逆层岩质边坡地震动力破坏离心机试验研究_李祥龙

逆层岩质边坡地震动力破坏离心机试验研究_李祥龙
逆层岩质边坡地震动力破坏离心机试验研究_李祥龙

【摘要】本文主要论述了公路边坡破坏的主要型式与机理,并对公路边坡常见的防护形式作了简单介绍。在实际工作中,应根据公路边坡的土质、水文、气候等特点,灵活采用不同的防护型式,确保公路边坡稳定、安全、环保。 【关键词】公路;边坡;破坏;防护 随着公路等级的不断提高,边坡防护也越来越受到重视。由于有些公路路基较宽、挖填较大,特别是山岭重丘区公路,高填深挖较多,因此,积极做好边坡防护至关重要,以防止雨水、泥石流冲刷、坍塌等现象发生。 1 边坡破坏的主要形式与机理 1.1 公路下边坡 路基下边坡一般为填土路堤。受力稳定的路堤边坡的破坏,主要表现为边坡坡面及坡脚的冲刷。坡面冲刷主要来自大气降水对边坡的直接冲刷和坡面径流的冲刷,使路基边坡沿坡面流水方向形成冲沟,冲沟不断发展导致路基发生破坏;沿河路堤及修筑在河滩上、滞洪区内的路堤,还要受到洪水的威胁,这种威胁表现为冲毁路堤玻脚导致边坡破坏。 边坡破坏还与路基填料的性质、路基边坡高度、路基压实度有关系。一般地,砂性土边坡较粘性土边坡易于遭受冲刷而破坏,较高的路基边坡比较低的路基边坡更容易遭受坡面流水冲刷,压实度较好的边坡,比压实度较低的边坡耐冲刷。 1.2 公路上边坡 上边坡是人工开挖的斜坡,其强度应满足稳定边坡的要求,这样的稳定边坡在降雨、融雪、冻胀及其他形式的风化等作用下,边坡主要破坏形式为冲刷、崩坍等。 冲刷破坏一般发生于较缓的土质边坡,如砂性土边坡、亚黏土边坡、黄土边坡等,在大气降水的作用下,沿坡面径流方向形成许多小冲沟,如不采取任何防护措施,有逐年扩大的趋势;在边坡坡脚,冬季往往发生积雪,造成坡脚湿软,强度降低,上部土体失去支撑。发生破坏;同时,高速行驶的汽车溅起的雨雪水,也冲刷坡脚。总之,土质边坡的坡脚部位,是边坡的最薄弱环节。 边坡的崩坍,一般分为三类:落石型、滑坡型、流动型,有时在一次崩坍中会同时具有这三种形式。 2 主要防护措施 2.1 边坡植物防护 植物防护对坡面进行防护,是在整体稳定情况下进行的防护。植物防护,可美化路容、协调环境、调节边坡土的湿温,起到固结和稳定边坡的作用,它对于坡高不大,边坡比较平缓的土质坡面,是一种简易有效的防护设施。植物防护的方法有:种草、铺草皮和植树。应根据当地气候、土质、含水量等因素,选用易于成活,便于养护和经济的植物类种。 2.1.1 土质边坡 具有自我修复、恢复的功能。但随环境的变化有众多不确定性,要进行防护,需借助人工,结合土壤的性能,将边坡修整成20 cm~30 cm台阶状,选用适宜当地气候条件的植物进行防护。例如:在雁北地区温差大,土壤贫瘠、干旱,因此通常先用紫穗槐、沙棘、柠条等根系发达、耐干旱、耐贫瘠、抗逆性强、防护作用持久的优良灌木进行成苗种植,形成边坡防护体系,防止径流冲刷。在宜林路段,坡脚可栽植高大乔木,以保证坡脚的稳固。 2.1.2 砂砾土边坡 砂砾土边坡易侵蚀,栽植灌木、乔木施工难度大且会造成边坡不稳定的倾向,为此通常选用一些适宜的草本植物来防护。如鸢尾科多年生草本植物马蔺。马蔺直立丛生,植株高(即叶长)约30 cm,根系发达,抗性和适应性极强,耐盐碱、生命力强、耐践踏,而且具有极强的抗病虫害能力,不仅在马蔺植被中从不发生病虫害,而且由于它特殊的分泌物,使其与

