高效率积分复位控制三相Boost型功率因数校正

高效率积分复位控制三相Boost型功率因数校正
高效率积分复位控制三相Boost型功率因数校正

功率因数校正之基本原理 何谓工率因数? 功率因数(power factor;pf)定义为实功(real power;P)对视在功率(apparent power;S)之比,或代表电压与电流波形所形成之相角之余弦,如图1。功率因数值可由0至1之间变化,可为电感性(延迟的、指标向上)或电容性(领先的、指标向下)。为了降低电感性之延迟,可增加电容,直到pf为1。当电压与电流波形为同相时,工率因数等于1(cos(0o)=1)。所有努力使工率因数等于1是为了使电路为纯电阻化(实功等于视在功率)。 ▲图1: 功率因数之三角关系。 实功(瓦特)可提供实际工作,此为能量转换元素(例如电能到马达转动rpm)。虚功(reactive power)乃为使实功完成实际工作所产生之磁场(损耗)。而视在功率可想成电力公司提供之总功率,如图1所示。此总功率经由电力线提供产生所需之实功。 当电压与电流皆为正弦波时,如前述定义之功率因数(简称为功因)为电压与电流波形之对应相角,但大部份之电源供应器之输入电流乃非正弦波。当电压为正弦波而电流为非正弦波时,则功因包括两个因素:1)相角位移因素,2)波形失真因素。等式1表示相角位移与波形失真因素之于功因的关系。 ----------------------------------------------------(1)

Irms(1)为电流之主成份,Irms电流之均方根值。因此功率因数校正线路是为了使电流失真最小,且使电流与电压同相。 当功因不等于1时,电流波形没有跟随电压波形,不但有功率损耗,且其产生之谐波透过电力线干扰到连接同一电力线之其它装置。功因越接近1,几乎所有功率皆包含于主频率,其谐波越接近零。 ■了解规范 EN61000-3-2对交流输入电流至第40次谐波规范。而其class D对适用设备之发射有严格之限制(图2)。其class A要求则较宽松(图3)。 ▲图2:电压与电流波形同相且PF=1(Class D)。

由单相有源功率因数校正(APFC)组合成三相APFC的几种方法 中心议题:由单相APFC组合成三相APFC的几种方法 解决方案:由三个分别带隔离DC/DC变换的单相PFC并联组成由三个单相PFC在输出端直接并联组成两个单相PFC组成的三相PFC电路由矩阵式DC/DC变换器构成 功率因数校正(Power Factor CorrecTIon,简称PFC)技术,尤其是有源功率因数校正(Active Power FactorCorrection,简称APFC)技术可以有效的抑制谐波,单相APFC技术的研究比较成熟,已有不少商业化的专用控制芯片,如UC3854,IRll 50,LTl508,ML4819。与单相功率因数校正整流装置相比,三相PFC整流装置具有许多优点:(1)输入功率高,功率额定值可达几千瓦以上;(2)单相PFC整流装置输入功率是一个两倍于工频变化的量,但在三相平衡装置中,三相输入功率脉动部分的总和为零,输入功率是一恒定值,三相PFC整流装置输出功率的脉动周期仅为单相全波整流的三分之一,脉动系数低,因此可以使用容量较小的输出电容,从而可以实现更快的输出电压动态响应。三相APFC技术正成为众多学者研究的重点,但其实现有一定的困难,而且还未见成熟的专用控制芯片。若能将单相APFC电路简单整合成一个三相APFC电路,将能充分利用成熟的单相控制芯片,制作出满足要求的三相APFC装置。下面介绍几种由单相APFC组合成三相APFC的方法。1 由单相APFC组合成三相APFC的几种方法单相PFC组合成三相PFC的技术优势是:(1)无需研究新的拓扑和控制方式,可直接应用发展比较成熟的单相PFC拓扑,以及相应的单相PFC控制芯片和控制方法;(2)电路由多个单相PFC同时供电,如果某一相出现故障,其余两相仍能继续向负载供电,电路具有冗余特性; (3)由于单向模块的使用,因此需要更少的维护和维修,而且有利于产品的标准化;(4)与三相PFC相比,不需要高压器件等。下面将对由单相PFC实现三相PFC的几种方法分别进行介绍。1)由三个分别带隔离DC/DC变换的单相PFC并联组成的方法每个单相PFC后跟随一个隔离型DC/DC变换器,DC/DC变换器输出端并联起来,形成一个直流回路后向负载供电,。此类电路即可采用三相三线制接法,也可用三相四线制的接法,很灵活且很简单。而且此类电路都可设计成单级形式,从而减少功率等级且动态响应比较快。但该类电路由三个完全独立的单相PFC及DC/DC变换器组成,由于需3个外加隔离的DC/DC变换器,因此用的器件比较多,成本较高。 (1)单相PFC电路由全桥电路构成 图2电路的特点是DC/DC的开关控制比较简单,相对于其它电路更适合于大功率场合的应用。但是由于隔离变压器反射电压的影响,全桥电路相对于反激电路来说有更高的电流失真。 (2)单相PFC电路由Buck电路构成图3用三个单相Buck变换器组成的三相PFC示意图,图3所示Buck型电路的结构比较简单,同全桥电路相似,由于隔离变压器反射电压的影响,其相对于反激电路来说也有较大的电流失真,但其谐波仍可以限定在比较低水平,达到IEC—1000的要求。另外,其可实现的功率等级的大小不如全桥高,但比反激式电路要大。 (3)单相PFC电路由反激电路构成图4所示反激式电路有比较接近正弦的相电流,而且功率因数也更接近于单位功率因数。由于其本身的结构特点,所以不必以增加电压为代价即可达到隔离的作用。但相对于前两种电路其功率不容易做大。 (4)单相PFC电路由SEPIC电路构成在Boost变换中,传统的隔离在此种情况下的应用并不理

