An Introduction to Panel Data 固定样本数据

地球物理课程设计报告样本

《地球物理测井》课程设计 指导老师 专业地质学 班级 姓名 学号

一、课程设计目的: 通过对《地球物理测井》基本理论与方法的学习,对某实际测井资料进行岩性划分与评价、储层识别、物性评价及含油气性评价。获得常规测井资料分析的一般方法,目的是巩固课堂所学的的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究。 二、课程设计的主要内容: 1.运用所学的测井知识识别某油田裸眼井和套管井实际测井资料。 2.使用井径、自然伽马和自然电位划分砂泥岩井段划分渗透层和非渗透层。 3.根据密度、声波和中子孔隙度测井的特点,在渗透层应用三孔隙度测井曲线求出储层的平均孔隙度。 4.根据划分出的渗透层,读出裸眼井和生产井储层电阻率值。 5.根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。 6.根据开发过程中含油饱和度的变化,确定储层含油性的变化,并判断该储层的性质。 三、基本原理: (一)岩性划分 岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。 1 定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征。 岩性自然电位自然伽马微电极电阻率井径声波时差 泥岩泥岩基线高值低、平值低、平值大于钻头 直径 大于300 页岩近于泥岩基线高值低、平值低、平值较泥 岩高大于钻头 直径 大于300 粉砂岩明显异常中等值中等正幅度 差异低于砂岩小于钻头 直径 260-400 砂岩明显异常(Cw≠ Cmf)低值明显正幅度 差异 中等到高,致 密砂岩高 小于钻头 直径 250-450(幅度较 为稳定)

第六章综合地质地球物理方法解析

第六章综合地质地球物理方法 第一节不同勘探阶段的综合地质地球物理方法 一、成矿远景预测阶段 矿产勘查中要解决的首要问题是到什么地方去找矿,为此首先要选择成矿的远景靶区。地质、地球物理及地球化学人员通过地质调查与地球物理、地球化学测量获得的资料研究区域的构造、矿源层、成矿规律、成矿环境和成矿条件,预测成矿的远景区。 (一)地质任务 1.成矿的地质前提研究 在评价固体矿产成矿区的远景时,要研究岩浆控制条件、地层条件、岩性条件、地球化学条件及地貌条件等。其中主要的是岩浆、构造和地层控制条件,而区域和深部地质构造是控制全局的。已知与超基性岩紧密相关的矿床有铬、铂、金刚石和磷灰石等;与基性岩共生的矿床有钛磁铁矿和硫化镍矿;与中性和酸性火成岩有关的矿床有钨、锡、钼、铜、铅、锌、金、铀与石英等。区域性和深部地质构造控制着成矿区、成矿带、矿田和矿床的位置。在成矿区的划分时,区域性和深部地质构造有很重要的作用。断裂带是岩浆侵入的通道,褶皱与大断裂交叉处往往是控制成矿的远景区。在评价内生矿区时,岩浆和构造控制是主要的;而在评价海相沉积矿床时,地层及构造控制则是主要的。前寒武纪是最古老和规模最大的鞍山式铁矿的成矿时期;震旦纪是宣化式铁矿的成矿时期;上泥盆纪是宁乡式铁矿的成矿期;奥陶纪是灰岩侵蚀面上的中石炭纪底部的山西式铁矿的成矿期;二叠纪是涪陵式铁矿的成矿期。铀矿、锰矿、铜矿、铝土矿等都受地层控制;有些内生矿床受不透水盖层的控制,如汞矿。锑矿、多金属矿。 2.含矿性标志 在确定成矿远景区时,除了要考虑成矿的地质前提外,远景区内还应有含矿性标志存在。凡能直接间接证明被评价地区地下存在着矿产的任何地质、地球化学、地球物理或其他因素, 都可算作含矿性标志。成矿作用的直接标志有:○1天然或人工露头(矿产露头)上的矿产显示;○2有用矿物和元素的原生晕和分散晕区;○3有用矿物和元素的次生机械晕、岩石化学、水化学、气体和生物化学晕、晕区和分散流;○4地球物理异常;○5古探矿遗迹和矿产标志。成矿作用的间接标志包括:○1蚀变的近矿围岩;○2矿化的矿物和伴生元素;○3历 史地理和其他间接资料。 (二)地质、地球物理与地球化学综合预测成矿远景区 矿产在地壳中的分布受各种成矿条件的控制,不同类型矿床,其成矿控制条件不同,研究的重点也不同,如内生矿床着重研究岩浆岩、构造以及围岩岩性条件,沉积矿床应着重研究地层、岩性、岩相和构造条件,风化矿床还应研究风化作用条件,对各类砂矿主要研究地貌条件,对变质矿床要研究变质作用条件。 1.地质、遥感与物探结合查明构造条件