顺层岩质边坡变形破坏规律的分析 解联库1,杨小聪1,杨天鸿2,唐春安2,郭利杰1 (11北京矿冶研究总院,北京 100044; 21东北大学资源与土木工程学院,沈阳 110004) 摘 要:使用RFPA 边坡版有限元分析程序分析含软弱结构面的顺层岩质边坡的变形破坏情况。结果表明,边坡的破坏主 要是沿滑动面附近的软弱结构面萌生并扩展,含多组软弱结构面的顺层岩质边坡下沉曲线具有呈阶梯式变化的特征。这对在安全位置监测边坡位移变化从而了解整个边坡的变形破坏有积极意义。 关键词:采矿工程;顺层边坡;RFPA 边坡版;软弱结构面;阶梯式变化 中图分类号:TD85416 文献标识码:A 文章编号:1001-0211(2007)02-0075-05 收稿日期:2006-11-24 基金项目:三峡大学防灾减灾实验室开放基金资助项目 (2002ZS03) 作者简介:解联库(1972-),男,陕西兴平市人,工程师,硕士,主要 从事边坡稳定性分析及采矿工程等方面的研究。 岩体经过漫长地质演化作用,在其内部形成大量断层、节理、层理等地质弱面。这些地质弱面对岩质边坡的变形破坏以及边坡的稳定起着明显地控制作用[1-4] 。由于结构面是控制岩石变形、破坏的主 要因素,因此,在岩质边坡稳定性分析中,准确考虑结构面的影响是十分重要的。 因为岩体本身结构的复杂性,其软弱结构面分 布十分复杂,但大多都具有一定的规律性。其往往是成组分布,多组交叉。在评价结构面对边坡变形及边坡稳定性的影响时,要特别注意结构面的产出状态与边坡面的相互关系。冯君等[5-6] 采用多层 结构模型,对影响顺层岩质边坡稳定性的部分因素进行了分析,给出了顺层边坡的定义。张菊明等[7] 从动力学角度对层状岩体边坡的稳定性进行研究,丰富了边坡稳定性研究的内容。郑颖人等 [8] 利用 有限元强度折减法对节理岩质边坡进行稳定性分析,为节理岩质边坡稳定分析开辟了新的路径。刘小丽等 [9] 采用机动位移法和能量系数对含多个柔 软夹层的岩体边坡的稳定性进行评价,并用极限平衡法验证该方法的可行性,为边坡稳定分析提供了一种新的便捷、有效方法。 利用能够分析岩石破坏过程的RFPA 边坡版有限元程序,对顺层岩质边坡的变形破坏及稳定性进行分析。通过对含软弱结构面的顺层岩质边坡变形破坏进行分析,发现边坡的破坏主要是沿滑动面 附近软弱结构面进行的,得到了一些新颖的和有意义的结论。 1 RFPA 边坡版分析程序简介 所用的RFPA 边坡版是可以分析岩质边坡变形破坏过程的有限元强度折减程序。其可以考虑岩石材料的非均匀性,首先把岩石离散成适当尺度的细观基元,按照给定的Weibull 统计分布函数对这些基元的力学性质进行赋值,这些细观基元可以借 助有限元法来计算其受载条件下的位移和应力,破坏准则选用摩尔-库仑准则和最大拉应力准则,可以考虑岩石材料的剪切破坏和拉伸破坏[10]。RFPA 边坡版分析程序采用有限元强度折减法,就是在弹塑性有限元计算中将岩土体强度参数逐渐降低直到其产生破坏,程序可以自动根据其弹塑性计算结果得到边坡的动态破坏过程及自动搜索破坏时滑动面。 RFPA 边坡版中稳定性系数的定义和传统的弹塑性有限元边坡稳定性系数的定义在本质上是一致的,不同之处在于传统的弹塑性有限元法破坏准则采用摩尔-库仑屈服准则,只考虑了材料的剪切破坏,而RFPA 边坡版中考虑了材料的非均匀性,破坏准则选用摩尔-库仑准则和最大拉应力准则,可以考虑材料的剪切破坏和拉伸破坏,可以动态模拟岩体的渐进破坏过程,使得RFPA 边坡版在岩石材料破坏机理的分析上更为全面。 RFPA 边坡版中基元在理想单轴受力状态下满足的剪切损伤与拉伸损伤本构关系如图1所示,图1中:f c 0-基元的单轴抗压强度;E c 0-基元的最大压缩主应力达到其单轴抗压强度时对应的最大压缩 第59卷 第2期 2007年5月 有 色 金 属Nonferrous M etals Vol 159,No 12 M ay 2007

收稿日期:2008 06 11 基金项目:国家自然科学基金重点项目(50539110)国家重点基础研究发展规划973项目(2002CB412707)作者简介:郑文棠(1981 ),男,福建尤溪人,博士研究生,主要从事岩石边坡工程方面的研究工作,(电话)025 ********(电子信箱)w tzh eng @https://www.360docs.net/doc/e418124496.html, 。 文章编号:1001 5485(2008)05 0115 05 复杂楔形体组合下的岩质高边坡稳定分析 郑文棠1,徐卫亚1,张治亮1,曾 涛1,吴关叶2,徐建强2 (1.河海大学岩土工程研究所,南京 210098; 2.中国水电顾问集团华东勘测设计研究院,杭州 310014)摘要:金沙江白鹤滩水电站左坝肩下游岩质高边坡受多组楔形体组合,其在拱端推力下的稳定性及工程施工下对左坝肩岩体的影响,对该工程意义重大。探讨了基于三维可变形离散元和大变形拉格朗日有限差分法相结合的方法,从定性和定量分析的角度,分析了白鹤滩水电站左坝肩下游楔形体的破坏运动模式、先后解体顺序、拱端推力下及工程施工下的稳定性及对左坝肩岩体的影响。根据上述两方法相结合的数值分析结果(安全系数小于1.1),并结合现场工程地质评价,认为在自然边坡及蓄水条件下,左坝肩下游高边坡属于潜在不稳定边坡,需进一步研究。关 键 词:岩质高边坡;三维可变形离散元;白鹤滩水电站;楔形体中图分类号:T U 457 文献标识码:A 1 概 述 高边坡问题可能影响到坝址坝线位置的选择和调整,坝型和枢纽布置方案,以及施工设计方案的选择和确定,必须在整个工程的规划设计中加以考虑。例如,我国黄河拉西瓦拱坝,由于左岸高边坡 号变形体的影响而将坝线调整上移[1]。因此工程枢纽区的高边坡问题必须予以重视,并根据其影响程度展开相应的地质力学分析工作。 拟建的金沙江白鹤滩水电站左坝肩下游高边坡由多组陡倾角断层和缓倾角层间错动带切割,形成多处不稳定块体,如图1所示。由于其坡高大于300m,属于特高边坡,分布于一级枢纽工程的水工建筑物下游,其重要性和失事后的危害程度属于 A 图1 左坝肩下游高边坡三维可视化CAD 模型示意图Fig.1 3D visualization CAD model of left intake rock slo pe 类 级边坡。因此如何采用适宜的分析方法评价其 稳定性尤为重要。 岩质边坡稳定性的分析方法可以分为两大类[2,3]:一种基于连续介质力学,如有限差分法FDM 、有限单元法FEM 等;另一种基于非连续介质力学,如刚体极限平衡法LEM 、离散元法DEM 、非连续变形分析法DDA 等。现今文献主要采用其中某一种数值方法来分析岩质边坡天然状态及工程施工下的稳定性,而多种数值方法的互相补充,综合分析,且考虑边坡与建筑物之间的相互影响则较为少见。白鹤滩水电站左岸下游高边坡级别高,岩体结构复杂,其遵循的 水电水利工程边坡设计规范DL/T5353-2006 [1]就指明必须采用两种以上的数值分析方法,包括有限元、离散元等方法进行变形稳定分析,综合评价边坡在自然状态、拱端推力及工程施工下的变形与抗滑稳定安全性。 本文首先采用非连续数值方法定性分析楔形体天然状态下的破坏运动模式、先后解体顺序及失稳范围。然后基于连续介质力学方法进一步定量分析多因素效应下边坡应力位移的分布规律。定量分析采用包括拱坝及工程处理措施下的大区域三维模型,将拱端推力的作用效果反映在边坡中,结构面采用实际厚度的薄层六面体单元模拟,通过强度折减 法及点安全度法分析边坡楔形体在自重作用、拱端推力及工程开挖下的变形和安全度。 第25卷第5期长 江 科 学 院 院 报 Vol.25N o.52008年10月 Journal of Yangtze River Scientific Research Institute Oct.2008