CRM;而如欲减少EMI问题,选择DCM。 b.如功率水平高于250W,CCM是首选方案。此方案虽然可保持峰值电流和有效值电流,但必须解决二极管反向恢复问题。 c.如功率水平在150W 与250w之间,方案的选择则取决于设计人员的磁件设计水平。 d.如果功率在几kw之上,则采用可控整流电路代替不控整流电路,控制方法采用pwm整流,以实现功率因数的矫正。 2、其它系统要求:拓扑的选择还以满足各种高能效标准。例如,如果需要使系统中的频率同步,则不能采用CRM。此外,如果第二个功率段可处理较大范围(在某些功率序列安排中可能需要)的输入电压,则应选择跟随升压。 功率因数的限制因数: 为什么在一般的电路中功率因数较低呢?有很多因数的影响。其中影响功率因数的主要原因是这些电器的整流电源普遍采用的电容滤波型桥式整流电路(图1)。 这种电路的基本工作过程是:在交 流输入电压的正半周,D1、D3导通,交 流电压通过Dl、D3对滤波电容C充电, 若Dl、D3的正向电阻用r表示,交流电 源内阻用R表示,则充电时间常数可近 似表示为: τ = C 2(+ r) R 由于二极管的正向电阻r和交流电源内阻R很小,故r很小。滤波电容C很快被充电到交流输入电压的峰值,当交流电源输入电压小于滤波电容C的端电压时, Dl、D3就处于截止状态;同理,可 分析负半周D2、D4的工作情况。由 分析不难看出,当电路达到稳态后, 在交流输入电压的一个周期内二极 管导通时间很短,输入电流波形畸 变为幅度很大的窄脉冲电流(图 2)。 由上图可分析出,这种畸变的 电流含有丰富的谐波成分,严重影 响电器设备的功率因数。由理论推

