者是被赋予了特权的人权力差距小的社会权力差距大的社会掌权

跨文化传播能力

前人对跨文化传播能力的研究,大致包括这三个方面:第一个是为什么要研究跨文化传播的能力?第二,跨文化传播能力是什么?第三,如何适应跨文化传播或进行有效的跨文化传播? 传播活动中,如果讯息的发出者和接受者来自不同的文化,也就是说当讯息在一种文化环境中被编码,而在另一种文化环境中被解码,此时跨文化传播就发生了。当讯息在不同文化环境下被编码和解码时,有可能会出现意想不到的意义误差。文化差异,影响人们互相准确理解,跨文化传播就达不到理想效果。文化冲突等跨文化传播的困难出现了。人们希望成为更好、更出色、更成功的跨文化传播者。所以跨文化传播的能力就成了跨文化传播研究的很重要的部分。 跨文化传播学研究最初的侧重点是在霍尔原有的经验模型基础上,对有效沟通的实践方面进行实地测量。学者们最先关注的是跨文化传播行为的有效性和个人在异文化环境下的活动能力,他们主要从这两方面为跨文化传播的能力进行界定和研究。他们认为跨文化传播能力是一种通过学习和训练可以不断提高的能力。比如说外语能力,教育能力,推销能力等。 1978年,哈默等学者通过对在异文化环境中生活的人的经历分析,确定了跨文化传播能力的三个尺度:应付心理压力的能力,有效交流的能力,建立人际关系的能力等三方面的能力。 1984年,学者哈默首次提出了“跨文化传播能力”这样的术语。直到1989年《跨文化关系国际期刊》也出版了有关能力的专刊。当时跨文化传播能力这个术语作为跨文化传播结果的代表领域开始引发了广泛的注意和使用。有很多研究跨文化传播结果领域的学者自觉地用“跨文化传播能力”来界定自己所研究的领域。和“跨文化传播能力”这个术语并行的还有一个术语是“跨文化传播效力”,但后来学者更多的还是用“能力”来界定自己研究的领域。 之后,在1989年,学者鲁本在以往的研究的基础上,将跨文化传播能力又归纳为积极的人际关系能力,信息传递能力和依从获取能力等三方面的界定。 后来,学者考斯特和奥莱贝在鲁本提出的模型上发展出了测量跨文化交际能力的以下八个方面的标准。这样,对跨文化传播能力的界定和研究更加的完善和更加细化。 在跨文化传播中,如果传播者能以适应传播的情景和人际关系的恰当方式达到目标,就被认为具有跨文化传播能力。 提高跨文化传播能力主要从动机,知识和技巧等三个方面来进行研究。 动机是跨文化传播行为的目的,人的任何行为都是由动机引发,跨文化传播总是要达到一个具体的,一定的目的,所以基本上都是有意识的行为。有意识的动机决定人们的跨文化传播行为,动机增强,跨文化传播能力也会随着增强。所以需要增强或达到高水平的跨文化传播动机。这需要我们做到以下四点:目标确认,得失比评估,效能导向和增强自信。 目标确认:如果像《需要做什么?》,《能够做什么?》,《目标是什么?》这样一类问题提出的越明确,传播目的就越强烈。