某土岩混合边坡破坏模式及支护措施探讨 发表时间:2018-01-10T15:14:54.617Z 来源:《建筑学研究前沿》2017年第23期作者:段荣福 [导读] 随着城市建设的发展,建筑边坡的高度和规模越来越大。 建材广州地质工程勘察院广东广州 523129 摘要:土岩混合边坡的可能破坏模式包括土质边坡的近似圆弧滑动方式、岩质边坡的软弱面控制的折线滑动或楔形体滑动方式和堆积体的浅层破坏直线滑动方式,对具体工程的不同部位需找出其控制性因素加以判定。局部注浆加固和设置深层泄水孔对处理土岩混合边坡局部问题是行之有效的方法。 关键词:土岩混合边坡;深层泄水孔;注浆加固;边坡支护 1概述 随着城市建设的发展,建筑边坡的高度和规模越来越大。对于山体开挖形成的人工边坡,其性质大多属于土岩混合边坡,其破坏方式有别与土质边坡的圆弧滑动破坏方式和岩质边坡的软弱面控制破坏方式。目前对土岩混合边坡破坏理论和计算模式的研究滞后于工程实践。通过本工程条件分析和方案选择,希望能为类似工程提供借鉴作用。 2工程概况和地质特点 某边坡位于广东省佛山市,山体最高处79m,自然坡度约30°-45°,开挖局部山体所得空间用于建造五星级酒店。酒店建筑依山体走势呈W型,边坡开挖面高度为20m-68m,沿W型坡底线长度约620m。边坡整体倾角约45°-60°,下部爆破开挖。受开挖难度、爆破震动和山体自然坡度等制约,在12m高度处留一宽度4m台阶,上部不再设置台阶,中部山体于45m高度处设置一平台,宽度约15m。 图一边坡平面图 本边坡为典型土岩混合边坡,其地质条件为:上部3-5m为坡积土,其下为强风化泥岩,厚度约10-20m,局部夹块石,再下为中风化泥岩,裂隙较发育。W型山体中部和两侧为山脊,中部两侧为山谷,左侧山体岩层为顺倾向,岩层面与水平面夹角约40°,右侧山体岩层为逆倾向,中部突出山体风化严重。从局部地质构造分析,右侧山谷处为一褶皱带,岩体扭曲和切割严重。土方开挖完成后两侧山谷和中部山体两侧有少量山水渗出。 3 边坡支护方案设计 3.1边坡破坏模式分析 土质边坡破坏的主要形式为近似圆弧滑动和坡面浅层滑动,岩质边坡的破坏形式主要为由结构面控制的滑动或结构面切割形成的楔形体滑动以及岩层面间薄弱夹层控制的平面滑动,土岩混合边坡可能的破坏形式为上述可能破坏形式的组合体。 根据本边坡地形地势和地质特点分析,边坡可能的破坏方式主要为坡面浅层滑动破坏、由岩层面和结构面控制的深层破坏及局部近似圆弧破坏,分述如下:左侧山体上部为浅层滑动破坏,下部为顺倾岩层面控制的深层破坏;中部山体两侧地质条件较差,可能为近似圆弧滑动破坏,中部山体右侧可能有顺倾岩层面控制的深层破坏;右侧山谷处褶皱切割作用强烈,存在块石滚落可能;右侧山体岩层为逆倾向,边坡体存在上部浅层滑动破坏和局部小结构面控制的楔形体破坏可能。 3.2边坡支护方案的选择 根据上述边坡可能的破坏形式选择相应的支护方案,具体措施为:对坡面浅层浮土和由于爆破松动的块石进行清除,调查出露的结构面和楔形体,对难以支护或影响施工安全的引导其自行垮塌;对坡面进行全面积锚杆支护;为控制深层破坏采用预应力锚索+腰梁支护;采用坡顶截水沟+竖向排水沟+坡底排水沟+坡面泄水孔组成边坡截排水系统。采用坡顶水平位移点+坡面水平位移点+锚索应力计组成边坡监测系统。对台阶以下部分中风化岩层非爆破开挖形成的垂直边坡采用挂网喷砼面层+格构梁+预应力锚索支护方式。 3.3支护方案参数设计 根据计算及类似工程经验,全面积布置锚杆长度为8-10m,间距为2m×2m,预应力锚索竖向间距8m设置1排,水平间距3m,长度20m-35m,腰梁400mm×400mm,喷C20混凝土厚度100mm,挂Φ10钢筋网200mm×200mm。坡面泄水孔间距2m×2m。坡顶钢筋混凝土截水沟600mm×600mm,竖向排水沟600mm×1200mm。 3.4信息化施工 根据动态设计信息化施工原则,对施工过程进行监测。根据监测数据和施工中出现的问题及时修改设计方案和施工参数。施工中出现以下问题。 1、中部山体左侧岩土体监测位移过大,有滑动迹象。经分析该区域土体性质较差,下部岩体风化严重,岩层倾向为逆倾向,开挖后遇暴雨,存在浅层滑动可能。处理措施为:暂停该区域支护施工,待其自然垮塌后重新修坡支护。处理效果:5天后该部位出现浅层滑动,清除滑坡体后进行支护施工,效果良好。 2、中部山体右侧坡顶平台监测位移过大,坡顶出现裂缝。该区域土体性质较差,下层岩体风化严重,岩层倾向为顺倾向,节理发育,存在浅层滑动、近似圆弧滑动和顺岩层面平面滑动的可能。原则上清除该区域松散岩土体为最佳方案,后于业主协商为了整体景观效果尽量保留坡顶平台。处理措施:坡顶沿裂缝进行静力注浆,待变形温度后沿裂缝布置两排树根桩。树根桩要穿过潜在滑动面,长度约20m,