功率因数校正方案 方案一:采用数字控制 方案:采用MCU (微控制单元)或DSP(数字信号处理)通过编程控制完成系统的功率因数校正。,MCU 时刻检测输入电压、输入电流以及输出电压的值,在程序中经过一定的算法后输出PWM 控制信号,经过隔离和驱动控制开关管,从而提高输入端的功率因数。采用数字控制的优点是通过软件调整控制参数,使系统调试方便,减少了元器件的数量。缺点是软件编程困难,采样算法复杂,计算量大,难以达到很高的采样频率,此外还要注意控制器和主电路的隔离和驱动。 方案二:采用模拟控制 方案:采用专用PFC(功率因数校正)控制芯片来完成系统功率因数的校正。整流后的线电压与误差放大器处理的输出电压相乘,建立电流的参考信号,该参考信号就具有输入电压的波形,同时也具有输出电压的平均幅值。因此在电流反馈信号的作用下,误差放大器控制的PWM 信号基本变化规律是成正弦规律变化的,于是得到一个正弦变化的平均电流,其相位与输入电压相同,达到功率因数校正的目的。该方案的优点是,使用专用IC 芯片,简单直接,无需软件编程。缺点是电路调试麻烦,易受噪声干扰。模拟PFC 控制是当前的工业选择,且技术成熟,成本低,使用方便。通过比较,系统选用方案二,采用TI 公司专用PFC 控制芯片UCC28019 来完成功率因数的校正。 方案一:LC校正电路根据电感电流不能突变的原理,整流后采用LCC滤波电路,可在一定程度上提高功率因素PF,一般可达0.8~0.9。优点是电路简单、可靠性高、成本低、EMI(电磁干扰)小;缺点是体积大、重量重,电感损耗较大,PF很难接近1。 方案二:填谷式PF校正电路使用电容C1~C2及二极管D5~D7构成填谷式滤波电路,扩展了整流二极管电流波形导通角θ,二极管D6后可串联浪涌电流限制电阻R,可将PF提高到0.8~0.9之间。该电路优点:体积略小于LC校正电路,可靠性高,EMI小,PF也容易达到0.85以上;缺点是输出功率小,只能用在输出功率小于25W的AC-DC变换器中,损耗相对较大,输入电压允许变化范围小,一般不超过15%。电路原理图如图2.1所示。 2.1 填谷式电路 方案三:有源功率因素校正(APFC)电路在整流器与负载之间插入具有特定功能的DC-DC变换器,使输入电流波形尽可能接近正弦波,构成有源功率因素校正电路(APFC)。该技术优点是:电路体积小,校正后的PF接近1;输入电压变化范围大,目前支持全电压范围(90V~265V)的APFC电路技术非常成熟、应用也很普及,因此在输出功率为20W~300W的AC-DC 变换器中使用APFC电路来改善电流波形THD(总谐波失真)参数较为合适。缺点是:该电

无源功率因数校正电路的原理和应用 摘要:本文介绍SIEMENS公司提出的开关电源集成控制器TDA16846无源功率因数校正(PFC)电路原理及其在电视机开关电源中的应用。功率因数的改善是基于一个特殊的由电感,电容及二极管组成的充电泵电路,该电路在功率管的高压端兼起吸收缓冲作用,因此它具有输入谐波电流分量小,PF值高以及EMI小、电路简单、成本低和可靠性高等优点。这为电视机厂家提供了一个高效价廉的解决电源谐波问题的新方案。 关键词:开关电源功率因数校正 一、引言 众所周知,目前电视机和大部分通用电器都广泛地从交流电网中提取电能经整流后变成直流电供全机使用,AC电源经桥式整流后常接一个滤波平整电容。由于该电容的存在,使整流臂的导通时间小于半个周期,因而做成输入电源电压是正弦形,而输入电流却是正负交替的脉冲形。后者导致大量电流谐波特别是三次谐波的产生,这既构成对电网效能的干扰和损害,又降低了本机功率因数,为此,我国跟欧美各国一样,已于去年12月1日起正式实施限制功耗大于75W的通用电器产品输入谐波电流的新规定。面对这种新情况,当前各电器厂家都必须考虑更新产品中的电源设备,尤其是对25英寸以上的彩色电视机,过去国内产品绝大部分都没有安装PFC电路,其PF值一般在0.55~0.65之间,输入电流谐波分量往往超出国家限定的标准,因此改进电源电路,增加PFC功能以便降低电视机的输入电流谐波分量是各厂家的当务之急。 本文介绍由SIEMENS公司推出的与开关电源集成控制器TDA16846配合使用的一个无源功率因数校正(PFC)电路,该电路能将电源PF值提高到0.9以上,与有源PFC电路相比,它明显地具有结构简单,成本低,可靠性高,和EMI小等优点,因此对电视机厂家来说,不失为一个有效的解决电源谐波问题的可行方案。 二、无源PFC电路工作原理介绍 图1示出一个不含PFC的标准型电源电路的输入电压Vm和输入电流Im波形,Im只在Vm为正最大和负最大的一小段时间内流通,在这些时间以外,Im为零。这是因为此时的正弦电压输入值小于泸波电容上的电压,导致整流二极管不导通的缘故。

