分形理论在平移断层物理模拟实验中的应用研究

分形理论在平移断层物理模拟实验中的应用研究
分形理论在平移断层物理模拟实验中的应用研究

分形理论在平移断层物理模拟实验中的应用研究

X

袁兴雁,季登洲,靳 楠,李振南

(东北石油大学地球科学学院,黑龙江大庆 163318)

摘 要:通过详细分析平移断层物理模拟实验中形成的断裂与伴生裂缝的组成、形态和结构等特征,发现二者具有良好的自相似性,并且具有明显的分形结构,因此将分形理论应用到平移断层物理模拟实验中形成的断裂与伴生裂缝发育规律的研究中,不仅可以更加直观的反应出平移断层伴生裂缝的发育规律,并利于对其规律进行科学的总结。

关键词:模拟实验;分形理论;断裂;裂缝;发育规律

中图分类号:T E319+

.1 文献标识码:A 文章编号:1006—7981(2012)05—0004—03 所谓分形,是以非整数维形式充填空间的形态特征,可以说是来自于一种思维上的理论存在。分形

(fractal )的核心是“标度不变性”,即“自相似性”[1]

,它揭示了无规则形体的内在规律性。定量描述这种自相似性的参数称为“分维数”,简称“分维”(fractal dimension),记为D,可以是整数,也可以是分数。在本次平移断层的物理模拟实验中断裂与伴生裂缝的形成具有随机自相似性,其二者的分布和几何形态也具有明显的分形结构,因此将分形理论应用到平移断层物理模拟实验过程中形成的断裂与伴生裂缝发育规律的研究中,不仅可以更加直观的反应出平移断层伴生裂缝的发育规律,并利于对其规律进行科学的总结。

1 平移断层模拟实验简介

为顺利进行平移断层物理模拟实验,按照平移断层形成机理专门研制了一套模拟装置,实验装置由控制系统、液压系统、摄像系统和模型仓4部分组成(图1)。其核心部分是模型仓,其大小为50cm ×30cm ×15cm,将事先制作好的模拟地层放置模型仓C 中,B 盘固定不动,A 盘在1、2号液压缸的作用下产生剪切力,与B 盘产生相对运动,3、4号液压缸保证地层模型受到一定的围压,装置中设有压力传感器Ⅰ(显示垂向压力)、压力传感器Ⅱ(显示水平方向的围压)、位移传感器Ⅰ(显示垂向位移)及位移传感器Ⅱ(显示水平位移),实验操作均由控制系统控制,

实验的整个过程和现象可由摄像系统记录。

图1 平移断层物理模拟实验系统

2 断裂和裂缝的自相似性特征

一组物体若表示出“标度不变性”的特征,则可以认为在任意尺度上,大、小单元的相对数目保持相等,数学上则为单元的大小分布服从幂律控制,此即为分形特征[2],因此研究平移断层模拟试验中形成的断裂与伴生裂缝分形的前提和基础是其断裂与裂缝发育特征统计意义上的自相似性特征。2.1 断裂和裂缝展布方向的相似性

实验过程中,我们设定在SN 方向的压应力作用下形成平移断层的典型模式,通过统计其横剖面上所能观察到的断层和伴生裂缝,发现断层走向以近SN 向为主(图2a ),而伴生裂缝走向不仅包括平行于断层走向的近SN 向的优势方向,还有少部分伴生裂缝走向为NNE 向与NN W 向(图2b ),可以看

4

内蒙古石油化工 2012年第5期 

X

收稿日期5

基金项目国家大学生创新性实验计划项目资助。

作者简介袁兴雁(),男,研究方向资源勘查工程。

:2012-01-1::1989-:

大学物理仿真实验——霍尔效应

大学物理实验报告 姓名:wuming 1目的:(1)霍尔效应原理及霍尔元件有关参数的含义和作用 (2)测绘霍尔元件的V H—Is,V H—I M曲线,了解霍尔电势差V H与霍尔元件工作电流Is,磁场应强度B及励磁电流I M之间的关系。 (3)学习利用霍尔效应测量磁感应强度B及磁场分布。 (4)学习用“对称交换测量法”消除负效应产生的系统误差。 2简单的实验报告数据分析 (1)实验原理 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图(1)所示,磁场B 位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。设电子按平均速度V,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-e V B 式中:e 为电子电量,V为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为: f E H H eV eE- = - =l

大学物理实验模拟题八套(六套有答案)

1,2,3,4,5,8有答案,6,7没有,但可以参考复 习 大学物理实验模拟试题一 一、填空题(总分42分,每空1分) 1. 测量结果的有效数字的位数由 和 共同决定。 2. 50分度的游标卡尺,其仪器误差为 。 3. 量程为10mA 电流表,其等级为1.0,当读数为6. 5mA 时,它的最大误差为 。 4. 不确定度表示 。 5. lg35.4= 。 6. 在分光计实验中,望远镜的调节用的是 法。 7. S 是表示多次测量中每次测量值的 程度,它随测量次数n 的增加变化很 ,表示 偏离真值的多少,它 随测量次数n 的增加变化很 。 8. 在杨氏模量实验中,若望远镜的叉丝不清楚,应调节望远镜 的焦距,若观察到的标尺像不清楚则应调节望远镜 的焦距。钢丝的伸长量用 法来测定。 9. 计算标准偏差我们用 法,其计算公式为 。 N S

10.表示测量数据离散程度的是精密度,它属于偶然误差,用误差(偏差)来描述它比较合适。 11.用20分度的游标卡尺测长度,刚好为15mm,应记为 mm。12.根据获得测量结果的不同方法,测量可分为测量和测量;根据测量的条件不同,可分为测量和测量。 13.电势差计实验中,热电偶的电动势与温差的关系为关系,可用 法、法和法来求得经验方程。14.789.30×50÷0.100= 。 15.10.1÷4.178= 。 16.2252= 。 17.用分光仪测得一角度为300,分光仪的最小分度为1,,测量的结果为。 18.对于连续读数的仪器,如米尺、螺旋测微计等,就以作为仪器误差。 19.分光计测角度时由于度盘偏心引起的测量角度误差按正弦规律变化,这是误差。 20.在示波器内部,同步、扫描系统的功能是获得电压信号,这种电压信号加在偏转板上,可使光点匀速地沿X 方向从左向右作周期性运动。 21.系统误差有确定性的特点,偶然误差有随机性