[Petrel]地质建模我们需要考虑些什么

[Petrel]地质建模我们需要考虑些什么?(二) 如果你对于地球物理感兴趣,你可以继续看二、三、四,否则我建议你等两天直接看五。 速度前奏 由井的分层到地震剖面的时间,我们是通过一种叫做“人工合成地震记录(Synthetics)”的技术来建立井点处的时间与深度的对应关系的。 这张图算是相对比较标准的作对比的剖面。不过你比较经常看到的是下面的两种:

其实这个标着b)的图上的井对应的东西不叫人工合成地震记录,而叫做垂直地震剖面(VSP,Vertical Seismic Profile),就是在井眼上像我们做地震一样做那么一遍(详细机理我们就不说了,你可以搜搜相关的词),这样我们就有机会把这两种不同的地震数据放在一起来比较一下了,因为它们都是地震而且位置也重合,它们的相似度肯定很高,这个过程就是“标定”。所谓“标定”,就是把地震剖面的时间和井上的深度一一对应起来。我这里只想告诉你的是Synthetics其实就是模拟的VSP。这跟我们通过声波曲线来解释孔隙度的过程有些类似,但是这个过程似乎更加成熟了一些。现在有些地方甚至不再怎么测VSP测井,而是直接利用人工合成地震记录来替代真实的井眼处地震记录来进行“标定”。 如果可以继续用开车去东来顺这个例子,VSP就是真的开一辆车,拿一个秒表在标志性建筑前计时,一直到达东来顺为止;Synthetics则相当于你在电脑游戏空间内模拟了一个数字化北京,在其中理论性的开一个车,也到处拿个秒表去卡到达标志性建筑的时间。 而在标志建筑物前计时的过程我们称之为“Checkshot”。Checkshot,就是你跑拉力赛,有一些必须经过的点会给你的车拍照,以避免你抄近路。在地球物理学家那里就是时间-深度对应关系的意思。如果一个井或者一个工区你有了Checkshot就意味着这口井或者这个工区都可以同时在时间域和空间域内被你识别到。换言之,你在垂向上有两种坐标,一种标米,一种标毫秒。 对于我们地质学家来说,Checkshot就是一扇窗户,透过它你将看到一个扭曲世界中的真实——对于地球物理学家来说,非常非常真实。 如果你有了Checkshot,那么其实你就等于说有了一连串的 时间1 深度1 时间2 深度2 时间3 深度3 : :