常用有源功率因数校正电路分类及工作原理分析 来源:半导体器件应用网 摘要:常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面对这几种电路的工作原理分别加以介绍。 关键字:有源功率因数校正电路,升压型PFC, PFC电路,工作原理 常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面对这几种电路的工作原理分别加以介绍。 1.升压型PFC电路 升压型PFC主电路如图1所示,其工作过程如下:当开关管Q导通时,电流IL 流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容C放电为负载提供能量;当Q截止时,L两端产生自感电动势VL,以保持电流方向不变。这样,VL与电源VIN串联向电容和负载供电。 图1 升压型PFC主电路 这种电路的优点是:(1)输入电流完全连续,并且在整个输人电压的正弦周期内都可以调制,因此可获得很高的功率因数;(2)电感电流即为输入电流,容易调节;(3)开关管栅极驱动信号地与输出共地,驱动简单;(4)输入电流连续,开关管的电流峰值较小,对输入电压变化适应性强,适用于电网电压变化特别大的场合。主要缺点是输出电压比较高,且不能利用开关管实现输出短路保护。 2.降压型PFC电路

逆变电源中功率因数校正 中心议题:逆变电源中功率因数校正逆变电源系统功率因数及谐波干扰问题分析 解决方案:采用单级PFC电路的逆变器 由于对性能要求的不断提高,特别是当前“绿色”电源的呼声越来越高,现代逆 变器系统对功率因数校正和电流谐波抑制提出的更高的要求。本文对功率因数校正在现代逆 变电源中的应用作了简要介绍。分析比较了几种带有PFC功能的逆变器构成方案,分析结果 表明带单级隔离型PFC电路的两级逆变器具有更高的可靠性,更高的效率和更低的成本。1 现代逆变电源系统的组成和结构随着各行各业控制技术的发展和对操作性能要求的提高,许 多行业的用电设备都不是直接使用通用交流电网提供的交流电作为电能源,而是通过各种形 式对其进行变换,从而得到各自所需的电能形式。现代逆变系统就是一种通过整流和逆变组 合电路,来实现逆变功能的电源系统。逆变系统除了整流电路和逆变电路外,还要有控制电路、保护电路和辅助电路等。现代逆变系统基本结构。 图1 逆变系统基本结构框图 现代逆变系统各部分功能如下:1. 整流电路:整流电路就是利用整流开关器件,如半导体二 极管、晶闸管(可控硅)和自关断开关器件等,将交流电变换为直流电。除此之外,整流电路 还应具有抑制电流谐波和功率因数调整功能。2. 逆变电路:逆变电路的功能是将直流电变换 成交流电,即通过控制逆变电路的工作频率和输出时间比例,使逆变器的输出电压或电流的 频率和幅值按照人们的意愿或设备工作的要求来灵活地变化。3. 控制电路:控制电路的功能 是按要求产生和调节一系列的控制脉冲来控制逆变开关管的导通和关断,从而配合逆变器主 电路完成逆变功能。4. 辅助电路:辅助电路的功能是将逆变器的输入电压变换成适合控制电 路工作需要的直流电压。对于交流电网输入,可以采用工频降压、整流、线性稳压等方式, 当然也可以采用DC-DC变换器。5. 保护电路:保护电路要实现的功能主要包括:输入过压、欠压保护;输出过压、欠压保护;过载保护;过流和短路保护;过热保护等。2 逆变电源系 统功率因数及谐波干扰问题分析对于逆变器的整流环节(AC-DC),传统的方法仍采用不控整 流将通用交流电网提供的交流电经整流变换为直流。虽然不控整流器电路简单可靠,但它会 从电网中吸取高峰值电流,使输入端电流和交流电压均发生畸变。也就是说,大量的电器设 备自身的稳压电源,其输入前置级电路实际上是一个峰值检波器,在高压电容滤波器上的充 电电压,使得整流器的导通角缩短三倍,电流脉冲成了非正弦波的窄脉冲,因而在电网输入 端产生失真很大的谐波峰值干扰,。(a) 电网输入端电流和电压的畸变 (b)峰值电流中的 各次谐波分量频谱 图2 传统整流电路输入端电网电压和电流失真与谐波干扰分量图 推荐相关文章:开关电源的几种热设计方法手机LED背光电源管理的设计需求2011半导体发 展趋缓,逆变器前景最好肖特基二极管在电源管理中的应用分析电源模块并联供电的冗余结 构及均流技术反激电源的设计反激电源’电源已接通未充电‘问题的解决办法! 单相电源与三相电源的区别什么是脉冲电源 由此可见,大量整流电路的应用使电网供给严重畸变的非正弦电流,对此畸变的输入电流进 行傅立叶分析,发现它不仅含有基波,还含有丰富的高次谐波分量。这些高次谐波倒流入电网,引起严重的谐波污染,使输入端功率因数下降,将造成巨大的浪费和严重危害。输入电 流谐波的危害主要有:(1)使电能的生产、传输和利用的效率降低,使得电器设备过热、产 生振动和噪声并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。(2)可引起电力系统局 部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。(3)使测量仪器产生附 加谐波误差。常规的测量仪器是设计并工作在正弦电压、电流波形的,因此在测量正弦电压 和电流时能保证其精度,但是这些仪表用于测量非正弦量时,会产生附加误差,影响测量精