监督和检查,严格按施工规范的要求去做,一定能收到好的效果。 合理设置桥涵构造物 设置桥涵构造物应充分考虑填方路基的地质情况,填方向高度、路堤长度、填料来源及路堤沉降问题,选择适当的桥涵位置、跨径及桥背防护工程,力避大河面小跨径桥涵。 加固处理桥梁台背填筑前的地基处理好台背软弱地基,是控制桥头跳车的重要措施,对软基处理目前国内已有换土法、超载预压法、减少附加应力法、排水固结法、深层搅拌法和高压喷射注浆法、振动碎石桩法等处理方法,都是行之有效的方法,可以根据实际情况应用,以改善地基性能提高承载力,减少沉降,缩小桥台与路堤的沉降差,避免错台,另在处理后的基底顶面宜设置横向泄水管或盲沟。 泄水管。即先在基底顶面填筑3~4%的夯实粘土横坡土拱,再在其上挖一宽×深为40-60cm×30-50cm的双向地沟。然后在台背后全宽范围内满铺一层油毡或尼龙薄膜下垫层上盖油毡 的隔水材料,在地沟内四周再铺设直径 ≮10cm、有孔径为5mm小孔硬塑料泄 水管,布成梅花形,间距控制在10cm 内,其出口应伸出路基或桥头锥坡外。 在硬塑料管四周再填筑粒径较大、透水 性好的材料,再对台后分层填筑至路面 基顶面。 盲沟。设置与上相同,不采用泄 水管,而以渗透系数大的秀水材料(如 大粒径碎石),利用土工布包裹出口处 作必要的处理。 综合治理桥头跳车 提高地基承载力 对于原地面2m以下孔隙率大、承 载力低的地段,采用了水泥搅拌桩、旋 喷桩等措施进行加固处理。采用高压旋 喷桩加固时,钻孔尺寸可以为5cm,以 后每排旋喷桩的旋喷深度递增1m,直 到进入淤泥层下0.5m为止。这样的排 列方式能够形成一个比较平缓的过渡 段,以免形成新的不均匀沉降,即在加 固区与未加固区之间出现沉降差。 超载预压 对于桥涵桥头全部修好后,利用 冬季对回填部分高填路基段采用了比设 计高程高出1.2~1.5m的土方超载预压 方式来加速自然沉降。 液态粉煤灰回填 液态粉煤灰有较好的流动性,粘液 状态下自然沉降即可达到密实状态,施 工工艺简单,无需振捣和碾压,同时它 又具有较高的强度和自重轻的特点,在 保证有较高承载力的同时,降低了台背 地基的压缩沉降,工期短、成本低。一 般配比为水泥:粉煤灰:水=(8-12): (92-88):60,外加水泥用量0.7%的 MF22型高效早强减水剂,经7天强度检 测可以达到了0.7MPa以上。是一种很有 潜力的很实用的回填方法,值得推广。 虽然高等级公路桥头跳车产生的原因是 多方面的,但只要根据工程实际,采用 适当的措施,就能将高等级公路桥头跳 车病害降到最低程度。 作者单位:保定市公路管理局 边坡破坏的主要型式与机理公路下边坡。路基下边坡一般为填土路堤。受力稳定的路堤边坡的破坏,主要表现为边坡坡面及坡脚的冲刷。坡面冲刷主要来自大气降水对边坡的直接冲刷和坡面径流的冲刷,使路基边坡沿坡面流水方向形成冲沟,冲沟不断发展导致路基发生破坏;沿河路堤及修筑在河滩上、滞洪区内的路堤,还要受到洪水的威胁,这种威胁表现为冲毁路堤坡脚导致边坡破坏。 公路上边坡。上边坡是人工开挖的斜坡,其强度应满足稳定边坡的要求,这样的稳定边坡在降雨、融雪、冻胀,及其它形式的风化等作用下,边坡主要破坏形式为冲刷、崩坍等。冲刷破坏一般发生于较缓的土质边坡,如砂性土边坡、亚粘土边坡、黄土边坡等,在 大气降水的作用下,沿坡面径流方向形 成许多小冲沟,如不采取任何防护措 施,有逐年扩大的趋势;在边坡坡脚, 冬季往往发生积雪,造成坡脚湿软, 强度降低,上部土体失去支撑,发生破 坏;同时,高速行驶的汽车溅起的雨雪 水,也冲刷坡脚。总之,土质边坡的坡 脚部位,是边坡的最薄弱环节。 在唐丰快速路施工中,边坡防护 设计采用了四种不同的防护形式,分别 是直接植草护坡、拱型骨架砌石结合植 草护坡、方格网骨架砌石结合植草护 坡、六棱型预制环结合植草护坡。另 外,为探索新的防护方法,唐丰快速路 建设指挥部就新型防护材料,三维固土 网垫结合植草防护做了试验。 直接植草防护 直接植草防护一般适用于边坡较 低的路段,其优点是方法简单,施工方 便,成本较低。但是直接植草防护有很 大的弱点,特别是在撒播草籽后,草籽 容易受风吹雨淋等因素的影响而大量流 失,导致坡面植草覆盖率很低,同时坡 面又没有任何的加筋处理,经过雨季 时,在暴雨和径流的冲刷下易导致坡面 破坏,因此防护可靠度低。适应于坡度 较小、坡面较短且具有集中排水措施的 高速公路边坡防护。 拱型骨架砌石结合植草防护 这种护坡方式是克服了鱼鳞状砌 石防护排水抗冲刷能力弱和圬工用量大 的缺点,并且最大限度的绿化坡面。优 H IGHWAY现代公路 边坡防护的形式及其优缺点文 / 王玉洁 TRANSPOWORLD 2012 No.24 (Dec) 176