地质地球物理模型可视化与3D建模国内外研究现状

地质地球物理模型可视化与3D建模国内外研究现状 最早的地质体3D可视化建模软件诞生于西方。其发展的一般历程如下:早在70年代初西方矿业界就将三维造型技术应用于地质、矿业领域。早期的采矿计算机辅助设计阶段是底下三维可视化技术的萌芽和孕育阶段。之后,随着计算机技术的不断更新和三维造型技术的不断进步,三维造型技术也不断吸取先进技术,在地质领域中的应用也不断得到扩展。80年代末图像仿真技术和三维GIS 技术的发展,推动了地下三维可视化技术发展,一大批地下三维软件系统被开发应用;90年代初期,开发了大量基于UNIX且用于工作站环境的软件系统。90年代中期以来,随着微机性能的提高,一些地下真三维建模软件开始一直到Windows操作系统和微机环境。 20世纪80年代以来,三维地学可视化系统应用于地质建模在国外已经变得非常普遍,以美国、加拿大、英国为代表的西方国家相继推出了多种代表性的地学可视化建模软件,如Earth Vision新型地质体建模软件、GeoViz地球物理三维可视化应用软件及3Dseis三维地震分析系统等。 我国科学计算可视化技术的研究始于90年代初期。由于数据可视化所处理的数据量非常庞大,生成图像的算法又比较复杂,过去常常需要使用巨型计算机和高档图形工作站,因而,数据可视化开始都在国家级研究中心、高水平的大学、大公司的研究开发中心进行研究和应用。近年来,随着计算机功能的提高、各种图形显卡以及可视化软件的发展,可视化技术已扩展到科学研究、工程、军事、医学等各个领域。随着本世纪以来矿业的复兴以及GIS热潮在中国兴起,一些GIS软件开发商开始开发通用的三维GIS软件,而一些大型矿业集团也联合一些高等院校或科研机构开始开发专门的地质体三维可视化建模软件。目前我国具有独立自主版权的三维地质模拟软件有北京理正软件设计研究院开发的“地理信息系统——地质专题”。近年来国家自然科学基金委员会大力支持地学可视化研究,先后资助了“复杂地质体的三维建模和图形显示研究”、“油储地球物理理论与三维地质图像成图方法”、“地学时空信息动态建模及可视化研究与应用”等项目。1996年中国科学院地球物理研究所(现为中国科学院地质与地球物理研究所)与胜利石油管理局在国家自然科学基金会重点项目“复杂地质体”中,开始追踪研究GOCAD。长春科技大学在阿波罗公司TITANGIS上开发了GeoTransGIS三维GIS,主要用于建立中国乃至全球岩石圈结构模型的三维信息。石油大学开发的RDMS、南京大学与胜利油田合作开发的SLGRAPH都是用于三维石油勘探数据可视化。中国地质大学开发的三维可视化信息系统GeoView可实现真三维地学信息管理、处理、计算分析与评价决策支持。 但从总体上来说,我们国内的水平与国外先进水平还有差距。现在国内石油公司、地球物理公司等单位普遍使用的地质建模软件大都是从国外引进的并以Land-mark公司和GeoQuest公司的解释系统居多。因此,组织力量开发可视化商业软件,并通过市场竞争,促使其逐步成熟,已成为当务之急。

研究所名称地质与地球物理研究所

研究所名称:地质与地球物理研究所 一个定位 内容备注以固体地球各圈层物质组成和界面相互作用及其资源、环境、工程地质问题为主攻方向,从全球视 野出发,在基础研究的某些领域作出引领学科发展的原创性成果,高新技术产业作为催化剂,为解决资 源能源作出贡献,打造固体地球科学领域具有研发能力、可持续发展的基础研究与高新产业相结合的国 际化研究中心。 三个重大 突破 名称类别战略领域考核判断标准备注特提斯造山带演化 1、解决重大科学 问题 1、具有明确目标导向的 交叉和重大前沿; 10、资源与海洋科技 在本领域最有影响的国际学 术会议上做特邀报告;成为 Nature、Science等高影响杂志 年度综述的内容;获国家自然 科学奖 资源探测装备研发 3、突破关键核心 技术 5、纳米、先进制造与新 材料; 10、资源与海洋科技 获得国际国内核心专利并得 到应用;打破国际市场垄断; 获得国家科技进步一等奖 油气勘探先导技术 4、形成系统解决 方案 10、资源与海洋科技 获得国际国内核心专利并得 到应用;打破国际市场垄断; 获得国家科技进步一等奖