网络教育学院《电源技术》课程设计 题目:功率因数校正(PFC)技术的研究 学习中心:辽宁东港奥鹏 层次:高中起点专科 专业:电气工程及其自动化 年级: 2010年春季 学号: 学生: 辅导教师:武东锟 完成日期: 2012年 2 月 24 日

内容摘要 本文对于单相与单相PFC技术及其控制方法的研究,针对于各种功率因数校正,介绍了相应的基本工作原理,和功率因数校正技术的额发展和其主要最主要特点。从主电路的拓扑形式和控制方式分析有源功率因数校正。进而更好的学习电源技术。 关键词:功率因数校正;PFC技术;控制方法;有源功率因数

引言、 功率因数是衡量电器设备性能的一项重要指标。功率因数低的电器设备,不仅不利于电网传输功率的充分利用,而且往往这些电器设备的输入电流谐波含量较高,实践证明,较高的谐波会沿输电线路产生传导干扰和辐射干扰,影响其它用电设备的安全经济运行。如对发电机和变压器产生附加功率损耗,对继电器、自动保护装置、电子计算机及通讯设备产生干扰而造成误动作或计算误差。因此。防止和减小电流谐波对电网的污染,抑制电磁干扰,已成为全球性普遍关注的问题。国际电工委与之相关的电磁兼容法规对电器设备的各次谐波都做出了限制性的要求,世界各国尤其是发达国家已开始实施这一标准。 随着减小谐波标准的广泛应用,更多的电源设计结合了功率因数校正(PFC)功能。设计人员面对着实现适当的PFC段,并同时满足其它高效能标准的要求及客户预期成本的艰巨任务。许多新型PFC拓扑和元件选择的涌现,有助设计人员优化其特定应用要求的设计。

1功率因数校正基本原理及方法 1.1功率因数校正基本原理 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 1.1.1拓扑选择的一般方法 由于输入端存在电感,升压转换器是提供高功率因数的方法。此电感使输入电流整形与线路电压同相。但是,可以采用不同的方案来控制电感电流的瞬时值,以获得功率因数校正。 a.临界导电模式(CRM)PFC——由于控制的设计较为简单,而且可与较低速升压二极管配合使用,所以在较低功率应用中通常采用此方法。 b.不连续导电模式(DCM)PFC——此创新的方案延承了CRM 的优点,并消除了若干限制。 c.连续导电模式(CCM)PFC——由于这种方案恒频且峰值电流较小,是较高功率(>250 W)应用的首选方案。但是,传统的控制解决方案较为复杂,牵涉到多个环