物理实验中的模拟法

物理实验中的模拟法 模拟法是在实验室里先设计出于某被研究现象或过程(即原型)相似的模型,然后通过模型,间接的研究原型规律性的实验方法。先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。 模拟法应用于物理教学,可使事过境迁或稍纵即逝的自然现象或过程在实验室重现,可将现象简化或进行时空的放大、缩小,可对那些既不能打开又不能从外部直接观察其内容状态的系统进行研究。 特别是解决那些尚无简单有效的仪器可演示的实验,模拟法则成了一种重要的辅助手段。 物理实验中的模拟法,根据其主要功能,并结合教学实践,分可大致为以下三类: 一、研究对象模拟 对象模拟的设计思想主要在于下述两种情况: 1.为了突出客观实体的主要矛盾和本质特征,摒弃次要的非本质因素,使研究对象从客观实体中直接抽象出来。如质点、理想气体、弹簧振子、点电荷、纯电阻、理想变压器等理想模型,以及天体运动模型,微观结构等几何相似模型。在研究二极管的单向导电性时,在实验基础上,运用对象模拟法,用自行车气门和进水阀门来模拟单向门。如此,不但加深对“单向性”的认识,而且激发了兴趣,开阔了思路。 由电磁学理论可知,无自由电荷分布的各向同性均匀电介质中的静电场的电势、与不含电源的各向同性均匀导体中稳恒电流场的电势,两者所遵从的物理规律具有相同的数学表达式.在相同的边界条件下,这两种场的电势分布相似,因此只要选择合适的模型,在一定条件下用稳恒电流场去模拟静电场是可行的 2.为了解释某些行为和特征而建立起来的模拟。如地球因自转而产生的科里奥利力比较抽象,在地理课中亦有提及。我们不妨取一个地球仪来模拟地球自转,然后将红墨水从上往下滴落在转动的“地球”表面。此时即可明显看到水痕西边呈扩散状,从而令人信服的说明北半球南流冲刷西岸这一自然现象。 二、物理过程模拟 把具体物理过程纯粹化、理想化,并根据其本质特征而设计的一种模拟叫过程模拟。其特点是过程简化,易于控制。气体压强的分子运动论观点,通常采用雨滴打伞等面来类比。这种大量分子对器壁连续碰撞的过程,如果用豆落在平衡天平一端倒扣着的托盘底上的现象来模拟,就显得直观生动了。布朗运动的模拟,装有铁屑的试管模拟铁棒的磁化和退磁等都是过程模拟的成功例子,还有伽利略的自由落体运动,当物体不受力时将做匀速运动,但在现实中不可能不受力,于是不断减小阻力,当阻力愈来愈小时,物体无限接近于语速运动。 气体压强的分子运动论观点,通常采用雨滴打伞等面来类比。这种大量分子对器壁连续碰撞的过程,如果用豆落在平衡天平一端倒扣着的托盘底上的现象来模拟,就显得直观生动了。布朗运动的模拟,装有铁屑的试管模拟铁棒的磁化和退磁等都是过程模拟的成功例子。 电子技术中半导体的导电机理,电子运动易理解,空穴导电则抽象,课堂教学中如用“空 位置”的运动来作一现场过程模拟,无疑会使学生茅塞顿开。分析曲线运动的思想方法——运动的分解和合成是个难点,可以平抛运动为突破口,在演示有关实验后,用“慢镜头”的方法,手持粉笔头边走(模拟水平匀速直线运动)边沿自身前方,从上向下加速下移,以此模拟平抛运动,既简单明了,又便于分析。理解机械波的形成过程是本章教学的一个重点和难点,运用模拟器材,以纽扣状的物体来表示振动的质点,通过摇转,使质点绕平衡位置上下振动,而整体波形向外传递,边演示边分析,效果很好。 热学中的统计方法和光本性的几率概念,由于受课堂教学时间的限制,怎样从个别事

初中物理实验汇总,实验考题就这15个点

初中物理实验汇总,实验考题就这15个点一.力学 1. 天平测质量 实验目的 用托盘天平测质量。 实验器材 天平(托盘天平) 实验步骤 1.把天平放在水平桌面上,取下两端的橡皮垫圈。 2.游码移到标尺最左端零刻度处(游码归零,游码的最左端与零刻度线对齐)。 3.调节两端的平衡螺母(若左盘较高,平衡螺母向左拧;右盘同理),直至指针指在刻度盘中央,天平水平平衡。 4.左物右码,直至天平重新水平平衡。(加减砝码或移动游码) 5.读数时,被测物体质量=砝码质量+游码示数(m 物=m 砝+m 游) 实验记录 此物体质量如图:62 g 2. 弹簧测力计测力 【实验目的】用弹簧测力计测力 【实验器材】细线、弹簧测力计、钩码、木块 【实验步骤】 测量前: 1.完成弹簧测力计的调零。(沿测量方向水平调零) 2.记录该弹簧测力计的测量范围是 0~5 N,最小分度值是 0.2 N。测量时:拉力方向沿着弹簧伸长方向。 【实验结论】如图所示,弹簧测力计的示数 F=1.8 N。 3. 验证阿基米德原理 【实验目的】 定量探究浸在液体中的物体受到的浮力大小与物体排开液体的重力之间的关系。 【实验器材】弹簧测力计、金属块、量筒、水 【实验步骤】 1.把金属块挂在弹簧测力计下端,记下测力计的示数F1。 2.在量筒中倒入适量的水,记下液面示数 V1。 3.把金属块浸没在水中,记下测力计的示数 F2 和此时液面的示数 V2。 4.根据测力计的两次示数差计算出物体所受的浮力(F 浮=F1-F2)。 5.计算出物体排开液体的体积(V2-V1),再通过 G水=ρ(V2-V1)g 计