五个重点培育方向 名称类别学科领域比较优势备注 地球内部界面结构与动力 学 1、在原有优势基 础上发展的方向 地球动力学(1702010); 勘探地球物理学 (1702065);地磁学 (1702030);地震学 (1702060) (1)国际前沿研究方向; (2)有长期的学科积累; (3)有顶尖的科研团队; (4)有创新的科研平台 比较行星学 2、有望形成的新 的重要研究方向 比较行星学(1606070); 月球与行星化学 (1602530);空间物理 探测(1702540) (1)国际前沿研究方向; (4)有创新的科研平台 气候系统古增温与深部碳 循环 1、在原有优势基 础上发展的方向 第四纪地质学 (1705051);地球内部 化学(1703030) (1)国际前沿研究方向; (2)有长期的学科积累; (3)有顶尖的科研团队 西太平洋边缘海地质与地 球物理 2、有望形成的新 的重要研究方向 海洋地球物理学 (1706020);海洋地质 学(1706030) (1)国际前沿研究方向; (4)有创新的科研平台 生物地球物理 1、在原有优势基 础上发展的方向 基因组学(1803710); 地磁学(1702050);微 生物生物化学(1806110) (1)国际前沿研究方向; (3)有顶尖的科研团队; (4)有创新的科研平台

地下结构设计的荷载、模型、方法的确定

地下结构设计的荷载、模型、方法的确定 近年来,地下结构设计的荷载、模型、方法等问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了建筑工程地下结构中的设计要点,并结合相关实践经验,分别从多个角度与方面就建筑工程地下结构优化设计问题展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 标签:地下结构设计;荷载;模型;方法 1、前言 随着建筑工程可靠性条件的不断变化,对地下结构设计提出了新的要求,因此有必要对其荷载、模型、方法的确定展开研究,以期用以指导相关工作的开展与实践,并取得理想的设计效果。基于此,本文从概述相关内容着手本课题的研究。 2、概述 地下室工程涉及的专业极为复杂,在建筑的地下结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。对于具有大底盘地下室的高层建筑群体而言,塔楼部分一般在使用阶段不会存在抗浮问题,但裙房及纯地下室部分经常会有抗浮不满足要求的问题。而且由于实际地下室抗浮设计中往往只考虑正常使用极限状态,对施工过程和洪水期重视不足,因而也会造成施工过程中由于抗浮不够而出现局部破坏,加上地下室防水工程是一项系统性工程,涉及设计、施工、材料选择等诸多方面因素,因此造成了地下结构设计难点繁多,一般来讲概括起来为结构平面设计、抗震设计、地下室抗浮、抗渗设计、外墻结构设计。 3、建筑工程地下结构中的设计要点 3.1地下结构平面设计 在地下室的设计中通常会设计采光通风井,还要注意采光通风井的外壁要与顶板整体保证足够的距离,以免破坏地下室的稳定性。因整体建筑的建造需求,在地下室的施工建造过程中非常普遍的会出现超长现象,有时都会超过40米到60米,这样的加长的结构尺寸,当受到外界环境影响时易出现裂缝等影响强度的问题,因此在设计时要采取高效的防裂缝设计。可通过以下方法开展设计:安设伸缩后浇带,在地下室超长时,所安设的后浇带的尺寸要结合实际的钢筋拉普拉斯情况及操作空间进行合理设定;将微膨胀剂掺入混凝土中;分割地下结构等等。建筑工程地下结构在进行最初的平面设计是,要全面考虑到建筑的人防要求,要结合其最终用途及使用要求做出合理的安全防水通道设计,并综合排风、通风及力求采光等相关专业条件进行科学的设计。

