生物质双循环流化床气化及污泥干化与燃煤锅炉耦合技术

生物质双循环流化床气化及污泥干化与燃煤锅炉耦合技术

1、气化技术介绍

n m 22z y x H C tars C CO CO H O H C 热解燃烧H 2, CO, C, 焦油(tars ), C m H n + O 2

Heat 重新合成

焦油(tars ), C m H n +H 2O CO 2CO+H

2

焦炭气化C +H 2O CO 2CO+H

2

2CO

水煤气转化CO + H 2O CO 2+H 21.2 化学反应

1.3 技术分类

?气化剂

–空气

–氧气

–蒸汽

?气化所需的热量

–自热式

–间接换热?气化压力

–常压

–高压

1.4 固定床:上吸式

?特点

燃气向上,燃料向下

?优点

–结构简单

–燃料适应性好

?缺点

–焦油含量高

–容量小

–难以大型化

1.4 固定床:下吸式

?特点

燃气、燃料向下流动

?优点

–焦油含量较低

–气化效率较高

?缺点

–含灰量高

–难以大型化

–燃料要求严格(水分< 25%, 粒径:

20~100 mm)

燃煤电厂耦合污泥发电项目的市场前景

燃煤电厂耦合污泥发电项目的市场前景 发表时间:2019-01-08T16:57:27.030Z 来源:《电力设备》2018年第24期作者:杨文圣 [导读] 摘要:随着对污泥处理处置的重视,国家出台了一系列政策,鼓励对污泥的处理处置。 (大唐环境产业集团股份有限公司北京 100097) 摘要:随着对污泥处理处置的重视,国家出台了一系列政策,鼓励对污泥的处理处置。目前国内各种处理处置技术也层出不穷,污泥干化焚烧耦合燃煤电厂发电技术,干化热源可以采用电厂的乏汽或烟气,同时利用燃煤电厂的烟气治理设施,不需要再单独对尾气进行处理,对于污泥的处理目标:稳定化、减量化、无害化、资源化,无疑是一个可以最终满足污泥四化目标的技术路线。本次调研主要围绕污泥干化焚烧,重点是耦合燃煤电厂发电的市场前景进行。 关键词:污泥处理处置政策技术路线市场前景 一、前言 目前,我国对污泥的处理处置仍然还没像污水处理那样引起足够重视,大部分污水处理厂对含有各种有害物质的污泥采用污泥随意外运、简单填埋或堆放,致使许多大城市出现了污泥围城的现象,给生态环境带来了极不安全的隐患,也造成了经济上的巨大损失。所以,对污泥进行无害化处理有极强的必要性和紧迫性。 污泥成分复杂,含有病源微生物、寄生虫卵、有毒有害的重金属及大量的难降解物质,如处理不当,容易对环境造成二次污染。 目前污泥处理处置存在如下的问题: (1) 污泥处理率极低,我国市政污泥有70%左右没有得到妥善处理。 (2) 重水轻泥、污泥处理发展滞后; (3) 污泥处理处置技术路线生搬硬套; (4) 污泥排放监管难度大; (5) 污泥处理费收费机制不完善,在未来较长一段时间内,补贴还是污泥处理处置资金的主要来源。 二、政策 2009年2月28日由住房和城乡建设部、环境保护部、科学技术部印发建城[2009]23号《城镇污水处理厂污泥处理处置及污染防治技术政策》,文件“鼓励污泥干化焚烧联用或作为低质燃料在火力发电厂焚烧炉、垃圾焚烧炉混烧。” 近年来,国务院相继印发《国务院关于印发水污染防治行动计划的通知》(俗称水十条)、《国务院关于印发“十三五”控制温室气体排放工作方案的通知》、《国务院关于印发“十三五”国家战略性新兴产业发展规划的通知》、《国务院关于印发“十三五”节能减排综合工作方案的通知》等文件,支持生物质(农林废弃物,污泥垃圾等)耦合发电的发展。 国家发展改革委、国家能源局也已将燃煤耦合生物质发电技术的研发推广列入《能源技术创新“十三五”规划》(国能科技〔2016〕397号)、并发布《关于推动东北地区电力协调发展的实施意见》(国能电力〔2016〕179号)、《电力发展“十三五”规划》(发改能源〔2016〕2321号)、《可再生能源发展“十三五”规划》(发改能源〔2016〕2619号)、《能源发展“十三五”规划》(发改能源〔2016〕2744号)等相关文件。 去年下半年以来,国家密集发布一系列支持生物质发电健康发展的文件,如《关于开展燃煤耦合生物质发电技改试点工作的通知》(国能发电力[2017]75号)、《北方地区冬季清洁取暖规划(2017-2021)》、《关于促进生物质能供热发展指导意见的通知》和《关于开展“百个城镇”生物质热电联产县域清洁供热示范项目建设的通知》,为今后生物质发电产业的发展指出了很好的方向。 2018年6月21日,国家能源局、生态环境部联合发布《关于燃煤耦合生物质发电技改试点项目建设的通知》。要求按照《国家能源环境保护部关于开展燃煤耦合生物质发电技改试点工作的通知》(国能发电力[2017]75号)要求,经组织专家研究确定燃煤耦合生物质发电技改试点项目名单。最终确定技改项目试点共计84个,其中污泥耦合发电项目29个,大唐集团有灞桥电厂和张家口电厂两个项目。项目涉及全国23个省、自治区、直辖市。《通知》明确试点项目主体工程应在2019年5月1日之前建成投运。 三、市场前景 在环保行业里,污泥处理处置仍是一块相对落后的领域。也是我国亟需加速提升的一个领域。伴随城镇污水处理规模的扩大,污泥作为污水处理副产物也大量产生。按照城市污水以干物质计平均0.02%的含固率估算,可产生干污泥3.14万吨/天。按照污泥脱水前80%的含水率计算,每天产生湿污泥15.7万吨。全年以360天计,2014年全国年产生湿污泥达5652万吨。但我国的污泥处置率却很低下。2016年,全国污泥处理能力约为1300万吨/日,全国污泥处理率仅达到33%,有67%左右的污泥没有得到无害化处理处置,对生态环境造成严重威胁。2017 年底我国污泥处理处置市场规模已经达到了 525 亿元左右, 2010‐2017 年,我国污泥产生量从 5427 万吨增长至 7436 万吨,年化增长率4.6%。按目前的建设速度污泥处理率在“ 十三五”期间会有大幅提高。 污泥耦合发电不仅是一项能源工程,更是一项环保工程和民生工程。污水处理厂污泥耦合发电兼具经济、生态与社会等综合效益,是可再生能源中的重要组成部分。随着国家相关政策的出台,生物质耦合发电发展迎来良好机遇期。 依托现有燃煤电厂进行改造实现生物质耦合发电,可利用电厂现有的发电设施和超低排放等其他公用设施,减少项目投资成本。同时发挥世界最大清洁高效煤电体系的技术领先优势,依托现役煤电高效发电系统和污染物集中治理设施,构筑城乡生态环保平台,兜底消纳污水处理厂、水体污泥等生物质资源(属危险废物的除外),破解污泥围城等社会治理难题。燃煤耦合生物质发电在国际上已形成规模化应用,涉及多种容量等级、多种形式的燃煤机组,以及多种形式的生物质燃料。 目前国内已经有部分城市对污泥处理处置给予补贴,由于处理方案不同等因素造成标准不一,污泥处理产业运转主要依靠政府补贴。同时,补贴覆盖范围明显不足。 “水十条”为污泥处理处置补贴政策的明确带来契机。《水污染防治行动计划》预计总投资可能超过2万亿。除了为水处理改造、运营带来巨大市场以外,“水十条”将在污泥处理处置方面给予更多的倾斜。技术层面上,将改变过去以填埋为主的处置路线;经济层面上,将要求针对污泥处理处置的补贴在全国范围推广,同时明确补贴标准。虽然有众多条文规定污水处理费应包含污泥处理成本,但目前将污泥处理费纳入污水费用的地方仅为北京市、江苏省太湖地区、常州市、广州市,且占比较低。 污泥处理处置应该以“减量化、稳定化、无害化”为目的,“资源化”并不是最终的目的,保护生态环境才是最终目的。应尽可能利用污