算出物体排开液体的重力。 6.比较浸在液体中的物体受到浮力大小与物体排开液体重力之间的关系。(物体所受浮力等于物体排开液体所受重力) 【实验结论】液体受到的浮力大小等于物体排开液体所受重力的大小4. 测定物质的密度 (1)测定固体的密度 【实验目的】测固体密度 【实验器材】天平、量筒、水、烧杯、细线、石块等。 【实验原理】ρ=m/v 【实验步骤】 1.用天平测量出石块的质量为 48.0 g。 2.在量筒中倒入适量的水,测得水的体积为 20 ml。 3.将石块浸没在量筒内的水中,测得石块的体积为cm3。 【实验结论】 根据公式计算出石块的密度为 2400 kg/m 3 。多次实验目的:多次测量取平均值,减小误差 (2)测定液体的密度 【实验目的】测液体密度 【实验步骤】 1.测出容器与液体的总质量(m总)。 2.将一部分液体倒入量筒中,读出体积 V。 3.测容器质量(m容)与剩余液体质量(m剩=m总-m容)。 4.算出密度:ρ 5.探究物质质量和体积与哪些因素有关 【实验目的】 探究质量与体积的关系,为了研究物质的某种特性,形成密度的概念。【实验器材】量筒、天平、水、体积不等的若干铜块和铁块。 【实验步骤】 1.用天平测出不同铜块和铁块的质量,用量筒测出不同铜块和铁块的体积。 2.要记录的物理量有质量,体积。 3.设计表格:

物理仿真实验

大学物理仿真实验报告固体线膨胀系数的测量 院系名称: 专业班级: 姓名: 学号:

固体线膨胀系数的测量 一、实验目的 1、测定金属棒的线胀系数 2、学习用光杠杆测量微小伸长的原理和方法 3、创新方法的研究和讨论 二、实验原理 固体的线膨胀系数和体膨胀系数是固体热学特性的重要参数,通常体膨胀系数是线膨胀系数的3倍左右,本实验主要介绍固体线膨胀系数的测量方法。 线膨胀是指材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了△L,则线膨胀系数满足:

则固体线膨胀系数为 三、实验仪器 尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计 四、实验内容及步骤 1、在实验界面单击右键选择“开始实验” 2、调节平面镜至竖直状态 3、打开望远镜视野,并调节方位、聚焦、目镜使得标尺刻线清晰,且中央叉丝读数为0.0mm(抓图1) 4、单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止(抓图2)

5、单击卷尺,分别测量l、D,(抓图3) 经测得l=62.1mm 经测得D=1885.4mm 6、以t为横轴,b为纵轴作b-t关系曲线,求直线斜率k (抓图4) 7、代入公式计算线膨胀系数值 A=1.1×10^-5 五、实验数据记录与处理 D/mm 1885.4 l/mm 62.1 a 1.1×10 ^-5 六、思考题 1.对于一对大多数材料来说,线胀系数是否一定是一个常数?为什么?

对大多数材料来说,线胀系数并不是一个常数。即在不同温度区间,材料的线胀系数有或大或小的差别,也就是材料受热胀缩与温度常常不是线性关系 2.你还能想出一种测微小长度的方法,从而测出线胀系数吗? 可以用激光位移传感器,可以测到几微米的位移变化。 3.引起测量误差的主要因素是什么? 温度计的热惯性,升温时实际温度高于读数温度,降温时实际温度低于读数温度,采取了升温,降温同一温度对应的标尺读数n取平均的办法,可消除这种误差。 (2)铜棒温度不均匀,中下部温度高,上部温度偏低,温度计所在部位不同,可使测量结果有所不同,由于温度计在中上部,可是测得的线胀系数偏小。 (3)光杠杆原理公式具有近似性。只有当dn很小时才近似成立。

大学物理实验考试模拟试卷和答案

一、判断题(“对”在题号前()中打√.“错”打×)(10分) ()1、误差是指测量值与真值之差.即误差=测量值-真值.如此定义的误差反映的是测量值偏离真值的大小和方向.既有大小又有正负 符号。 ()2、残差(偏差)是指测量值与其算术平均值之差.它与误差定义一样。 ()3、精密度是指重复测量所得结果相互接近程度.反映的是随机误差大小的程度。 ()4、测量不确定度是评价测量质量的一个重要指标.是指测量误差可能出现的范围。 ()5、在验证焦耳定律实验中.量热器中发生的过程是近似绝热过程。 ()6、在落球法测量液体粘滞系数实验中.多个小钢球一起测质量.主要目的是减小随机误差。 ()7、分光计设计了两个角游标是为了消除视差。 ()8、交换抵消法可以消除周期性系统误差.对称测量法可以消除线性系统误差。 ()9、调节气垫导轨水平时发现在滑块运动方向上不水平.应该先调节单脚螺钉再调节双脚螺钉。 ()10、用一级千分尺测量某一长度(Δ仪=0.004mm).单次测量结果为N=8.000mm.用不确定度评定测量结果为N=(8.000±0.004)mm。 二、填空题(20分.每题2分) 1.依照测量方法的不同.可将测量分为和两大类。 2.误差产生的原因很多.按照误差产生的原因和不同性质.可将误差分为疏失误差、和。 3.测量中的视差多属误差;天平不等臂产生的误差属于误差。 4.已知某地重力加速度值为9.794m/s2.甲、乙、丙三人测量的结果依次分别为:9.790±0.024m/s2、9.811±0.004m/s2、9.795±0.006m/s2.其中精密度最高的是 .准确度最高的是。 5.累加放大测量方法用来测量物理量.使用该方法的目的是减小仪器造成的误差从而减小不确定度。若仪器的极限误差为0.4.要求测量的不确定度小于0.04.则累加倍数N>。 6.示波器的示波管主要由、和荧光屏组成。 7.已知y=2X1-3X2+5X3.直接测量量X1.X2.X3的不确定度分别为ΔX1、ΔX2、ΔX3.则间接测量量的不确定度Δy= 。 8.用光杠杆测定钢材杨氏弹性模量.若光杠杆常数(反射镜两足尖垂直距离)d=7.00cm.标尺至平面镜面水平距离D=105.0㎝.求此时光杠杆的放大倍数K= 。 9、对于0.5级的电压表.使用量程为3V.若用它单次测量某一电压U.测量值为2.763V.则测量结果应表示为U= .相对不确定度为B= 。 10、滑线变阻器的两种用法是接成线路或线路。 三、简答题(共15分) 1.示波器实验中.(1)CH1(x)输入信号频率为50Hz.CH2(y)输入信号频率为100Hz;(2)CH1(x)输入信号频率为150Hz.CH2(y) 输入信号频率为50Hz;画出这两种情况下.示波器上显示的李萨如图形。(8分) 2.欲用逐差法处理数据.实验测量时必须使自变量怎样变化?逐差法处理数据的优点是什么?(7分)