作业题1:简单平面滑动稳定分析 边坡高度40.000m,结构面倾角30.0°,结构面粘聚力30.0kPa,结构面内摩擦角30.0°,张裂隙离坡顶点的距离10.000m,裂隙水的埋深5.000m。边坡分4级,每级设2m宽平台,坡率分别为1:0.5,1:0.75,1:1,1:1。 岩层层数4层,各层参数如下: 序号控制点Y坐标容重锚杆和岩石粘结强度 (m) (kN/m3) frb(kPa) 1 32.000 18.0 80.0 2 18.000 16.8 100.0 3 4.800 17.0 150.0 4 -10.400 20.0 200.0 试求该人工边坡安全系数,如不稳定(<1.2),则请根据边坡锚固设置原则,设计适当的加固措施。

作业题2:二广高速某楔形体边坡稳定性验算 根据现场边坡开挖情况,地层揭露岩性主要由亚粘土及白垩系砾岩组成。第一、二级边坡为强~弱风化砾岩,褐红色,巨厚层状,强度较高;第三、四级边坡亚粘土~全风化砾岩,残坡积,红褐色。节理裂隙较发育,有多条X形节理,产状分别为(1)213°∠38°、(2)305°∠52°。裂隙(1)局部岩屑与泥质充填,胶结程度一般;贯通裂隙(2)岩屑与泥质充填,胶结程度较差。两组裂隙延伸长度不等,长者达30m左右,裂隙水沿楔形体底部渗出。X节理相互切割,极易发生楔形体滑动破坏。 根据地质调查结果,初步根据砾岩结构面结合程度和夹岩屑与泥的情况,取结构面粘结强度25kPa,内摩擦角28°。坡面倾向250°,倾角55°,破顶面倾向250°,倾角18°,岩体容重取为22 kN/m3。请计算安全系数与楔形体高度之间的关系,求临界的楔形体高度。

挡土墙设计浅析 作者:来源:发表时间:2006-08-24 浏览次数:3575 字号:大中小 1前言 公路挡土墙是用来支承路基填土或山坡土体,防止填土或土体变形失稳的一种构造物。在路基工程中,挡土墙可用以稳定路堤和路堑边坡,减少土石方工程量和占地面积,防止水流冲刷路基,并经常用于整治坍方、 滑坡等路基病害。 挡土墙的形式多种多样,按其结构特点,可分为:石砌重力式、石砌衡重式、加筋土轻型式、砼半重力式、钢筋砼悬臂式和扶壁式、柱板式、锚杆式、锚定板式及垛式等类型;按其中路基横断面上的位置,又可分:路肩墙、路堤墙及路堑墙;按所处的环境条件,又可分为:一般地区挡墙、浸水地区挡土墙及地震地区挡土墙。考虑挡土墙设计方案时,应与其他工程方案进行技术经济比较,分析其技术的可行性、可靠性及经济的合理性,然后才确定设计方案,并根据实际情况进行挡土墙的选型。 在山区公路中,由于地形条件更为复杂,地势更为陡峭,因此,挡土墙的应用更为广泛。近几年来,笔者参加了二十多段、共三百多公里的山区公路(二、三级)的设计,主要负责路基防护工程,特别是挡土墙的设计,对山区公路挡土墙的设计积累了一定的经验与体会,在此提出,仅供同类工程设计时参考。 2挡土墙设计的基础资料及设计参数 2.1基础资料 挡土墙设计时,必须具备以下资料:路线平面图、纵断面图、横断面图,地质资料(包括工程地质勘察报告、工程物探报告),地震勘探报告,水文资料,总体设计资料及构造物一览表等。 2.2设计参数的选取 2.2.1 墙背填料的物理力学性质 对于山岭重丘二、三级公路的挡土墙设计,当缺乏试验数据时,填料的计 算内摩擦角及容重可参照表1及表2选用: 表1 填料内摩擦角ψ参考值 土的种类 块石 大卵石、碎 石类土 小卵石、砾 石、粗砂、 石屑 中、细砂、 砂质土 粉砂 粘土 内摩擦角 (°) 45 40 35 30 26 14-21 表2 填料标准容重 土的种类 砾石、碎石、砾 质土 砂、砂质土 粉土、粘性土 石灰土 粉煤灰