循环流化床讲解

一、循环流化床锅炉的原理 (一)循环流化床的工作原理 1.流化态过程 当流体向上流过颗粒床层时,其运动状态是变化的。流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过。当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。此时,对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触而维持它的空间位置,相反的,在失去了以前的机械支撑后,每个颗粒可在床层中自由运动;就整个床层而言,具有了许多类似流体的性质。这种状态就被称为流态化。颗粒床层从静止转变为流态化时的最低速度,称为临界流化速度。 快速流态化流体动力特性的形成对循环流化床是至关重要的。 2.循环流化床锅炉的基本工作原理 高温炉膛的燃料在高速气流的作用下,以沸腾悬浮状态(流态化)进行燃烧,由气流带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛。一次风由床底部引人以决定流化速度,二次风由给煤口上部送人,以确保煤粒在悬浮段充分燃烧。炉内热交换主要通过悬浮段周围的膜式水冷壁进行。 (二)流化床燃烧设备的主要类型 流化床操作起初主要应用在化工领域,本世纪60年代开始,流化床被用于煤的燃烧。并且很快成为三种主要燃烧方式之一,即固定床燃烧、流化床燃烧和悬浮燃烧。流化床燃烧

过程的理论和实践也大大推动了流态化学科的发展。目前流化床燃烧已成为流态化的主要应用领域之一,并愈来愈得到人们的重视。 流化床燃烧设备按流体动力特性可分为鼓泡流化床锅炉和循环流化床锅炉,按工作条件又可分为常压和增压流化床锅炉。这样流化床燃烧锅炉可分为常压鼓泡流化床锅炉、常压循环流化床锅炉、增压鼓泡流化床锅炉和增压循环流化床锅炉。其中前三类已得到工业应用,增压循环流化床锅炉正在工业示范阶段。 循环流化床又可分为有和没有外部热交换器两大类。(如图a和b) (三)循环流化床锅炉的特点 1.循环流化床锅炉的主要工作条件 2.循环流化床锅炉的特点 循环流化床锅炉可分为两个部分。第一部分由炉膛(快速流化床)、气固物料分离设备、固体物料再循环设备和外置热交换器(有些循环流化床锅炉没有该设备)等组成,上述部分形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、再热器、省煤器和空气预热器等,与常规火炬燃烧锅炉相近。 循环流化床燃烧锅炉的基本特点如下: (1)燃料适应性广,几乎可燃烧一切煤种;(2)低污染燃烧,脱硫效率高达90% (3)燃烧热强度大,炉膛体积比一般常规锅炉小得多;(4)床内传热系数高,可减少受热面的金属磨损,使受热面布置紧凑;(5)负荷调节性能好、范围大(30%-100%),低负荷下稳定燃烧特性好;(6)灰渣可综合利用;(7)循环流化床锅炉电耗比煤粉炉小10%;(8)只需将煤破