物理仿真实验

实验简介: 液体表层指液体与气体、液体与固体以及不相混合的液体之间的界面。液体表层分子有从液面挤入液体内部的倾向,这使得液体的表面自然收缩,就整个液面来说,如同拉紧的弹性薄膜,这种沿着表面,使液面收缩的力称为表面张力。表面张力在船舶制造、水利学、化学化工、凝聚态物理中都能找到它的应用。 测量液体(例如水)的表面张力系数有多种方法,如最大泡压法、平板法(亦称拉普拉斯法)、毛细管法、焦利氏秤法、扭力天平法等。这里只介绍焦利氏秤法。本实验首先利用逐差法测量焦利氏秤弹簧的倔强系数,然后利用拉脱法测量液体的表面张力系数。 实验原理 1、液体分子受力情况 液体表面层中分子的受力情况与液体内部不同。在液体内部,分子在各个方向上受力均匀,合力为零。而在表面层中,由于液面上方气体分子数较少,使得表面层中的分子受到向上的引力小于向下的引力,合力不为零,这个合力垂直于液体表面并指向液体内部,如图1所示。所以,表面层的分子有从液面挤入液体内部的倾向,从而使得液体的表面自然收缩,直到达到动态平衡(即表面层中分 图1 液体分子受力示意图 子挤入液体内部的速率与液体内部分子热运动而达到液面的速率相等)。这时,就整个液面来说,如同拉紧的弹性薄膜。这种沿着表面,使液面收缩的力称为表面张力。 想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。 2、矩形金属框架测量原理 将一表面清洁的矩形金属薄片竖直浸入水中,使其底面水平并轻轻提起。当金属片底面与水面相平,或略高于水面时,由于液体表面张力的作用,金属片的四周将带起一部分水,使水面弯曲,呈图2所示的形状。这时,金属片在竖直方向上受到(1)金属片的重力mg;(2)向上的拉力F;(3)水表面对金属片的作用力——表面张力。 图2 金属框受力示意图 其中为水面与金属片侧面的夹角,称为接触角。如果金属片静止,则竖直方向上合力为零,有

(完整版)大学物理实验理论考试题及答案汇总

一、 选择题(每题4分,打“ * ”者为必做,再另选做4题,并标出选做记号“ * ”,多做不给分,共40分) 1* 某间接测量量的测量公式为4 3 23y x N -=,直接测量量x 和y 的标准误差为x ?和y ?,则间接测 量量N 的标准误差为?B N ?=; 4322 (2)3339N x x y x x x ??-==?=??, 3334(3)2248y N y y y y x ??==-?=-??- ()()[]21 23 2 289y x N y x ?+?=? 2* 。 用螺旋测微计测量长度时,测量值=末读数—初读数(零读数),初读数是为了消除 ( A ) (A )系统误差 (B )偶然误差 (C )过失误差 (D )其他误差 3* 在计算铜块的密度ρ和不确定度ρ?时,计算器上分别显示为“8.35256”和“ 0.06532” 则结果表示为:( C ) (A) ρ=(8.35256 ± 0.0653) (gcm – 3 ), (B) ρ=(8.352 ± 0.065) (gcm – 3 ), (C) ρ=(8.35 ± 0.07) (gcm – 3 ), (D) ρ=(8.35256 ± 0.06532) (gcm – 3 ) (E) ρ=(2 0.083510? ± 0.07) (gcm – 3 ), (F) ρ=(8.35 ± 0.06) (gcm – 3 ), 4* 以下哪一点不符合随机误差统计规律分布特点 ( C ) (A ) 单峰性 (B ) 对称性 (C ) 无界性有界性 (D ) 抵偿性 5* 某螺旋测微计的示值误差为mm 004.0±,选出下列测量结果中正确的答案:( B ) A . 用它进行多次测量,其偶然误差为mm 004.0; B . 用它作单次测量,可用mm 004.0±估算其误差; B =?==? C. 用它测量时的相对误差为mm 004.0±。 100%E X δ = ?相对误差:无单位;=x X δ-绝对误差:有单位。