地球物理勘查方法简介

地球物理勘查方法简介 地球物理勘查简称物探.是地球物理学的一个分支。它是以物理学理论为基础,以地球为主要调查研究对象;具有快速、遥测、信息量大等特点,较易吸收现代科学技术,是深部地质调查的基本方法,也是矿产资源勘查、评价不可缺少的手段。基于物理学的原理、方法和观测技术,物探方法一般划分为:磁法、重力法、电法(含电磁法).弹性波法(含地震法和声波法).核法(放射性法)、热法(地温法)与测井等7大类,和地面,航空、海洋,地下4个工作空域。 地震勘探技术 地震勘探是地球物理勘探中重要的方法之一,它具有高精确度、高分辨率,探测深度一般为数十米到数千米。目前的石油、天燃气和煤探井孔位的确定均以地震勘探资料为重要依据,在水文工程地质调查、沉积成层矿产的勘查、城市活断层探测以及地壳测深等工作中,地震勘探也发挥着越来越重要的作用。最新的研究成果表明:对于不规则块状硫化物金属矿体,采用散射波地震方法能够开展非沉积型金属矿勘查。 地震勘探的物理基础是岩石的弹性差异。地震勘探就是通过人工方法激发地震波,研究地震波在地层中的传播情况,查明地下地层和构造的分布,为寻找矿产资源、探测城市活断层及其它勘探目的服务的一种地球物理勘探方法。 地震勘探方法比较复杂,其基本原理可用回声测距来说明。当我们前面不远处有一座直立的高山时,为了解我们到高山的距离,简单的办法是大喊一声,测定我们从发声开始到耳朵听到回声的时间,根据声音在空气中传播的已知速度,就可以计算出高山离我们的距离。用地震勘探方法探测埋藏在地下的目标,其原理大体也是这样,只不过是地下岩层和土壤要比空气不均匀的多,因而地震勘探也远比回声测距困难复杂的多。 根据地震方法的特点,地震勘探需要在背景比较平静的环境下开展,为使该方法技术能够在城市强干扰条件下开展工作,物化探所研究开发出了抗干扰高分辨率地震勘探技术,解决了常规地震勘探方法无法解决的地质问题。 物化探所长期从事弹性波场探测和复杂条件下地震方法技术的研究和勘查工作,拥有先进的地震仪器配套设备和专用地震数据处理软件。主要研究和服务领域包括:城市活断层探测、重大基础建设工程选址勘查、水文工程地质调查、地质灾害防治工程勘查、金属矿勘查、煤田和浅层油气地震勘探等。 电法勘探技术 电磁法勘探技术,是以天然电磁场/人工建立电磁场为源场,采用相应的观测仪器和工作手段,实现对地下介质电性特征的探测,并结合地质背景,经综合分析,最终达到对探测目标(如断裂构造、多金属矿资源、地下水及地热资源、油气资源等)信息资料的获取。 由太阳、磁层、电离层、大气层与地球间相互耦合作用等自然条件所形成的电磁场为天然电磁场,而通过发射装置所建立的电磁场为人工电磁场。在地球物理勘探中,通过观测天然及人工电磁场进行资源勘查和解决地质问题的方法有:音频大地电磁测深法(AMT)、大地电磁测深法(MT)、可控源音频大地电磁测深法(CSAMT)、瞬变电磁法(TEM)、激发极化法(IP、SIP、CR)、甚低频法(VLF)、自然电位法(SP)、大地电场岩性测深技术等。不同的电磁法技术从不同侧面来获取

AMOS-结构方程模型分析

Amos 模型设定操作 在使用AMOS进行模型设定之前,建议事先在纸上绘制出基本理论模型和变量影响关系路径图,并确定潜变量与可测变量的名称,以避免不必要的返工。 1.绘制潜变量 使用H建模区域绘制模型中的潜变量,在潜变量上点击右键选择Object Properties为潜变量命名。 真:Object Properties 2.为潜变量设置可测变量及相应的残差变量 使用 对应的是数据的变量名,在残差变量上右键选择Object Properties为残差变量命名。 "J绘制。在可测变量上点击右键选择Object Properties为可测变量命名。其中Variable Name | Visitulity | Font size Font style Farajietcis | Colors | Fornat Text Variable label