生物质循环流化床锅炉技术介绍

生物质循环流化床锅炉技术介绍 发表时间:2019-09-21T22:55:42.280Z 来源:《基层建设》2019年第19期作者:刘曼 [导读] 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。 中国能源建设集团山西电力建设有限公司山西太原 030012 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。生物质锅炉供热具有清洁环保经济适用的特点,一是技术比较成熟,工艺简单;二是大气污染物排放较少,生物质燃料锅炉燃烧排放SO2浓度较低,安装除尘设施后锅炉烟尘、氮氧化物排放可达到轻油排放标准,以林业剩余物为主的生物质燃料锅炉大气污染物排放可达到天然气标准;三是经济可行,生物质燃料价格较低,生物质锅炉供热有着较为明显的成本优势;四是分布式供热,直接在终端消费侧替代燃煤供热,分散布局,运行灵活,适应性强,满足多元化用热需求。目前国内生物质燃烧的锅炉有往复式炉排炉、水冷振动式炉排炉、循环流化床锅炉、联合炉排锅、链条炉等等。其中链条炉和循环流化床运行较为广泛。本文对循环流化床锅炉和链条炉进行分析比较,为生物质锅炉选型提供依据。 关键词:生物质;循环流化床锅炉;链条炉;技术性能比较;经济性比较 引言 生物质是清洁、稳定、分布广泛的可再生资源,生物质的利用符合能源转型、碳减排、清洁环保及治理雾霾的能源发展战略。随着国家对环境保护的要求不断提高,生物质等可再生能源的重要性逐渐增加,国家先后发布多个文件,大力支持生物质发电技术应用推广。生物质发电技术包括生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电等。生物质直接燃烧技术生产过程比较简单,设备和运行的成本相对较低,是现行的可以大规模推广利用的技术。而循环流化床燃烧方式因其强烈的传热、传质、低温燃烧、燃料适应性广,负荷调整范围宽、燃烧效率高等特点,被广泛的应用于生物质发电。本文从生物质燃料的特点出发,介绍生物质直燃流化床锅炉的技术特点及相关技术问题。 1生物质燃料特性 1.1几种典型的生物质燃料 固体生物质燃料取材广泛,主要包括木本原料,即树木和各种采伐、加工的残余物质;草本原料,如农作物秸杆、草类及加工残余物;果壳类原料,如花生壳、板栗壳等;其他混杂燃料,如生活垃圾、造纸污泥等。 1.2生物质燃料灰分特性 生物质灰中含有丰富的无机矿物质成分,如:硅酸盐、碳酸盐、硫酸盐与磷酸盐等,灰的组成对生物质的热解特性有着重要的影响,且硅酸盐、碱金属及碱土金属的存在易引起管路系统的结渣、堵塞。为了安全、高效地运行,需对生物质灰的主要矿物质及微量元素的组成进行全面的分析。 2生物质CFB锅炉技术开发 2.1国内外生物质发电技术应用 我国生物质能目前主要以农林废弃物为主,农业废弃物主要是农作物秸秆。生物质发电产业通常包括生物质直燃发电、生物质混燃发电和生物质气化发电。国外烧秸秆及其它生物质的新建机组一般都采用了炉排燃烧的小型锅炉。秸秆通常被打成标准尺寸的大捆,应用专用设备打捆、装卸和运输。秸秆通过螺旋送料机,送进炉膛,在炉排上燃烧。 2.2生物质CFB锅炉技术介绍 CFB锅炉的燃烧方式、高温床料、特殊的物料循环系统,低温燃烧、燃料的适应性广等特性,使其更适合生物质燃料的复杂多变及低氮排放要求。锅炉采用单汽包、自然循环、单段蒸发系统,炉膛蒸发受热面采用膜式壁,炉膛内内置屏式三级过热器和水冷屏,以提高整个过热器系统的辐射传热特性,使锅炉过热汽温具有良好的调节特性。旋风分离器采用汽冷结构,回料阀为非机械型,回料为自平衡式。炉膛、分离器、回料阀组成了物料的热循环回路,分离后的烟气进入尾部烟道。尾部烟道采用三烟道型式,下行的一烟道内布置低温过热器、上行的二烟道内布置中温过热器和高温省煤器,下行的三烟道内布置低温省煤器和空气预热器。一、二烟道为膜式壁的包墙过热器,三烟道采用护板结构。低NOx燃烧技术和炉内脱硫,可有效控制NOx和SOx的排放,满足环保要求。同时为进一步超低排放,在分离器入口烟道预留SNCR.接口。 2.3相关配套设备 由于生物质燃料堆积密度小、比重轻,自密封性差,给料设备的选型尤为重要。可以采用两级螺旋给料系统或两级挡板给料系统。生物质锅炉沾污问题较重,一整套性能良好、质量可靠、数量足够的吹灰设备能在锅炉运行时保持尾部烟道内的过热器、再热器、省煤器和空气预热器受热面的清洁。由于生物质燃料灰分低、成灰特性差,可以考虑增加在线加料系统,以补充循环灰量的不足并能稀释碱金属浓度,降低结焦的风险,提高运行的安全性。 3流化床锅炉尾部排放NOx生成原理 3.1热力型和快速型 通过资料得知,1500℃是热力型NOx生成临界点。当温度<1500℃时,NOx不易生成;当温度>1500℃时,NOx生成量猛增。由于实际生产中本厂炉膛温度处于600-850℃,因此热力型不是本厂NOx的生成原因。另外快速型NOx由于其产生特点,实际生产中通常也不作为控制方向。 3.2燃料型 燃料型NOx是由燃料中的氮元素在燃烧时形成的。炉膛温度约为600℃-800℃时,燃料型NOx就能生成。研究发现空气系数是最重要的原因,转化率随空气系数增加而增大。结合本厂的实际情况得知,燃料型NOx是主要元凶,也是最主要的控制方向。在曲线中可以清晰的看到,当两侧空气系数升高时,NOx的生成量快速升高;当两侧空气系数降低时,NOx的生成量快速下降。因此控制合适的空气系数是重中之重。 4生物质锅炉生产中 NOx的控制方法(1)加强上配料精细化管理,燃运分部制定好当天的上配料方案,并按上配料方案提前做好干湿燃料的混合工作。上