大学物理实验竞赛综合考题B

大学物理实验竞赛试卷

一、判断题(“对”在“()”中打√,“错”打×)(20分) ()1.误差是指测量值与量的真值之差,即误差=测量值-真值。这一定义的误差反映的是,测量值偏离真值的大小和方向,误差有正负符号,不应该将它与误差的绝对值相混淆。 ()2.残差(偏差)是指测量值与其算术平均值之差,它与误差定义差不多。 ()3.精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。 ()4.精确度指精密度与正确度的综合,它既描述数据的重复性程度,又表示与真值的接近程度,其综合反映了误差的大小程度。 ()5.根据随机误差与系统误差的性质可知,系统误差的特征是它的确定性,而随机误差的特征是它的随机性。 ()6.用算术平均值代替真值称为测量结果的最佳值,那么平均值代替真值可靠性如何,要对它进行估算和评定,用以下方法估算和评定都是正确的,如算术平均偏差、标准偏差、不确定度。 ()7.系统误差和随机误差是两种不同性质的误差,但它们又有着内在的联系,在一定条件下,它们有自己的内涵和界限,但条件改变时,彼此又可能互相转化。如测量温度在短时间内可保持恒定或缓慢变化,但在长时间中却是在某个平均值附近作无规则变化,因此温度变化造成的误差在短段时间内可以看成随机误差,而在长时间内看作系统误差处理。 ()8.大量的随机误差服从正态分布,一般说来增加测量次数求平均可以减小随机误差。 ()9.测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。 ()10.不确定度A类分量与随机误差相对应,不确定度B类分量与系统误差相对应。 ()11.正确度是指测量值或实验所得结果与真值符合的程度,它是描述测量值接近真值程度的尺度,其反映的是系统误差大小的程度。但有人认为,正确度和精确度含义是一样的。 ()12.有一个0.5级的电流表,其量程数为10μA,单次测量某一电流值为6.00μA,用不确定度表示测量结果为I真=(6.00±0.05)μA。 ()13.某电阻值的测量结果为R真=(35.78±0.05)Ω,则待测电阻值是在35.73Ω和35.83Ω之间。 ()14.由于系统误差在测量条件不变时有确定的大小和正负号,因此在同一测量条件下多次测量求平均值能够减少误差或消除它。 ()15.利用逐差法处理实验数据的最基本条件和优点是可变换成等差级数的数据序列,充分利用数据,减少随机误差。 ()16.利用霍尔效应测量磁感应强度,这种测量方法属于比较法。 ()17.用光杠杆测定固体杨氏模量,若光杠杆常数(反射镜两足尖垂直距离)d=10.0cm,标尺至镜面水平距离D=100.0㎝,此时光杠杆的放大倍数K=10。 ()18.系统误差有确定的变化规律,随机误差没有变化规律。 ()19.交换抵消法可以消除周期性系统误差,对称测量法可以消除线性系统误差。 ()20.模拟法可以分为物理模拟和数学模拟,用稳恒电流场模拟静电场属于数学模拟。 二、操作题(50分)

大学物理仿真实验

大学物理仿真实验 大学物理仿真实验 学院:能动学院专业班号:装备81 姓名:黄崇海 学号:08037011 - 1 - 实验名称: 测螺线管磁场 一、实验目的: 学习测量交变磁场的一种方法,加深理解磁场的一些特性及电磁感应定律。 二、实验仪器: 测量螺线管内磁场实验装置全貌 铜导线螺线管、霍尔元件(轴向磁场探针)、(毫)特斯拉计、电流源。 三、实验原理: 图1 图1是一个长为2l,匝数为N的单层密绕的直螺线管产生的磁场。当导线中流过电流I时,由毕奥—萨伐尔定律可以计算出在轴线上某一点P的磁感应强度为- 2 - 式中,为单位长度上的线圈匝数,R为螺线管半径,x 为P点到螺线管中心处的距离。在SI单位制中,B的单位为特斯拉(T)。图1同时给出B随x的分布曲线。 磁场测量的方法很多。其中最简单也是最常用的方法是基于电磁感 应原理的探测线圈法。本实验采用此方法测量直螺线管中产生的交变磁场。下图是实验装置的实验装置的示意图。

图2 当螺线管A中通过一个低频的交流电流i(t) = I0sinωt时,在螺线管内产生一个与电流成正比的交变磁场B(t) = Cpi(t) = B0sinωt其中Cp是比例常数,把探测线圈A1放到螺线管内部或附近,在A1中将产生感生电动势,其大小取决于线圈所在处磁场的大小、线圈结构和线圈相对于磁场的取向。探测线圈的尺寸比较小,匝数比较多。若其截面积为S1,匝数为N1,线圈平面的法向平面与磁场方向的夹角为θ,则穿过线圈的磁通链数为: Ψ = N1S1B(t)cosθ 根据法拉第定律,线圈中的感生电动势为: - 3 - 通常测量的是电压的有效值,设E(t)的有效值为V,B(t)的有效值为B ,则有 ,由此得出磁感应强度: 其中r1是探测线圈的半径,f是交变电源的频率。在测量过程中如始终保持A 和A1在同一轴线上,此时,则螺线管中的磁感应强度为 在实验装置中,在待测螺线管回路中串接毫安计用于测量螺线管导线中交变电流的有效值。在探测线圈A1两端连接数字毫伏计用于测量A1中感应电动势的有效值。 使用探测线圈法测量直流磁场时,可以使用冲击电流计作为探测仪器,同学们可以参考冲击电流计原理设计出测量方法。 四、实验内容及操作步骤: 1(研究螺线管中磁感应强度B与电流I和感生电动势V之间的关系,测量 螺线管中的磁感应强度。 2(测量螺线管轴线上的磁场分布。

大学物理实验模拟试题五(附含答案)

大学物理实验模拟试题五(附含答案) 一、填空(每题1分,共6分) 1、对某物理量进行直接测量,测量结果有效数字的位数由 、 决定。 2、对某物理量y 进行了n 次测量,各测量值为i y ,仪器误差为仪?,其A 类 不确度为: ; B 类不确定度为: ;合成不确定度 为: 。 3、用???±=表示测量结果,它的物理含义是: 。 4、测某物理量y ,得出cm y 753.15=,不确定度为cm y 321.0=?,结果应表示为: 。 5、测得金属环外径D D D ?±=,内径d d d ?±=,高h h h ?±=,则金属环 体积的不确定度:=?V ;相对不确定度: =V E 。 6、计算:=?-28.14)03.1734.17( ; =?+2.13)62.83.15(2 。 二、问答题(从下面8道题中只能选择6道 ,在不选题前用“ ” 标明,未 标明者,以前6道题计分,共18分) 1、在杨氏模量实验中的几个长度量L 、D 、b 、d 、n ?,哪个量的不确定度对结果影响最大?要减少测量结果的不确定度,主要应减少哪个长度量的不确定度?为什么? 2、请画出示波管的结构图,并标明各部分的名称。 3、分光计测量角度之前应调整到什么状态? 4、牛顿环实验中,为什么不用公式λKR r K =而用()λ n m D D R n m --=42 2测平凸透镜的曲率半径R ? 5、简述霍尔效应测量磁场的原理。 6、示波器实验中,(1)用示波器观察信号波形时,若已知信号频率为 400Hz , 要在荧光屏上出现2个周期的完整波形,扫描频率应该是多少?(2)显示李萨如图形时,1Y (x )输入端信号频率为100Hz ,2Y (y )输入端信号频率为50Hz ,画出该情况下示波器上显示的李萨如图形。 7、惠斯通电桥实验中,连好线路并合上开关1K 、2K ,如下图。调节s R 时