边坡治理工程地质勘察问题分析 【摘要】本文首先对边坡的概念进行简单的阐述,综合分析边坡治理的必要性、原则性以及边坡治理的意义,进而对边坡治理工程的地质勘察进行分析,最后结合实例探讨分析某边坡工程失稳事故的地质勘察。 【关键词】边坡治理;地质勘察;边坡失稳 我国各地的地质条件不一,地质环境也很复杂,多地的公路工程常会因多种因素的影响而造成滑坡、边坡失稳等现象,给国家和人民的生命财产带来严重损失,因此受到人们的关注。为了减少边坡失稳事故,就必须严抓边坡治理工程中的各个环节,并从地质勘察的工作中分析边坡工程的风险因素,从而更好的对边坡进行控制、管理和防治。对边坡工程进行地质勘察,首先可以查明边坡工程的地质条件,这对边坡的设计有一定的帮助,进而分析边坡工程可能产生的破坏模式,通过风险因素的分析制定相应的改进和防治措施。 1 边坡治理工程 1.1 边坡的概念 1.1.1 边坡的概念 边坡是由人工或自然形成的一种斜坡,也是地质工程中常见的一种工程形式。然而边坡常会因各种因素的影响而造成重大灾难事故,例如泥石流滑坡、工程坍塌、崩塌、剥落等事故,这些事故常会给人们造成巨大的生命财产损失,也会影响国家的基本秩序和稳定和谐。我国大部分的基础工程中都会涉及到边坡工程的问题,例如公路建设、水利建设、矿山建设等,只有正确认识了边坡问题,对边坡进行合理的设计和治理,才能有效的降低灾害的破坏力。 1.1.3 边坡失稳的分类 在研究边坡的稳定性时一般从两个方面进行分析,土质边坡失稳以及岩质边坡失稳。土质边坡有天然土坡和人工土坡两类,这类边坡发生失稳现象主要是因为剪力遭到破坏,外部影响因素多为地震、降雨以及人类活动等,失稳模式主要有:边坡土体沿土体内部发生圆弧型滑移和沿岩土界面或地面线发生折线型滑移。岩质边坡是在自然作用或人为作用的情况下使岩体形成的具有一定倾斜度的临空面,岩质边坡的失稳具有较大的危害性,对周边的建筑物以及人民可造成巨大的生命财产的损失,主要是因为应力场失衡导致边坡发生位移,内部影响因素为岩体自身的强度参数、边坡的结构特征等,外部影响因素除了地震、降雨以及人类活动外,还与温度变化、雨旱交替等因素有关。岩质边坡破坏模式主要有:滑移型和崩塌型。滑移型破坏特征为沿外倾结构面滑移或沿极软岩、强风化岩、碎裂结构或散体状岩体中最不利滑动面滑移。崩塌型破坏特征为沿陡倾、临空的结构面塌滑;由内、外结构不利组合切割,块体失稳倾倒;岩腔上岩体沿结构面剪切或坠落破坏;陡立边坡,因卸荷作用产生拉张裂缝导致岩体倾倒。 边坡治理主要是为了尽可能的规避灾害的发生,从而减少生命财产和经济的损失。在进

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

摘要:针对公路路基边坡破坏的形式及成因进行分析,阐述了路基边坡防护的措施。 关键词:路基边坡;破坏;防护;措施 一、路基边坡破坏表现形式及成因 1.路基边坡破坏 主要表现为边坡坡面及坡脚的冲刷。坡面冲刷主要来自大气降水对边坡的直接冲刷和坡面径流的冲刷,使路基边坡沿坡面流水方向形成冲沟,冲沟不断发展最终导致边坡破坏,进一步造成路面塌陷,直接影响了行车的安全。沿河路堤及修筑在河滩上滞洪区内的路堤,还要受到洪水的威胁,这种威胁表现为直接冲毁路堤坡脚,导致边坡破坏。边坡破坏还与路基填料的性质,路基高度,路基压实度有关。一般来说,砂性土路基边坡较粘性土边坡易于遭受冲刷而破坏;较高的路基边坡比较低的路基边坡更容易遭受坡面流水冲刷;压实度较好的边坡比压实度差的边坡更耐冲刷。冲刷破坏一般发生在较缓的土质边坡上,如砂型土边坡,亚粘性土边坡,黄土边坡等。在日常大气降水和风化作用下,沿坡面径流方向形成许多水冲沟,如平常不注意养护或养护不到位,日积月累,逐年扩大。加上冬季积雪,造成坡脚湿软,路基强度降低,上部土体失去支撑,最终发生破坏。同时,高速公路行驶的汽车溅起的雨雪水,也会冲刷坡脚。因此,对土质路基来说,边坡坡脚是边坡的最薄弱环节,应加强养护。 2.路基边坡坍塌 一般分为三类;滑动型、落石型、流动型坍塌。这三类情况可单独存在,也可同时在一种情况中出现。滑动型坍塌,在路基挖方段,尤其在深挖石质地段,由于岩层在外力的作用下剪断,沿层间软石发生顺层滑动,造成坍塌。施工爆破开挖破坏了原来岩体的稳定性,当基岩上有岩屑层、岩堆等松散堆积物时,堆积物也易沿岩层的层理面、节理面或断面层发生坍塌。落石型坍塌,一般指较陡的岩石边坡,易产生落石的岩石必然是节理、层里、断层影响下裂隙发育,被大小不一的裂面分割成软弱的短块。裂隙张开的程度,肉眼看不出来,在平常的养护中,也很难发现。由于渗水,反复冻融,造成长时间的微小移动,裂缝逐渐扩大。在夏季,雨水会经常充满裂缝,产生侧向静水压力作用。最终造成坍塌。一般裂隙发育岩体、硬岩下卧软弱层'更易发生落石现象,此类破坏形式对行车安全构成很大威胁,必须严格控制。在日常养护中应加强巡视,尽早发现,提前处置。流动型坍塌,为砂、岩屑、页岩风化土等松散沉积土,由于大雨冲刷,产生流动造成坍塌。下雨造成的坍塌,多为这类坍塌,在日常养护中很容易发现应及时处置。由上分析,在边坡防护设计中,既要做好坡面防护设计、排水防水设计、控制好水的问题,又要根据地质条件、岩体性质、岩层状况,边坡高度,做好边坡坡面设计。 二、坡面防护――植物防护 坡面防护主要是用以防护易于冲蚀的土质边坡和易于风化的岩石边坡,应根据边坡的土质、岩性、水文地质条件、坡度、高度及当地材料,采取相应防护措施。坡面防护包括植物防护和工程防护。 植物防护一般采用种草、铺草皮和种植灌木。高等级公路建设中,坡面植物防护往往与砌石或空心混凝土预制块(或煤渣空心砖)铺筑的网格工程相结合。工程防护适用于不易于草木生长的岩石面上。一般采用框格、抹面、捶面和喷桨、坡面护墙、护坡等框格防护用混凝土、浆砌片(块)石等材料,在边坡上形成骨架,提高边坡表面粗糙度系数,减缓了水流速度。根据美观需要,框格可做成各种造型:六角形混凝土块、浆砌片石拱形、浆切片石或预制块作成的麦穗形等。除对路基边坡有一定的防护作用外,还对路容有一定的美化效果。由于在边坡中镶槽镶进,有一定的施工难度。目前,仅在互通式立交桥范围,重要景点附近使用。注意,在施工前,应将坡面上的杂质、浮土、松动石块及表层风化岩体等清除干净。抹面、捶面防护,由于使用年限短,现在的高速公路很少使用。当路基较低时,采用抹面防