燃煤耦合生物质发电煤电低碳清洁发展的新途径

燃煤耦合生物质发电煤电低碳清洁发展的新途径近年来,电力工业发展有力地支撑了我国经济发展。随着能源消费总量的增长和电力在能源消费中的比重不断提高,应对气候变化和生态环保约束日益趋紧,煤电低碳清洁转型升级、灵活性改造势在必行。 2017年年底,国家发布的《关于开展燃煤耦合生物质发电技改试点工作的通知》(简称《技改试点工作通知》)指出,在全国范围内推广燃煤电厂超低排放要求和新的能耗标准,组织燃煤耦合生物质发电技改试点项目建设,旨在发挥世界最大清洁高校煤电体系的技术领先优势,依托现役煤电高效发电系统和污染物集中治理设施,兜底消纳农林废残余物、生活垃圾以及污水处理长、水体污泥等生物质资源(属危险废物的除外),增加不需要调峰、调频、调压等配套调节措施的优质可再生能源电力供应,促进电力行业特别是煤电的低碳清洁发展。 国家从政策层面推进燃煤耦合生物质发电,把煤电和生物质能“撮合”在一起进行发电试点,对中国能源结构转型和煤电绿色发展而言,正如德国能源署中德可再生能源合作中心执行主任陶光远所说,“这是一件天大的好事”。燃煤耦合生物质发电,为煤电低碳清洁发展带来了新途径。 煤电转型的新路径 中国是煤炭大国,煤炭资源丰富,以煤为主的资源禀赋决定了能源消费以煤为主的格局,也决定了以煤电为主的电力生产和消费结构。2017年9月,中国电力企业联合会(简称“中电联”)发布《中国煤电清洁发展报告》显示,截至2016年年底,我国发电装机容量达16.5亿千瓦,其中煤电装机容量9.4亿千瓦;发电量达6.0万亿千瓦时,其中燃煤发电量约3.9万亿千瓦时,占总发电量的65.5%。这意味着,2016年,每1千瓦时电量中就有0.66千瓦时由燃煤电厂发出。 2018年2月,中电联发布《2017-2018年度全国电力供需形势分析预测报告》指出,2017年全国全口径发电量6.42万亿千瓦时、同比增长6.5%;其中,非化石能源发电量同比增长10.0%,占总发电量比重为30.4%,同比提高1.0个百分点,煤电发电量占总发电量比重为64.5%。这说明,煤电仍是我国电力的主力。因此在煤电占比如此重的情况下,要实现“到2020年,煤电装机力争控制在11亿千瓦以内,占比降至约55%”的目标,煤电压力巨大。

生物质气化技术概述

生物质气化技术概述 1. 背景 生物质气化以木头等为原料,在氧气不充足情况下,加热使木头等生物质裂解产生合成天然气,再用合成天然气加热却暖或发电。生物质气化与传统的烧木头等方式加热不同,传统烧木头、秸秆等是在氧气充足情况下燃烧,而生物质气化是在氧气不充分情况下加热。 气化的基本定义为:不完全氧化的热化学反应过程,把含碳物质转化成一氧化碳、氢气、二氧化碳及碳氢化合物如甲烷等。反应温度一般大于700?C,一般在700-1000?C 间。 生物质气化主要过程如下: 生物质预处理后→进入气化炉→加氧气或水蒸气→燃烧气化→产生的气体出来除 焦油→气体冷却→气体净化(除硫化氢、除二氧化碳)→甲烷化→合成天然气(合成气)。 合成气在此作为加热及其他燃料驱动蒸汽机及发电机发电。合成气进一步加工,比如经过费-托反应可以生成液体生物柴油。此过程在二战时,被德国比较大规模地采用,弥补石化柴油不足。 如今,生物质气化的研究与应用主要以奥地利、芬兰、英国和德国为主要国家。 2. 生物质气化主要工艺 2.1生物质气化过程发生了如下反应:

1)水-气反应:C+H2O=H2+CO 2)还原反应:CO2+C=2CO 3)甲烷化:C+2H2=CH4 4)水-气转换反应:CO+H2O=CO2+H2 CO热值:12.64MJ/Nm3 H2热值:12.74~18.79MJ/Nm3 CH4热值:35.88~39.82MJ/Nm3 空气、氧气和水蒸气可作为气化媒介。但不同媒介对过程与结果有不同的影响。空气便宜,但产出气的热值低;氧气贵,产出气热值高;用水蒸气做媒介产生热值与氧气相当,但也耗费比较高的热能。 2.2 生物质气化炉类型 生物质气化炉主要分三种类型,但还6~有其他个性化炉子: 1. 固定/移动床气化炉 -向上排气炉(气体与原料对流) -向下排气炉(气体与原料同方向流动) -错流移动床 2. 流化床气化炉 -循环流化床 -气泡流化床 -气流床(携带床,Entrained flow bed)

我国循环流化床煤气化技术工艺研究现状

我国循环流化床煤气化技术工艺研究现状 张进 (化工学院能源化学工程14-1班 06142588) 摘要:第一台工业流化床自1954年投产以来,在国内外得到了迅速的推广与发展。近年来,使用循环流化床(CFB)做气化炉的工艺得到了迅速发展,使燃烧效率、碳转换率等得到了较明显的提高。在国内煤气化领域中,主要用流化床气化炉来气化碎煤。流化床气化炉在气化高活性、低阶煤种方面,具有其它煤气化技术不可比拟的优势。[1]综述了循环流化床煤气化工艺流程,并对循环流化床气化的应用情况和工艺特点加以说明。 关键词:流化床煤气化循环流化床气化炉工艺特点 煤炭气化是清洁煤利用技术之一。流化床煤气化技术作为一种清洁煤气化技术更受到了国内外的普遍重视。循环流化床技术是近年来在沸腾炉上发展起来的一项新技术。在环保、能源的充分利用、热效率的提高等方面都比沸腾炉效果好,而且在气化高活性、低阶煤种方面,具有其它煤气化技术不可比拟的优势。[1]发展循环流化床气化技术是适合我国国情的,对满足我国城市民用煤气和工业用煤气的需求、发展清洁煤利用技术有重大作用。 1循环流化床煤气化工艺流程 原料煤经皮带运输至破碎机粉碎至4mm以下,送入煤仓备用。煤粉在开车前将经给料、输送机送入立管中。开车过程中,细煤粉经给料器、斗式提升机送到计量煤斗,经升压后进入料煤斗,由此稳定地经旋转阀、水冷螺旋给料器进入进料管,并送入循环流化床气化炉下部。过程中所用空气(或氧气)来自压缩机,经预热后与废热锅炉所产生的水蒸气混合,由炉底经分布板进入炉内。如有必要可以将气化剂的一部分做为二次气化剂由炉的中下部送入。生成的煤气由气化炉顶部引出,粗煤气中含有大量的未转化碳颗粒和水蒸气。经过分离系统分离后,95%以上的颗粒收集下落入立管中,经返料系统返回到气化炉底部。此外,在喇叭状炉床内还形成物料的内循环。由于新鲜原料、气化剂和大多数炉灰的循环物质之间的迅速混合,气化反应在气化炉底部附近立即开始进行。循环物料和新加入的原料之比可高达40,因此碳转化率较高。底部灰经水冷螺旋出料器,由旋转阀排入灰仓送出界区。 粗煤气经废热锅炉及列管或空气预热器回收热量后,温度降低,再进入水喷淋洗涤塔。经过进一步降温及除尘后,送入煤气储罐。随着高温净化技术的不断发展,粗煤气可以不经过换热或少部分换热后,通过高温净化系统除尘、脱硫后,