探讨跨文化传播与翻译的关系

探讨跨文化传播与翻译的关系 一、引言 翻译作为一种语际交流活动,不是简单的从一种语言形式转换为另一种语言形式,而是把一种文化中的语言代码转换成另一种文化中的对应语言代码。因此,翻译是一种跨文化交流活动,应该接受跨文化交流学的理论指导。长期以来,翻译经常被视为一种语言艺术,被人们用超越时间的语法规则加以描述和考察。“对等”问题长时间的困扰着翻译工作者,而翻译研究也始终围绕着一个问题:怎样把原文意思忠实而准确的表达出来,让译文读者达到和原文读者相同的感受。 跨文化交流新的形势和特点对翻译工作提出了新的挑战和要求,传统的翻译研究已经不能满足和适应新的形势需求,这就要求我们从一个新的视角来考察翻译。可喜的是,我们已经看到越来越多的学者提倡将翻译研究置于一个更广阔的文化交流语境下。翻译不再被视为简单的两种语言之间的对等转换,而被看作是一股塑造文化,文学的重要力量,是一种独特的政治,经济和文化行为。因此,用跨文化交流学的理论对待和处理翻译过程中遇到的问题,无论从理论还是实践上都是一个重大的课题。本文拟从两个方面来讨论:跨文化交流活动中翻译的地位和作用;不同文化的思维模式对翻译的影响。 二、跨文化交流活动中翻译的地位和作用 世界跨文化交流活动源远流长。在有文字可考的历史中,古代巴比伦王国法典中就记载有到国外购买奴隶的规定。我国古代的丝绸之路见证了中华民族和世界各国人民友好交流的历史。毋庸置疑,无论从质量还是数量来看,当今时代的跨文化交流活动都是史无前例的。本世界60年代加拿大学者麦克卢汉就提出了“地球村”的概念。此后不到半个世纪,科学技术飞速发展,交通和通讯技术日新月异,整个地球成为一个名副其实的地球村,越来越多的人生活,工作或学习在不同文化的人群中。不同文化背景的人聚集在一起,互相学习,了解和交流。在这种背景下,跨文化交流学(或称为跨文化传播学)应运而生,以解决跨文化交流活动中遇到的一些问题,寻求有效的交流途径,提高交流的层次和水平。

跨文化传播学论文

跨文化传播学论文 随着来华留学生的规模和人数不断壮大,对外汉语已经成为我国一个高速发展的专业,在对外汉语教学中,在跨文化传播语言的的同时,如何把握传统的第二语言教学和文化教学之间的关系,本文试从跨文化传播的角度试析对外汉语教学中的文化教学意识。 一、对外汉语教学与跨文化传播之间的关系 (一)跨文化传播学的概念 跨文化传播学(International Communication),又译为跨文化交际或跨文化交流。但无论是传播抑或交流,都强调了一种基于文化之上的个人、群体、种族或者国家之间的交往。同时,也突出了跨文化传播中的“对外交流”和“语言交际”两个层面的含义。 我们在这里运用一个较为综合的跨文化传播定义:各种文化信息在时间和空间中流动、共享和互动的过程不仅关联不同文化的成员之间发生的信息传播与人际交往,还涉及人类社会中诸多文化要素的扩散、渗透和迁移。究其实质,跨文化传播就是一种沟通和建立在不同文化中的人与人之间共存关系的文化交往活动,或者说,是人类社会关系和社会交往的跨文化、跨区域的一种“延伸”过程。 (二)对外汉语教学的概念 对外汉语教学是汉语作为第二语言的教学,其根本目的是培养语言学习者利用汉语进行跨文化交际(跨文化传播)的能力。 对外汉语教学既是一种语言教学,同时又是一种文化教学,语言教学与文化教学的统一性,是对外汉语教学的最根本特征。只有挖掘出语言背后所包含着的文化内容,才能使之得以完满的诠释,正如吕必松先生在《对外汉语教学概论》中所讲的一样:“从语言学习和语言教学的角度研究语言,就必须研究语言与文化的关系,因为语言理解和语言使用都离不开一定的文化因素”。 (三)对外汉语教学与跨文化传播之间的联系 从上文中我们不难发现在对外汉语的教学过程中实际上离不开跨文化传播的帮助和指导。对外汉语教学的根本目的之一就是使语言学习者能够进行跨文化传播或者交际。而同时,跨文化传播本身所包含的“对外交流”和“语言交际”这两个层面也恰恰符合了对外汉语教学的需要。 外国学习者来到中国学习汉语,从某一个层面上讲,其实就是在学习一种特有的中国文化。语言是记录文化的最重要符号系统,中国文化是对外汉语教学的重要内容之一,所以,对外汉语教学就离不开文化教学。那么,在这种文化教学的过程中,我们就需要一种多学科理论基础的且又含有一定的文化学基础的一种学科作为教学过程中的理论基础和

相关文档
最新文档