《重力式挡土墙安全问题的研究》 论文题目:学生姓名学号 类型网络教育专业土木工程层次指导教师日期 目录 摘要 (1) 一、研究重力式挡土墙安全问题的目的与意义 (2) 二、重力式挡土墙的分类、构造与应用 (2) (一)重力式挡土墙的分类 (2) (二)重力式挡土墙的构造及材料 (3) (三)应用范围及适用条件 (3) 三、重力式挡土墙的设计与施工要求 (4) (一)挡土墙设计 (4) (二)挡土墙施工应符合规定 (4) (三)重力式挡土墙跟踪检查 (4) 四、重力式挡土墙的常见问题及原因 (5) (一)墙体地基问题引发的墙体失稳 (5) (二)水引起的挡墙破坏 (6) (三)后期养护 (7) 五、重力式挡土墙安全问题的防治 (7) (一)设计的合理性 (7) (二)填料的选择 (8) (三)完善设计与施工中排水的处理 (8)

(四)施工质量控制 (9) (五)后期维护管理 (10) 六、重建挡土墙安全评估体系 (11) 七、结论............................................................12参考文献............................................................14致谢. (15) 摘要 重力式挡土墙能够就地取材,施工方便,经济效果好,所以,重力式挡土墙在我国铁路、公路、水利、港湾、矿山等工程中得到广泛的应用。本文将通过对挡土墙的安全隐患进行分析,进而对构建挡土墙安全评估体系进行阐述,对挡土墙的安全问题进行研究。 关键词:重力式;挡土墙;安全问题;防治;安全评估 一、研究重力式挡土墙安全问题的目的与意义 在国家大力发展基础建设的今天,挡土墙作为路桥、码头、矿山等工程当中的重要构造物,其安全问题直接影响到各类基础工程的顺利施工与后期使用,而其安全问题在施工过程当中因为环境、地质、设计方法、施工工艺等各种原因层出不穷,在各种安全问题上没有采取有效合理的措施进行预防和治理,给构造物的施工和使用带来了巨大的安全隐患,因挡土墙失稳造成的损失不计其数,本文着重从重力式挡土墙的常见问题、产生的原因以及具体的防治措施几个方面来探讨当下重力式挡土墙的砌筑工艺,以期对重力式挡土墙常见安全隐患的预防以及具体问题的治理起到积极的促进作用。