1、什么是功率因数校正(PFC)? 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 PFC打个形象的比方:一个啤酒杯的容积是一定的,就好比是视在功率,可是你倒啤酒的时候很猛,就多了不少的泡沫,这就是无功功率,杯底的啤酒其实很少,这些就是有功功率。这时候酒杯的利用率就很低,相当于电源的功率因数就很小。PFC的加入就是要减少输入侧的无功功率,提高电网的利用率,对于普通的工业用电来讲是把电流的相位与电压的相位调整到一块了,对于开关电源来讲是把严重畸变了的交流侧输入电流变成正弦,另外还有降低低次谐波的功能,因为输入的电流是正弦了。 2、为什么我们需要PFC? 功率因素校正的好处包含: 1. 节省电费 2. 增加电力系统容量 3. 稳定电流 低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC 功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。 PFC电源供应器是如何帮助节省能源? 藉由降低您的电力设备必须传输的电压-电流,以提供一台电源供应器至少所需的供电量。因为产生较少无用的谐波(只会替交流电运输系统增加不必要的负担),让电力的消耗减少。 什么是谐波? 谐波是一种噪音形式,基本上是由复合的60个循环正弦波组合而成的频率所造成。他们通常发生在电源供应器及其它包括计算机在内等多种频率相关机器。谐波会扭曲基本的正弦波波型, 也会在同一系统的水线及接地线造成偏高的电流。[注: 美国的电源线,有3个pins,就是(Live,火线)-(Neutral,水线)-(Ground,地线)] 有哪些国家规定PFC为电子设备的标准配备? 2001年一月,欧盟正式对电子设备谐波有详细规范,规定凡输出在75W~600W范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国大陆自2002年5月起,规范凡政府机关采购之电子设备,皆将功率因数校正(PFC)视为电子设备的标准配备功能;日本已着手研拟关于节约电力的各项方案,这是一种未来的趋势,相信在不久的将来,其它国家将陆续跟进。 什么是主动式/被动式功率因数校正(Active/Passive PFC)? 被动式PFC,使用由电感、电容等组合而成的电路来降低谐波电流,其输入电流为低频的50Hz到60Hz,因

功率因数校正(英文缩写是PFC)是 目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。 线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。 功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。 PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。 长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上 的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系: 而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

第25卷第3期上海电力学院学报V o l .25,N o .3 2009年6月 J o u r n a l o f S h a n g h a i U n i v e r s i t y o f E l e c t r i c P o w e r J u n e 2009 文章编号:1006-4729(2009)03-0201-07 有源功率因数校正技术及控制方式分析 收稿日期:2009-03-30 作者简介:张浩(1962-),男,博士,教授,博士生导师,江苏无锡人.主要研究方向为电力系统自动化,工业以太网, 现场总线,电力监测与管理,电力企业信息化等.E -m a i l :h z h a n g k @y a h o o .c o m .c n . 张 浩,许龙虎 (上海电力学院电力与自动化工程学院,上海 200090) 摘 要:电力电子设备谐波污染问题越来越严重,功率因数校正技术是解决该问题的最有效方法,而有源功率因数校正(A P F C )技术因其独特的优势成了该领域的研究重点.介绍了功率因数的定义和校正原理,并根据有源功率因数校正电路说明了A P F C 的工作原理,重点阐述了A P F C 技术的各种控制方法及其未来的发展趋势. 关键词:有源功率因数;校正技术;控制方式中图分类号:T P 217+.3 文献标识码:A A c t i v e P o w e r F a c t o r C o r r e c t i o n T e c h n o l o g y a n dC o n t r o l Me t h o d s A n a l y s i s Z H A N GH a o ,X UL o n g -h u (C o l l e g e o f E l e c t r i c P o w e r a n dA u t o m a t i o nE n g i n e e r i n g ,S h a n g h a i U n i v e r s i t y o f E l e c t r i c P o w e r ,S h a n g h a i 200090,C h i n a ) A b s t r a c t : T h eh a r m o n i c p o l l u t i o np r o b l e m o f p o w e r e l e c t r o n i cd e v i c e s b e c o m e s m o r ea n dm o r e s e r i o u s ,a n d p o w e r f a c t o r c o r r e c t i o n t e c h n o l o g y i s t h e m o s t e f f e c t i v e m e t h o d t o s o l v e t h i s p r o b l e ma n d t h e a c t i v e p o w e r f a c t o r c o r r e c t i o n(A P F C )t e c h n o l o g y h a s b e c o m e t h e r e s e a r c hf o c u s o w i n gt oi t s u n i q u e a d v a n t a g e s .T h ed e f i n i t i o na n dp r i n c i p l e s o f p o w e r f a c t o r c o r r e c t i o na r ei n t r o d u c e d ,t h e w o r k i n g p r i n c i p l e o f A P F Ct e c h n o l o g y i s s h o w e d a c c o r d i n g t o t h e A P F Cc i r c u i t .T h e d e v e l o p m e n t t r e n d a n d v a r i o u s c o n t r o l m e t h o d s o f A P F Ct e c h n o l o g y a r e m a i n l y a n a l y z e d .K e y w o r d s : a c t i v e p o w e r f a c t o r ;c o r r e c t i o n t e c h n o l o g y ;c o n t r o l m e t h o d s 随着我国经济的发展,各种换流设备的使用越来越多、容量越来越大,加上一些非线性用电设备接入电网,将其产生的谐波电流注入电网,使公用电网的电压波形发生畸变,造成电能质量下降,威胁电网和包括电容器在内的各种电气设备的安全经济运行.为了提高电网的供电质量,限制高次谐波污染,国内外电气组织先后制定了相关标准,我国国家技术监督局1993年颁布了G B /T 14549 -93电能质量公用电网谐波,国际电工委员会(I E C )1998年制定了I E C 61000-3-2标准 [1] .解 决电力电子设备谐波污染问题的方法有两种:一是对电网采用滤波补偿;二是对电力电子设备本 身进行改进,即进行功率因数校正.相对来说,功率因数校正能够更有效地消除整流装置的谐波,具有更广泛的前景,已经成为电力电子技术的一 个重要研究方向[2] .