最新大学物理实验模拟考题及其解答

大学物理实验模拟考题及其解答

大学物理实验模拟考题及其解答 一、绪论课 最基本应该掌握的内容:(1)数据处理的四种方法:列表法、作图法、逐差法、统计与直线拟合法,另外,还有最小二乘法、计算器法。前四个是最基本的;(2)误差传递基本方法:对数微分法、全微分法。具体的传递涉及:正方体、长方体、圆面、圆柱体、球体,两个刻度相减对应的距离的对应的仪器误差;(3)结果表达式的书写的基本要领; 一、绪论课 1. 随机误差、系统误差(量具误差与调整误差、理论误差与方法误差、环境误差、人员误差),分为可定系统误差和未定系统误差;结果表达式的规范写法与相对误差、三要素:测量值、不确定度和单位;单次测量结果表达式的写法—极限误差;多次测量、仪器误差、仪器标准差、②置信概率(置信度) 例(1)测量结果表达式的三要素,是指、、。 例(2)在直接、单次测量的结果表达式中,常用仪器的极限误差Δ作为测量的不确定度,则该结果的置信概率为:() (A)68.3% (B)95.5% (C)99.7% (D)不能确定 例(3)某长度的计量测量结果写成:L=25.78±0.05(mm) p=68.3%,下列叙述中哪个是正确的? 1待测长度是25.73mm或25.83mm 2待测长度是25.73mm到25.83mm之间 3待测长度的真值在区间25.73mm~25.83mm内的概率为68.3% 4待测长度在25.73mm~25.83mm内的概率是68.3% 解:D正确的,因为待测长度的真值应该在25.73mm~25.83mm内的置信概率为68.3%。 2.真值、测量值、误差(绝对误差)的区别 例(1)依照测量方法的不同,可将测量分为和两大类。 例(2)1)对一物理量进行等精度多次测量,其算术平均值是() A.真值; B.最接近真值; C.误差最大的值; D.误差为零的值 3.偏差、标准误差、标准偏差、视差的区别 4.系统误差、随机误差(有界性、单峰性、补偿性和对称性)、粗大误差 例(1)电表未校准所引起的测量误差属于() (A)随机误差(B)系统误差(C)粗大误差(D)未知误差 5.已定系统误差、未定系统误差、不确定度、总不确定度、标准差传递、仪器误差传递、对数微分法 例(2)电表未校准所引起的测量误差属于() (A)随机误差(B)系统误差(C)粗大误差(D)未知误差 6.误差传递:对数分法、全微分法、

物理仿真实验报告1

物理仿真实验报告1

物理仿真实验报告 受迫振动 班级应物01 姓名赵锦文 学号10093020

一、实验简介 在本实验中,我们将研究弹簧重物振动系统的运动。在这里,振动中系统除受弹性力和阻尼力作用外,另外还受到一个作正弦变化的力的作用。这种运动是一类广泛的实际运动,即一个振动着的力学体系还受到一个作周期变化的力的作用时的运动的一种简化模型。如我们将会看到的,可以使这个体系按照与施加力相同的频率振动,共振幅既取决于力的大小也取决于力的频率。当力的频率接近体系的固有振动频率时,“受迫振动”的振幅可以变得非常大,这种现象称为共振。共振现象是重要的,它普遍地存在于自然界,工程技术和物理学各领域中.共振概念具有广泛的应用,根据具体问题中共振是“利”还是“害”,再相应地进行趋利避害的处理。 两个相互耦合的简谐振子称为耦合振子,耦合振子乃是晶体中原子在其平衡位置附近振动的理想模型。 本实验目的在于研究阻尼振动和受迫振动的特性,要求学生测量弹簧重物振动系统的阻尼常数,共振频率。 二、实验原理 1.受迫振动 砝码和挂钩 弹簧 弹簧 振荡器 图13.1 受迫振动 质量M 的重物按图1放置在两个弹簧中间。静止平衡时,重物收到的合外力为0。当重物被偏离平衡位置时,系统开始振动。由于阻尼衰减(例如摩擦力),最终系统会停止振动。振动频率较低时,可以近似认为阻力与振动频率成线性关系。作用在重物上的合力: x M x Kx x x k x k F 21=--=---=ββ 其中k1, k2是弹簧的倔强系数。

K = k1+ k2是系统的等效倔强系数。 x 是重物偏离平衡位置的距离, β 是阻尼系数。 因此重物的运动方程可表示为: 22 0=++x x x ωγ 其中 γβ=M and ω02 =K M 。 在欠阻尼状态时(ωγ0>),方程解为: ) cos(22 0 φγωγ+-=-t Ae x t A, φ 由系统初始态决定。方程的解是一个幅度衰减的谐振动,如图2所示。 T 图13.2 衰减振动 振动频率是: f T = =-11202 2π ωγ (13.1) 如果重物下面的弹簧1k 由一个幅度为a 的振荡器驱动,那么这个弹簧作用于重物的力是) cos (1x t a k -ω。此时重物的运动方程为: M t a k x x x cos 212 0ωωγ= ++ . 方程的稳态解为: ) cos(4)(2 2 2 22 1θωω γωω-+-= t M a k x (13.2) 其中 )2(tan 2 201 ωωγω θ-=-。图13.3显示振动的幅度与频率的关系。