File Edit View Dia^r^m A.n? lyz^ Taols Pkrginw Help New New wi th Template— Open,.. Retrieve Backup... Ctrl+S Gave As... Sa^e As Template,.. P K.st imat e Jieans :and int ercepnts 标准化系数 An alysis Properties---- Output ----- Sta ndardized Estimate—因子载荷标准化系数。 3. 险abj#rt Proom rrX Tmrt |Parsji?^6r3 Cclois || Fsntal | Visibility F^ozit size fon^ style 3 Rogulir □01 label 為t gfauLt A—— 耳3D旣响 Undo □a 配置数据文件,读入数据 File Data Files ---- File Name OK。 Save Ill D心td Fil亡父Ctrl+D 4. 模型拟合 View ----- An alysis Properties----- Estimati on Maximum Likelihood 钿Interne Properties.., HR Rrtjptrtie^■■“ Ctrl-hl Ctrl+A NumeriLcal Bias | Output Boot strap Peraurt at ions |R^iidoin #Title r+irun ■ 匸包lA khia/—I" Dmnqr+;a£ Discr&pEuacy Est liRsrt: ion 5.

结构模型试验设计

结构模型试验设计 在工程实践和理沦研究中.结构试验的对象大多是实际结构的模型。对于工程结构中的构件或结构的某一局部,如梁、柱、板、墙,有可能进行足尺的结构试验。但对于整体结构,除进行结构现场静动载试验外,受设备能力和经济条件的限制,实验室条件下的结构试验大多为缩尺比例的结构模型试验。 结构模型试验是工程结构设计和理论研究的主要手段之一在结构设计规范中,对各种各样的结构分析方法做出了规定。例如,线弹性分析方法,考虑塑性内力重分布的方法,塑性极限分析方法,非线性分析方法和试验分析方法等。其中,试验分析方法在概念上与计算分析方法有较大的差别。试验分析方法通过结构试验(其中主要是结构模型试验),得到体形复杂或受力状况特殊的结构或结构一部分的内力、变形、动力特性、破坏形态等,为结构设计或复核提供依据。应但指出,电子计算机的飞速发展,基于计算机的结构分析方法已经能够解决很多复杂的结构分析问题,但结构模型试验仍有不可替代的地位,并广泛应用于工程实践中。模型一般是指按比例制成的小物体,它与另一个通常是更大的物体在形状上精确的相似,模型的性能在一定程度可以代表或反映与它相似的更大物体的性能。 模型试验的理论基础是相似理论。仿照原型结构,按相似理论的基本原则制成的结构模型,它具有原型结构的全部或部分特征。通过试验,得到与模型的力学性能相关的测试数据根据相似理论,可由模型试验结果推断原型结构的性能。 对于结构模型试验,工程师和研究人员最关心的问题是结构模型试验结果在多大程度上能够反映原型结构的性能。而模型设计是结构模型试验的关键环节。 一般情况下,结构模型设计的程序为: (1)分析试验目的和要求,选择模型基本类型。缩尺比例大的模型多为弹性模型,强度模型要求模型材料性能与原型材料性能较为接近。 (2)对研究对象进行理论分析,用分析方程法或量纲分析法得到相似判据。对于复杂结构,其力学性能常采用数值方法计算,很难得到解析的方程式,多采用量纲分析法确定相似判据。 (3)确定几何相似常数和结构模型主要部位尺寸。选择模型材料。 (4)根据相似条件确定各相似常数。 (5)分析相似误差,对相似常数进行必要的调整。 (6)根据相似第三定理分析相似模型的单值条件,在结构模型设计阶段,主要关注边界条件和荷载作用点等局部条件。相似理论是模型试验的基础。进行结构模型试验的目的是试图从模型试验的结果分析预测原型结构的性能,相似性要求将模型结构和原型结构联系起来。 (7)形成模型设计技术文件,包括结构模型施工图,测点布置图,加载装置图等。

相关文档
最新文档