生物质流化床锅炉

生物质锅炉(低倍率差速流化床)燃烧调整方法 1.生物质在锅炉主副床上的燃烧过程 生物质的燃烧通常可以分为三个阶段,即预热起燃阶段、挥发分燃烧阶段、炭燃烧阶段。生物质在锅炉主副床上的燃烧过程分为预热干燥区、燃烧区和燃尽区,这可以与差速流化床锅炉的主床密相区、稀相区相和付床相对应。根据各区的燃烧特点,各区需要的风量有差别,预热干燥区的风量少一些,燃烧区的风量要大一些。燃料颗粒在锅炉中燃烧可以分为两种类型:颗粒大的在流化床主床上密相区燃烧,在气力播撒的过程中,颗粒特别小的在流化床上部稀相区发生悬浮燃烧,未燃尽颗粒在流化床稀相区和流化床付床上燃烧。 2、生物质在流化床内完全燃烧的条件 炉内良好燃烧的标志就是在炉内不结渣的前提下,尽可能接近完全燃烧,同时保证较快的燃烧速度,得到最高的燃烧效率。 (1)供应充足而有合适的空气量 如果过量空气系数过小,即空气量供应不足,会增大固体不完全燃烧热损失q4和可燃气体不完全燃烧热损失q3,使燃烧效率降低;如果过量空气系数过大,则会降低炉膛温度,增加不完全燃烧热损失。最佳的过量空气系数使q2+q3+q4之和为最小值。 (2)适当提高炉温 根据阿累尼乌斯定律,燃烧反应速度与温度成指数关系。在保证炉膛不结渣的前提下,尽量提高炉膛温度。 (3)炉膛内良好的扰动和混合 在着火和燃烧阶段,要保证空气和燃料的充分混合,在燃尽阶段,要加强扰动混合。 (4)燃料在炉排上和炉膛中有足够的停留时间 (5)保持合理的火焰前沿位置。火焰前沿应该位于高端炉排与中部炉排的之间区域,火焰在炉排上的充满度好。 3、差速流化床锅炉燃烧调整方法: (1)、入炉燃料掺配均匀,料质相对稳定,入炉燃料安全、稳定、连续均匀供应是锅炉燃烧稳定的前提和基础,所以如果要保持燃烧稳定,必须根据料仓内燃料料位的高低及时调整取料机转速,尽量使料仓内燃料同时均匀向前推进,尽量减少蓬料次数。 (2)、尽量控制流化床床温稳定 1)、若出现床温降低时,可适当减少一次风量,增加给料量,但应注意过热器出口温度,调节减温水量,床温上升时应及时调整。 2)、若出现床温大幅度变化,在适当调节一次风量,可大量减少或增加给料量,但应注意床温的变化趋势,并根据床温的变化情况及时调节。 3)、若出现过热蒸汽温度变化时,可适当调整二次风量。 4)、当锅炉负荷变化引起床温变化时,可以通过调节一次风量,二次风量,给料量,回料量,来适应锅炉负荷的变化,其主要通过调整风、料的配比和 一、二次风的配比来调节锅炉负荷。 5)、如因缺料、料变化或其它原因导致床温下降时,在保证床层良好流化的前提下,可适当减少一次风量,并增大给料量。若床温下降幅度大,应适当

中级职称 生物质与生物质气化 考题

单选题 1.以下哪个被认为是当前生物质气化的技术瓶颈?(5.0分) A.水分问题 B.灰分问题 C.焦油问题 D.温度问题 我的答案:C√答对 2.固定床气化过程中,下列哪个阶段的温度最高?(5.0分) A.干燥层 B.热解层 C.氧化层 D.还原层 我的答案:C√答对 3.下列选项属于下吸式固定床气化炉优点的是()。(5.0分) A.气化效率高 B.燃气热值高 C.焦油量较低 D.热利用率高 我的答案:C√答对 4.固定床气化过程中,下列哪个是生物质反应的第一阶段?( 5.0分)

A.干燥层 B.热解层 C.氧化层 D.还原层 我的答案:A√答对 5.固定床气化炉中提供主要热源的是()。(5.0分) A.干燥层 B.热解层 C.氧化层 D.还原层 我的答案:C√答对 6.生物质的元素组成中,与煤炭相比,下列哪个元素的含量比较高?(5.0分) A.C B.H C.O D.S 我的答案:C√答对 7.生物质气化生产的可燃气体主要用于发电。目前小型系统常采用()气化炉和()发电。(5.0分) A.固定床;燃气轮机

B.流化床;燃气轮机 C.流化床;内燃机 D.固定床;内燃机 我的答案:D√答对 8.秸秆的化学组成中,下列哪个组成含量最高?(5.0分) A.纤维素 B.半纤维素 C.木质素 D.提取物 我的答案:A√答对 9.下列哪个不属于生物质的热转化技术?(5.0分) A.燃烧技术 B.气化技术 C.热解技术 D.沼气技术 我的答案:D√答对 10.在气化技术路线中,通常规模最小的是?(5.0分) A.下吸式固定床 B.上吸式固定床 C.流化床