大学物理实验__考试模拟试卷及答案

一、判断题(“对”在题号前()中打√,“错”打×)(10分) ()1、误差是指测量值与真值之差,即误差=测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。 ()2、残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。 ()3、精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。()4、测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。()5、在验证焦耳定律实验中,量热器中发生的过程是近似绝热过程。 ()6、在落球法测量液体粘滞系数实验中,多个小钢球一起测质量,主要目的是减小随机误差。 ()7、分光计设计了两个角游标是为了消除视差。 ()8、交换抵消法可以消除周期性系统误差,对称测量法可以消除线性系统误差。()9、调节气垫导轨水平时发现在滑块运动方向上不水平,应该先调节单脚螺钉再调节双脚螺钉。 ()10、用一级千分尺测量某一长度(Δ仪=0.004mm),单次测量结果为N=8.000mm,用不确定度评定测量结果为N=(8.000±0.004)mm。 二、填空题(20分,每题2分) 1.依照测量方法的不同,可将测量分为和两大类。 2.误差产生的原因很多,按照误差产生的原因和不同性质,可将误差分为疏失误差、和。 3.测量中的视差多属误差;天平不等臂产生的误差属于误差。 4.已知某地重力加速度值为9.794m/s2,甲、乙、丙三人测量的结果依次分别为:9.790±0.024m/s2、9.811±0.004m/s2、9.795±0.006m/s2,其中精密度最高的是,准确度最高的是。 5.累加放大测量方法用来测量物理量,使用该方法的目的是减小仪器

大学物理实验模拟题八套(六套有答案)

1,2,3,4,5,8有答案,6,7没有,但可以参 考复习 大学物理实验模拟试题一 一、填空题(总分42分,每空1分) 1. 测量结果的有效数字的位数由被测量的大小和测量仪器共同决定。 2. 50分度的游标卡尺,其仪器误差为0.02mm 。 3. 量程为10mA 电流表,其等级为1.0,当读数为6. 5mA 时,它的最大误差为0.01mA 。 4. 不确定度σ表示误差以一定的概率被包含在量值围(σσ+-~)之中,或测量值的真值以一定的概率落在量值围(σσ+-N N ~)之中。 5. lg35.4=1.549。 6. 在分光计实验(光栅测光波波长)中,望远镜的调节用的是自准直法。 7. S 是表示多次测量中每次测量值的分散程度,它随测量次数n 的增加变化很慢, N S 表 示平均值偏离真值的多少,它随测量次数n 的增加变化很快。 8. 在氏模量实验中,若望远镜的叉丝不清楚,应调节望远镜目镜的焦距,若观察到的标尺 像不清楚则应调节望远镜物镜的焦距。钢丝的伸长量用放大法来测定。 9. 计算标准偏差我们用贝塞尔法,其计算公式为 。 10.表示测量数据离散程度的是精密度,它属于偶然误差,用标准误差(偏差)来描述它比 较合适。 11.用20分度的游标卡尺测长度,刚好为15mm,应记为15.00mm 。 12.根据获得测量结果的不同方法,测量可分为直接测量和间接测量;根据测量的条件不同, 可分为等精度测量和非等精度测量。 13.电势差计实验中,热电偶的电动势与温差的关系为线性关系,可用作图 法、逐差法和最小二乘法来求得经验方程。 14.789.30×50÷0.100=3.9×103 。 15.10.1÷4.178=2.42。 16.2252=5.06×104 。 17.用分光仪测得一角度为300,分光仪的最小分度为1, ,测量的结果0.5236+0.0003弧度 18.对于连续读数的仪器,如米尺、螺旋测微计等,就以最小分度/2作为仪器误差。 19.分光计测角度时由于度盘偏心引起的测量角度误差按正弦规律变化,这是系统误差。 20.在示波器部,同步、扫描系统的功能是获得锯齿波电压信号,这种电压信号加在 偏 转板上,可使光点匀速地沿X 方向从左向右作周期性运动。 21.系统误差有确定性的特点,偶然误差有随机性的特点。 22.在测量结果的数字表示中,由若干位可靠数字加上1位可疑数字,便组成了有效数字。 23.在进行十进制单位换算时,有效数字的位数不变。 24.静电场模拟实验应用了模拟法,它利用了静电场和电流场的相似性。 二、单项和多项选择题(总分30分,每题3分)

西安交大物理仿真实验实验报告

西安交通大学实验报告 第 1 页(共10 页)课程:_____大学物理实验____ 实验日期 : 2014 年 11月 30日 专业班号______组别__无___ 交报告日期: 2012 年 12 月 4 日 姓名___ 学号______ 报告退发:(订正、重做) 同组者____________________________ 教师审批签字: 实验名称:超声波测声速 一、实验目的: 1。了解超声波的产生、发射、和接收方法; 2.用驻波法、相位比较法测量声速。 二、实验仪器: SV—DH系列声速测试仪,示波器,声速测试仪信号源. 三、实验原理: 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率 和波长就可以求出波速.本实验通过低频信号发生器控制换能器,信号发生器的 输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比 较法)测量.下图是超声波测声速实验装置图.

1。驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是: 叠加后合成波为: 振幅最大的各点称为波腹,其对应位置: 振幅最小的各点称为波节,其对应位置: 因此只要测得相邻两波腹(或波节)的位置Xn、Xn—1即可得波长. 2。相位比较法测波长

从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:。因为x改变一个波长时,相位差就改变2π。利用李萨如图形就可以测得超声波的波长. 四、实验内容 1.接线 2.调整仪器 (1)示波器的使用与调整 使用示波器时候,请先调整好示波器的聚焦.然后鼠标单击示波器的输入信号的接口,把信号输入示波器.接着调节通道1,2的幅度微调,扫描信号的时基微调。最后选择合适的垂直方式选择开关,触发源选择开关,内触发源选择开关,Auto-Norm-X—Y开关,在示波器上显示出需要观察的信号波形。输入信道的信号是由实验线路的连接决定的。 (2)信号发生器的调整 根据实验的要求调整信号发生器,产生频率大概在35KHz左右,幅度为5V 的一个正弦信号。由于本实验测声速的方法需要通过换能器(压电陶瓷)共振把电信号转为声信号,然后再转为电信号进行的,所以在开始测量前需要调节信号的频率为换能器的共振频率。在寻找共振频率时,通过调节信号发生器的微调旋钮,观察示波器上信号幅度是否为最大来逐步寻找的。 (3)超声速测定仪的使用 在超声速测定仪中,左边的换能器是固定的,右边的换能器是与游标卡尺的滑动部分连接在一起的。这样,左右换能器间的距离就可以通过游标卡尺来测量出来,在上图的下半部分是一个放大的游标卡尺的读数图. 3.实验内容 寻找到超声波的频率(就是换能器的共振频率)后,只要测量到信号的波长就可以求得声速.我们采用驻波法和相位比较法来测量信号波长: (1)驻波法 信号发生器产生的信号通过超声速测定仪后,会在两个换能器件之间产生驻波。改变换能器之间的距离(移动右边的换能器)时,在接收端(把声信号转为电信号的换能器)的信号振幅会相应改变。当换能器之间的距离为信号波长的一