三相功率因数校正电路研究 摘要:有源功率因数校正技术作为一种有效的谐波抑制方法,本文研究了多种三相功率因数校正的电路拓扑以及控制方法,对不同拓扑结构的PFC电路的工作过程和功率因数校正原理进行了仿真研究,分析了不同电路的优点、缺点以及应用场合。 关键词:功率因数校正;Boost;谐波注入法; 0.引言 谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热,谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。同时谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率。抑制谐波的基本思想有两种:(1)增设电网补偿装置(有源滤波器和无源滤波器)以补偿电力电子设备、装置产生的谐波。(2)改造电力电子装置本身,使之不产生或产生很小的谐波,即功率因数校正。本文主要针对三相高功率因数技术进行研究。 1.功率因数校正 目前实现低谐波、高功率因数的技术方法主要有两种:无源校正技术和有源校正技术。 1.1无源校正技术 基本原理:通过在电路中加入LC元件,而使电路输入端电流接近正弦波的方法。将整流器产生的谐波电流用滤波器吸收,大大地衰减了整流器产生的谐波对电网的干扰,也防止了电网中的谐波干扰整流器。同时它们可以滤除电源侧的大部分主要特征谐波,从而实现了电源滤波的目的。但是这种方式运行情况受系统阻抗的影响。 1.2有源校正技术 基本原理:增加一套产生补偿电流的装置,用电压型或电流型逆变器产生一个谐波电流注入电网,以抵消非线性用电装置产生的谐波电流。有源功率因数校正就是用有源开关器件取代整流电路无源器件,或在整流器与负载之间增加一个功率变换器,将整流输入电流补偿成与电网电压同相位的正弦波,消除了谐波及无功电流,提高了电网功率因数和电能利用率。目前广为应用的是有源功率因数校正(APFC)技术,其基本思想是在传统的不可控整流装置中融入有源器件而使得输入端电流在一定程度上可控、达到校正电流波形、提高功率因数、降低谐波污染的目的。

PFC开关电源功率因数校正原理 PFC开关电源功率因数校正原理 一、什么是功率因数补偿,什么是功率因数校正: 功率因数的定义为有功功率与视在功率的比值. 功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器).用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。 图1 在具有感性负载中供电线路中电压和电流的波形

常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多. 图2 全波整流电压和AC输入电流波形 因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降. 在正半个周期内(180o),整流二极管的导通角大大小于180o,甚至只有30o~70o.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3),并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。