炉排炉和循环流化床锅炉生物质发电技术比较(初稿)

生物质发电锅炉技术比较 1.技术比较 生物质锅炉主要有水冷振动炉排炉和循环流化床锅炉,现将它们的部分性能对比如下: 1)应用情况: 水冷振动炉排炉在国内外均有成熟的长期运行经验,使用数量最多,市场占有率高,生产、安装、调试、运营的经验均较其它炉型丰富。中国第一座生物质发电厂-单县生物质发电厂即采用我公司的源自丹麦的水冷振动炉排炉技术。 而循环流化床锅炉最早是为解决燃煤机组烟气炉内脱硫的问题而在中国采用,虽然近年开始尝试用于生物质发电,但基于未解决的技术问题较多,且CDM指标难申请等因素,还未能广泛应用。 2)燃料适应性: DPCT水冷振动炉排炉,较好的结合了国外先进技术和中国燃料的实际状况,可以适应多达60多种的农林废弃物,既可纯烧某种燃料,也可掺烧多种燃料。在燃料水分高达40%时亦可稳定燃烧。 循环流化床仅适用于燃料粒径和密度差别不大的燃料,对燃料的要求较为苛刻。 3)燃料预处理: DPCT水冷振动炉排炉基本无需燃料预处理系统。 而循环流化床燃烧炉对燃料预处理要求较高,对燃料粒径具有较严格

要求,需要将秸秆进行一系列破碎、筛分等处理,使其尺寸、状况均一化,入炉秸秆尺寸一般要求为150到200mm,该部分投资费用较高。 4)磨损情况: 炉排炉中由于秸秆燃烧过程均发生在炉排表面上,炉排相对较长,炉型较大,磨损较轻; 循环流化床炉的布风板、周围水冷壁及后面尾部受热面和炉墙的磨损严重。 5)安装方案: 焊口比较少:水冷振动炉排锅炉,以德普新源公司的产品为例,省煤器和烟冷器都是模块化的,三四级过热器都是直接跟小集箱焊接在一起的。 水冷振动炉排锅炉,以德普新源公司的产品为例,安装方式是底部支撑的,从下往上安装的。CFB锅炉是吊装的,从上往下安装的,难度较大。 表一: 优缺点比较

常压循环流化床_CFB_气化技术概况

专论与综述 常压循环流化床(CFB)气化技术概况 佟浚芳,郭新宇 (国家化工行业生产力促进中心,江苏昆山 215337) [摘 要]介绍鲁奇公司的常压循环流化床(CFB)气化技术开发过程,以湿法为例介绍CF B 生产合成气的基本流程。该工艺具有原料范围广,系统温度均匀,操作温度、压力低,氧耗低等特点,特别适合于日处理煤300~500t 的装置。进行了U GI 常压气化法、T ex aco 加压气化法和CFB 气化法三种方法的工艺技术比较。 [关键词]煤气化;合成气;循环流化床[中图分类号]T Q546 2 [文献标识码]A [文章编号]1004 9932(2003)02 0001 06 [收稿日期]2002 12 05 [作者简介]佟浚芳(1932-),女,辽宁沈阳人,高级工程师,长期从事煤气化研究工作。 A survey of atmospheric circulating fluidied bed (CF B ) gasification technology T ONG Jun fang,GU O Xin yu (China N ational Chemical I ndustry Pr oductive Force Pr omoted Center ,K unshan 215337,China ) Abstract :This article presents the devoloping process of Lurg i atmospheric circulating fluidized bed (CFB)g asification technology and the principle process flow of CFB to produce synthetic gas w ith an example of w et process.This process takes the characteristics of w ide range of feedstock,even tem perature in system,low operation tem perature and pressure,low oxygen consumption,etc.,being particularly applicable for units of 300~500t d coal processing capacity.It also makes a comparison on process technology of U GI atmospheric g asification process,Texaco pressurized gasification process and CFB gasification process.Key words :coal g asification;sy nthetic g as;circulating fluidized bed 传统的流态化是指细小的固体与具有一定流速的流体组成两相体系统,其中固体颗粒被上行的流体支撑而形成悬浮体系统,它的流动行为在许多方面具有与真实液体相同的性质,是一种流、固两相高效接触的技术。流态化技术已应用于许多工艺流程,由于工艺条件的差异,不同工艺过程对流态化行为又有其特殊的要求,循环流态化就是其中的一类。 循环流态化是指以介于鼓泡床和输送床典型 流速之间的流体速度使流、固两相并流向上的流动过程,过程中固体颗粒内的流动速度明显低于流体速度,致使流、固相间具有的滑动速度最大。这种伴有固体颗粒循环高速流动的流、固相接触体系具有最大的接触效率,并能获得较高的传热和传质速度。这对某些工艺过程能顺利、有效地进行极为重要。循环流化床反应器应用于煤的燃烧或气化工艺,由于煤粒在系统内不断循环,提高了气、固相接触效率,使煤燃烧或气化反应快捷而又完全,同时也满足了反应温度均匀的要求, 解决了煤的粘结问题。常压循环流化床气化技术正是这种高效、无气泡的气、固相接触技术的体现,它既有流化床内部形成的内循环,又有被气 第2期2003年3月 中 氮 肥 M Sized N itrogenous Fertilizer Progress No 2M ar 2003