《大学物理实验》模拟试卷与答案

二、判断题(“对”在题号前()中打√×)(10分) (√)1、误差是指测量值与真值之差,即误差=测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。 (×)2、残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。(√)3、精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。 (√)4、测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。 (×)7、分光计设计了两个角游标是为了消除视差。 (×)9、调节气垫导轨水平时发现在滑块运动方向上不水平,应该先调节单脚螺钉再调节双脚螺钉。 (×)10、用一级千分尺测量某一长度(Δ仪=0.004mm),单次测量结果为N=8.000mm,用不确定度评定测量结果为N=(8.000±0.004)mm。 三、简答题(共15分) 1.示波器实验中,(1)CH1(x)输入信号频率为50Hz,CH2(y)输入信号频率为100Hz;(2)CH1(x)输入信号频率为150Hz,CH2(y)输入信号频率为50Hz;画出这两种情况下,示波器上显示的李萨如图形。(8分)

差法处理数据的优点是什么?(7分) 答:自变量应满足等间距变化的要求,且满足分组要求。(4分) 优点:充分利用数据;消除部分定值系统误差 四、计算题(20分,每题10分) 1、用1/50游标卡尺,测得某金属板的长和宽数据如下表所示,求金属板的面 解:(1)金属块长度平均值:)(02.10mm L = 长度不确定度: )(01.03/02.0mm u L == 金属块长度为:mm L 01.002.10±= %10.0=B (2分) (2)金属块宽度平均值:)(05.4mm d = 宽度不确定度: )(01.03/02.0mm u d == 金属块宽度是:mm d 01.005.4±= %20.0=B (2分) (3)面积最佳估计值:258.40mm d L S =?= 不确定度:2222222 221.0mm L d d s L s d L d L S =+=??? ????+??? ????=σσσσσ 相对百分误差:B =%100?S s σ=0.25% (4分) (4)结果表达:21.06.40mm S ±= B =0.25% (2分) 注:注意有效数字位数,有误者酌情扣 5、测量中的千分尺的零点误差属于已定系统误差;米尺刻度不均匀的误差属于未

山东交通学院物理实验模拟题大一下学期(2)课案

大学物理实验模拟试题一 一.填空题 1.根据误差理论,绝对误差等于 减去 。 2.仪器误差仪?是 类不确定度的3倍。 3.σ±=N N 的置信概率是 、σ3±=N N 的置信概率是 。 4. 用米尺测量某一长度L=2.14cm ,若用螺旋测微计来测量,则有效数字应有 位。 5. 量程为10mA 的电流表测量电流,读数是5.00mA ,算出测量的相对误差为0.2%, 此电流表的准确度等级是 。 6. 根据有效数字的运算规则计算:1.11?1.1111= 。 7.根据误差传递公式,若X Y Z -=22 1, 则z U =_______________________ 8.在教学实验中,不确定度的B 类分量用 作为近似估计。 9. 用最小分度0.02g 的天平测量某一物体的质量,单次测量结果为M=41.03g , 用不确定度评定测量结果应表示为 。 10. 将下列结果写成标准形式: 1)2/73.219046mm N Y = 2/28.3614mm N Y =μ =Y (683.0=p ), 2) 3/374.8cm g =ρ 3/05.0cm g =ρμ =ρ (683.0=p ), 3)cal J J /238.4= cal J J /1.0=μ =J (683.0=p )。 二、选择题 1.某长度测量值为 2.130mm ,则所用仪器可能是[ ] A.毫米尺 B.50分度卡尺 C.20分度卡尺 D.千分尺 2. 用分度值0.05mm 的游标卡尺测量一物体的长度,下面读数正确的是 [ ]

A. 10.66mm B. 10.67mm C. 10.60mm D. 10.665mm 3. 对某物理量进行直接测量。有如下说法,正确的是[ ] A .有效数字的位数由所使用的量具确定 B .一有效数字的位数由被测量的大小确定 C .有效数字的位数主要由使用的量具确定 D .有效数字的位数由使用的量具与被测量的大小共同确定 ?4.下列测量的结果中表达式正确的有[ ] A. S=(2560±100)mm B. A=8.32±0.02 C. R=(82.3±0.31)Ω D. L=(0.667±0.008)mm 5. 下列仪器中,存在空回误差(回程差)的是[ ] A. 螺旋测微计 B. 游标卡尺 C . 读数显微镜 D. 分光计 6.在正常情况下,下列读数错误的是[ ] A. 分度值为1′的角游标测得值为'05328 B. 有量程1500mv ,分格数为150格的电压表测得电压值为150mv C.分度值为0.02mm 的游标卡尺测得某物体的长度为28.22mm D.分度值为0.01mm 的读数显微镜读数为15.02mm 7.由于实验环境中温度的影响所引起的测量误差属于[ ] A.随机误差 B.系统误差 C.粗大误差 D .A ,B ,C 都不是 8.仪器仪表准确度等级的含义是[ ] A .仪器仪表值误差与指示值的百分数的分子表示 B .就是仪器仪表值引用误差 C .仪器仪表用百分数表示的示值相对误差中的分子表示 D .最大误差与满刻度值的百分数的分数表示 9. 在杨氏模量实验中,通常先预加kg 2砝码,其目的是[ ] A. 消除摩擦力 B. 拉直金属丝,避免将拉直过程当为伸长过程进 行测量 C. 使系统稳定,底座水平 D. 减小初读数,消除零误差 10. 分光计实验中,在调节望远镜光轴垂直于分光计中心轴时(假设分光计中心

相关文档
最新文档