功率因数校正原理及相关IC 近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。这些设备的内部,都需要一个将市电转换为直流的电源部分。在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。作为限制标准,IEC发布了IEC1000?3?2;欧美日各国也颁布实施了各自的标准。为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。2高次谐波及功率因数校正一般开关电源的输入整流电路为图1所示:市电经整流后 近年来,随着电子技术的发展,对各种办公自动化设备,家用电器,计算机的需求逐年增加。这些设备的内部,都需要一个将市电转换为直流的电源部分。在这个转换过程中,会产生大量的谐波电流,使电力系统遭受污染。作为限制标准,IEC发布了IEC1000?3?2;欧美日各国也颁布实施了各自的标准。为此谐波电流的抑制及功率因数校正是电源设计者的一个重要的课题。 2高次谐波及功率因数校正 一般开关电源的输入整流电路为图1所示: 市电经整流后对电容充电,其输入电流波形为不连续的脉冲,如图2所示。这 种电流除了基波分量外,还含有大量的谐波,其有效值I 式中:I1,I2,…In,分别表示输入电流的基波分量与各次谐波分量。 谐波电流使电力系统的电压波形发生畸变,我们将各次谐波有效值与基波有效值 的比称之为总谐波畸变THD(TotalHarmonicDistortion) THD=(2) 用来衡量电网的污染程度。脉冲状电流使正弦电压波形发生畸变,见图3的波峰处。它对自身及同一系统的其它电子设备产生恶劣的影响,如: ——引起电子设备的误操作,如空调停止工作等; ——引起电话网噪音; ——引起照明设备的障碍,如荧光灯闪灭; ——造成变电站的电容,扼流圈的过热、烧损。 功率因数定义为PF=有效功率/视在功率,是指被有效利用的功率的百分比。没有被利用的无效功率则在电网与电源设备之间往返流动,不仅增加线路损耗,而且成为污染源。 设电容输入型电路的输入电压e为:

三相功率因子校正(PFC)技术的综述(1) 杨成林,陈敏,徐德鸿 (浙江大学电力电子研究所,浙江杭州310027) 摘要:综述了三相功率因子校正电路发展现状,并对典型拓扑进行分析比较。 关键词:三相整流器;谐波;功率因子校正 1 引言 近20年来电力电子技术得到了飞速的发展,已广泛应用到电力、冶金、化工、煤炭、通讯、家电等领域。电力电子装置多数通过整流器与电力网接口,经典的整流器是由二极管或晶闸管组成的一个非线性电路,在电网中产生大量电流谐波和无功污染了电网,成为电力公害。电力电子装置已成为电网最主要的谐波源之一。我国国家技术监督局在1993年颁布了《电能质量公用电网谐波》标准(GB/T14549-93),国际电工委员会也于1988年对谐波标准IEC555 2进行了修正,另外还制定了IEC61000-3-2标准,其A类标准要求见表1。传统整流器因谐波远远超标而面临前所未有的挑战。 表1 IEC61000-3-2A类标准 注:表中n为谐波次数。

抑制电力电子装置产生谐波的方法主要有两种:一是被动方法,即采用无源滤波或有源滤波电路来旁路或滤除谐波;另一种是主动式的方法,即设计新一代高性能整流器,它具有输入电流为正弦波、谐波含量低、功率因子高等特点,即具有功率因子校正功能。近年来功率因子校正(PFC)电路得到了很大的发展,成为电力电子学研究的重要方向之一。 单相功率因子校正技术目前在电路拓扑和控制方面已日趋成熟,而三相整流器的功率大,对电网的污染更大,因此,三相功率因子校正技术近年来成为研究热点。 2 三相六开关PFC电路 六开关三相PFC是由6只功率开关器件组成的三相PWM整流电路,电路如图1所示。每个桥臂由上下2只开关管及与其并联的二极管组成,每相电流可通过桥臂上的这2只开关管进行控制。如A相电压为正时,S4导通使L a上电流增大,电感L a充电;S4关断时,电流i a通过与S1并联的二极管流向输出端,电流减小。同样A相电压为负时,可通过S1及与S4并联的二极管对电流i a进行控制。在实际中控制电路由电压外环、电流内环及PWM 发生器构成。常用的控制方法如图2所示。PWM控制可采用三角波比较法、滞环控制或空间向量调制法(SVM)[27]。由于三相的电流之和为零,所以只要对其中的两相电流进行控制就足够了。因而在实际应用中,对电压绝对值最大的这一相不进行控制,而只选另外两相进行控制。这样做的好处是减小了开关动作的次数,因而可以减小总的开关损耗。该电路的优点是输入电流的THD小,功率因子为1,输出直流电压低,效率高,能实现功率的双向传递,适用于大功率应用。不足之处是使用开关数目较多,控制复杂,成本高,而且每个桥臂上两只串联开关管存在直通短路的危险,对功率驱动控制的可靠性要求高。为了防止直通短路危险,可以在电路的直流侧串上一只快恢复二极管[28]。 图1 三相六开关PFC电路

相关文档
最新文档