循环流化床秸秆锅炉项目

循环流化床秸秆生物质燃烧发电锅炉项目 中国科学院工程热物理研究所 一、项目的背景意义 随着社会对能源需求的日益增长,作为主要能源来源的化石燃料却迅速地减少。因此,寻找一种可再生的替代能源,成为社会普遍关注的焦点。生物质能是一种理想的可再生能源,它来源广泛,每年都有大量的工业,农业及森林废弃物产出。在目前世界的能源消耗中,生物质能消耗占世界总能耗的14%,仅次于石油、煤炭和天然气,位居第四位。而在发展中国家,生物质能占较大的比重,达到50%以上。据统计全球生物质能占可再生能源资源35%,在可再生资源中位居首位。1996年的我国生物质产量(主要是农作物秸杆)7.05亿吨,而当年利用量不足30%,这说明我国生物质能的利用潜力还很大。 利用生物质能发电是生物质利用的一种重要方式之一。瑞典和丹麦的大城市都是利用生物质,通过热电联产的方式进行区域集中供热的。生物质与化石燃料相比,具有以下优点:1、可再生性;2、低污染性:SOx、NOx排放浓度低;3、生物质作为燃料时,在生长周期内,对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应。我国对燃烧生物质发电的上网电价给予了充分的优惠,目前,燃烧生物质发电的上网电价为当地燃煤发电上网电价的基础之上增加0.25元/KWh,这项政策的出台,必将推动生物质燃烧发电成套技术及设备在我国的空前发展。

河北是一个农业大省,每年秸秆的产量巨大。目前,一部分生物质燃料分散燃烧利用,大部分就地焚烧。如何避免直接就地焚烧带来的污染,同时利用生物质的热能,这是值得我们深入研究课题,同时急需相关技术和装备。 循环流化床锅炉燃料适应性广,可同时燃用多种燃料;环保特性优越,排放满足国家标准;炉内换热均匀,热回收效率高,运行稳定;灰渣利用性高。基于循环流化床锅炉所具有的上述优点,人们自然将目光转向采用循环流化床技术来利用生物质能源,日本、美国和欧洲各国都在研究开发燃用生物质的循环流化床锅炉技术和产品。 二、秸秆类生物质燃烧与采用循环流化床所遇到的问题 1、秸秆类生物质的燃烧特性表现为:挥发分析出、着火迅速,燃烧主要集中在挥发分的气相燃烧,固定碳所占的燃烧份额很小,但是固定碳的燃尽性能较差,如何实现挥发份有效的快速燃烧和固定碳的燃尽; 2、秸秆类生物质中含有较多的碱金属元素(主要是指钾和钠),在生物质燃烧过程中,主要表现为灰的粘结性较强,在炉膛内容易发生结渣、堵塞,在尾部受热面上发生积灰,影响循环流化床锅炉安全、稳定的运行。 3、秸秆类生物质中含有少量的硫和氯,燃烧过程中会产生一定量的SO2和HCl,对尾部受热面形成腐蚀,如何有效地避免受热面管壁的腐蚀;如何有效的去除尾部受热面管壁上的积灰。

生物质气化技术

生物质气化技术 一、常见生物质气化炉类型 1、生物质气化按照使用的气化炉类型不同分为固定床气化和 流化床气化两种。固定床气化炉是将切碎的生物质原料由 炉子顶部加料口投入固定床气化炉中,物料在炉内基本上 是按层次地进行气化反应。反应产生的气体在炉内的流动 要靠风机来实现,安装在燃气出口一侧的风机是引风机, 它靠抽力(在炉内形成负压)实现炉内气体的流动;靠压 力将空气送入炉中的风机是鼓风机。固定床气化炉的炉内 反应速度较慢。按气体在炉内流动方向,可将固定床气化 炉分为下流式(下吸式)、上流式(上吸式)、横流式(横 吸式)和开心式四种类型。 a、 下流式固定床气化炉示意

气固呈顺向流动。运行时物料由上部储料仓向下移动,边移动边进行干燥与热分解的过程。在经过缩嘴时,与喷进的空气发生燃烧反应,剩余的炭落入缩嘴下方,与气流中的CO2, 和水蒸气发生反应产生CO 和H2。可以看出,下吸式气化炉中的缩嘴延长了气相停留时间,使焦油经高温区裂解,因而气体中的焦油含量比较少;同时,物料中的水分参加反应,使产品气中的H2含量增加。 b、 上流式固定床气化炉示意 气固呈逆向流动。在运行过程中湿物料从顶部加入后被上升的热气流干燥而将水蒸气带走,干燥后的原料继续下降并经热气流加热而迅速发生热分解反应。物料中的挥发分被释放,剩余的炭继续下降时与上升的CO2及水蒸气发生反应产生CO和H2。在底部,余下的炭在空气中燃烧,放出热量,为整个气化过程供热。由图2 , 可见,上吸式气化炉具有结构简单,操作可行性强的优点,但湿物料从顶部下降时,物料中的部分水分被上升的热气流带走,使产品气中H2的含量减少 横流式固定床气化炉示意

污泥直接掺烧耦合发电在大型燃煤电厂中的应用

污泥直接掺烧耦合发电在大型燃煤电厂中的应用 摘要:随着国民经济和社会的发展,城镇污水处理量大增,由此产生的大量污 泥如何处置是一个事关城市发展和环保保护的重大问题。本文通过分析大型燃煤 电厂直接掺烧污泥的可行性分析,并通过实际案例阐述在大型燃煤电厂中利用现 有的锅炉和环保设备,对污泥进行直接混合燃煤掺烧处置和耦合发电,从而达到 减量化和无害化处置的目标。污泥直接掺烧具有占地面积小、投资少、建设周期 短和运行成本低的特点,可作为目前城镇污泥处置的一个有效方式。 关键词:污泥直接掺烧燃煤火电厂应用 0 引言 城镇化的发展导致污水处理量大幅增加,污水处理产生了大量污泥,这些污 泥中含有重金属、病原体等有害物质,如何将这些污泥进行无害化处理是城市发 展面临的重要问题。高温焚烧是目前最彻底的处置方式,利用现有的大型燃煤火 电厂进行污泥掺烧耦合发电将是一项非常有效的一项措施。 1 污泥的危害及处置方法 1.1 污泥的危害 污泥是污水处理的产物,成分十分复杂,除了含有大量水分外,污泥中还含 有重金属、有机物、病原体微生物、难降解的有毒物质。如果将污泥直接排放在 环境当中,会污染水体和土壤,产生恶臭,造成环境的严重污染。 1.2 目前污泥的处置方法 目前污泥处置方法主要是填埋和焚烧,另外还有堆肥和作为污泥建材使用。 填埋处理会造成水体和土壤污染,占用土地资源。焚烧处置主要利用焚烧炉进行 处置,但投资较大运行费用高,如果焚烧温度低于850℃会掺烧二噁英,造成二 次污染。堆肥处理也会造成水体和土壤污染,并且不能用于农作物,处置受限。 污泥建材由于受到有毒物质和生产过程污染物的影响,利用率很低。 2 燃煤电厂污泥掺烧的可行性 2.1 利用现有设备,节省投资 大型燃煤电厂具备锅炉设备及其附属环保设施,目前大部分大型燃煤发电机 组都完成了超低排放改造,进行污泥掺烧不需要新建焚烧设备和废弃物处理装置,也不需要重新征用土地,节省了大量投资。 2.2 焚烧温度高,不产生二噁英 高参数大容量锅炉炉膛燃烧温度在1200℃以上,污泥混合燃煤燃烧能够在炉 膛有一定的停留时间,能够有效杀死污泥中的病原体,对污泥中有害物质能进行 有效分解,能够有效抑制二噁英的产生,与一般单独焚烧设备相比具有明显的环 保优势。 2.3 产生的灰渣废弃物能够综合利用 目前燃煤火电厂灰渣等废弃物都实现了综合利用,作为水泥、建材的原料加 以综合利用,燃煤电厂进行污泥焚烧,产生的固体废物混入燃煤燃烧的灰渣一起 作为资源综合利用产品的原材料。 2.4 具备较大污泥处置能力 大型燃煤电厂装机容量大耗用燃煤多,即使很小的掺烧比率也能得到较为可 观的污泥掺烧量。例如一座装机200万千瓦的电厂掺烧2%的污泥,每年能够处 置12万吨污泥,相当于一个中等城市的污泥产量。 2.5 运行费用较低

生物质气化技术发展分析

文章编号:0253?2409(2013)07?0798?07  收稿日期:2013?06?09;修回日期:2013?06?24三  基金项目:国家科技支撑计划(2012BAA 09B 03);国家自然科学基金(51176194)三 联系作者:阴秀丽,E?mail :xlyin @https://www.360docs.net/doc/e516605876.html, 三 生物质气化技术发展分析 吴创之,刘华财,阴秀丽 (中国科学院广州能源研究所中国科学院可再生能源重点试验室,广东广州 510640) 摘 要:生物质气化技术在世界范围内得到了广泛应用三研究综述了生物质气化技术的发展现状和应用情况,阐明了生物质气化技术目前存在的主要问题;对中国生物质气化生活供气和工业供气典型项目的经济性进行了分析,在此基础上对中国生物质气化技术应用前景进行了展望;结合中国生物质气化产业发展面临的新形势,为生物质气化产业的发展提出建议三关键词:生物质;气化技术;气化应用;现状;前景中图分类号:TK 6 文献标识码:A Status and prospects for biomass gasification WU Chuang?zhi ,LIU Hua?cai ,YIN Xiu?li (Key Laboratory of Renewable Energy ,Guangzhou Institute of Energy Conversion , Chinese Academy of Sciences ,Guangzhou 510640,China ) Abstract :Biomass gasification for energy utilization has been wildly used.The development and applications of biomass gasification technologies were reviewed in this paper.Special attention was paid to major problems encountered in practical use.A comparison of economical performances of gas supply for livelihood and industry was made.The prospects of biomass gasification in China were put forward.Taking into account the new situation ,several suggestions were given for the development of biomass gasification industry.Key words :biomass ;gasification ;applications ;status ;prospects 1 国外生物质气化技术发展现状 1.1 技术现状 经过几十年的发展,欧美等国的生物质气化技术取得了很大的成就三生物质气化设备规模较大,自动化程度高,工艺较复杂,主要以供热二发电和合成液体燃料为主,目前,开发了多系列已达到示范工厂和商业应用规模的气化炉三生物质气化技术处于领先世界水平的国家有瑞典二丹麦二奥地利二德国二美国和加拿大等三欧洲和美国在生物质气化发电和集中供气已部分实现了商业化应用,形成了规模化产业经营三20世纪80年代末90年代初,主要利用上吸式和下吸式固定床气化炉来发电或供热,规模大都较小三由于下吸式产气焦油含量较低,近来已逐渐占据主导地位,尤其以发电为目的时,主要在中国和印度使用三近年的大中型气化发电系统多采用常压循环流化床,容易扩大,原料适应性好,对原料尺寸和灰分要求不高三空气气化常用于发电和供热,富氧气化常用于气化合成,加压气化则用于IGCC (整体气化联合循环发电系统)二气化合成燃料或化工品三在过去的二三十年里,欧洲和北美的研究和 技术都有了显著的进展,建立了一批示范或商业工程,部分典型工艺和应用见表1三1.2 应用情况 生物质气化目前主要应用于供热二窑炉二发电和合成燃料,具体见图1三各种应用的规模都在增长,CHP (热电联产)的增长尤其快,已成为目前最主要的利用方式三除了上述技术,生物质气化还有其他新型利用,比如燃料电池等三 从20世纪80年代起,生物质气化被美国二瑞典和芬兰等国应用于水泥窑和造纸业的石灰窑,既能保证原料供给又能满足行业需求,这种应用方式简单可靠,具有较强的竞争力,但应用却不多三 20世纪90年代起,生物质气化开始被应用于 热电联产,多用柴油或燃气内燃机,对燃料品质和系统操作的要求较高,成本也较高,其应用推广受到限制,常常需要政府的支持和补贴三受煤的IGCC 应用结果的推动,生物质IGCC 成为90年代的关注热点,IGCC 系统有望在中等成本和中等规模下提供高发电效率,研究者对其进行了大量的研究并建设了几个示范工程,主要集中在欧洲,但由于系统运行 第41卷第7期2013年7月 燃 料 化 学 学 报 Journal of Fuel Chemistry and Technology Vol.41No.7 Jul.2013

相关文档
最新文档