摘自《我国岩质边坡变形破坏的主要地质模式》 一般来说边坡变形破坏的地质模式应该包括以下主要内容: 1、边坡的基本地质条件,诸如区域地质背景,岩体结构及岩体介质结构特性,岩体的力学特性等,它们是决定边坡变形破坏地质模式的地质基础或物质基础; 2、影响边坡稳定的各种人为动力因素(地下开采、坡脚切层开挖、爆破震动)及天然动力因素(大气降雨及地下水状态的变化、区域构造应力特征); 3、边坡结构形式(顺倾边坡、反倾边坡等); 4、边坡岩体变形发展的过程及其特点; 5、边坡的失稳破坏方式. 应该指出,岩体结构、岩体介质结构以及边坡结构相互之间既有联系又有明显差别的不同概念.岩体结构主要决定于岩体中结构面及结构体的组合特征.岩体介质结构则指不同力学性质的岩体在空间的组合特性.边坡结构则主要反映了边坡与岩层产状之间的空间组合关系. 影响边坡穗定性的因素是多方面的,不但包括边坡岩体的介质结构、边坡结构、岩体结构、区域性地质背景、构造应力特征及构造条件等地质因素,而且包括各种人为的及自然的动力因素.这些动力因素主要是地下开采的扰动及坡脚切层开挖、爆破震动及地下水的作用等.地质条件虽然是决定或影响边坡定性的基础,但边坡的急剧变形或破坏都与各种人为的、天然的动力因素,有着密切的关系.大气降雨及水库蓄水是主要的自然动力因素,导致地下水状态的变化,减少了滑面的法向应力,降低了岩体的强度,改变了边坡岩体的稳定状态.就人为的动力因素来看,地下开挖显然有重要的影响,不但扰动破坏了上复岩体,且增加了岩体的渗透性,对边坡的变形破坏起到加速作用对于矿山边坡来说,爆破的动态效应对边坡的稳定亦有重要的影响,不但直接损害了岩体的完整性,且在重复爆破条件下,边坡岩体可能产生疲劳破坏,从而加速边坡破坏的过程. 摘自霍克布朗《岩石边坡工程》 为了使滑动沿单一平面发生,必须满足以下的几何条件: a.滑动面的走向必须与坡面平行或接近平行(约在+-20°的范围之内)。 k7。破坏面必须在边坡面露出,就是说它的倾角必须小于坡面的倾角 C。破坏面的倾角必须大于该面的摩擦角 d.岩体中必须存在对于滑动仅有很小阻力的解离面,它规定了滑动的侧面边界。另 一种可能的情况是,破坏在穿通边坡的凸出的“鼻部”的破坏平面上发生。 分析二维边坡问题时,通常是考虑与边坡面正交的一个单位厚度的岩片。这就是说,滑动面的面积可用穿过边坡垂直断面上可见的滑动线长度来代表,而滑动块的体积可用在垂直断面卜表示该块体图形的面积来代表。 摘自《基于RS理论的岩质路堑边坡稳定性研究》 边坡变形破坏模式RS判定 边坡变形破坏模式的确定,主要分两步进行:首先是对边坡岩体结构类型的确定;在此基础上再进行边坡变形破坏模式的判定。其主要过程如图4一1所示。

公路挡土墙抗倾覆稳定性设计若干问题探讨 发表时间:2012-12-04T14:39:15.357Z 来源:《建筑学研究前沿》2012年7月供稿作者:曾英锋[导读] 公路挡土墙是用来支承路基填土或山坡土体,防止填土或土体变形失稳的一种构造物。 曾英锋福州晟祥工程咨询设计有限公司 35002 【摘要】挡土墙是公路工程中广泛采用的一种构造物。笔者结合多年工作经验,对公路挡土墙在抗倾覆稳定性设计相关方面进行分析探讨,以供参考。 【关键词】公路;挡土墙;稳定性 前言 公路挡土墙是用来支承路基填土或山坡土体,防止填土或土体变形失稳的一种构造物。在路基工程中,挡土墙可用以稳定路堤和路堑边坡,减少土石方工程量和占地面积,防止水流冲刷路基,并经常用于整治坍方、滑坡等路基病害。挡土墙的形式多种多样,按其结构特点,可分为:石砌重力式、石砌衡重式、加筋土轻型式、砼半重力式、钢筋砼悬臂式和扶壁式、柱板式、锚杆式、锚定板式及垛式等类型;按其中路基横断面上的位置,又可分:路肩墙、路堤墙及路堑墙;按所处的环境条件,又可分为:一般地区挡墙、浸水地区挡土墙及地震地区挡土墙。考虑挡土墙设计方案时,应与其他工程方案进行技术经济比较,分析其技术的可行性、可靠性及经济的合理性,然后才确定设计方案,并根据实际情况进行挡土墙的选型。 1.挡土墙倾覆破坏模式 通过工程实例与理论分析可得,当挡土墙抗滑稳定性和基底承载力满足要求时,挡土墙产生倾覆破坏的原因是墙后土压力过大。挡土墙基底地基反力分布一般开始接近梯形分布,但随着墙后土压力的增大,挡土墙合力偏心距增大。当墙后土压力增大到一定值时,地基反力发生重分布,变化为接近三角形分布;当墙后土压力继续增大到一定值时,地基最大反力将达到地基极限承载力,地基出现塑性,这时出现塑性部分的地基反力不再增加,产生较大的地基沉降,地基反力分布接近矩形与三角形的组合型分布;最后,当挡土墙即将发生倾覆稳定破坏时,可假定地基反力分布为矩形,其值为地基的极限承载力,墙踵一侧的地基反力为0,地基反力分布宽度小于墙底宽度。 2.抗倾覆稳定系数的新定义与计算 2.1抗倾覆稳定系数的新定义 挡土墙力系力臂如图1所示。挡土墙在一般受力状态下是稳定的,只有在最不利情况下,如主动土压力增大时,挡土墙才有可能出现倾覆破坏。因此,可考虑给挡土墙施加1个增大的主动土压力,设增大系数为K0。随着K0增大,墙趾部分的地基反力增大,增大至地基极限承载力时将不再增加,墙踵部分的地基反力减小,当其减小至0时,基底与地基分离。当挡土墙出现倾覆破坏时,K0增大到最大值,定义该最大的K0即为挡土墙抗倾覆稳定系数。K0越大,表明挡土墙抗倾覆的安全储备越大,越能满足抗倾覆稳定的要求。黄勇等将挡土墙达到倾覆极限平衡时,土压力水平分力的增大系数定义为挡土墙的抗倾覆稳定系数,该方法未考虑土压力竖向分力的变化对抗倾覆稳定性的影响[3]。 2.2抗倾覆稳定系数的计算 如图1所示,设挡土墙抗滑稳定性和基底承载力满足要求,并设挡土墙基底倾角为a0;挡土墙重力为G,挡土墙重力G对墙趾0点的力臂为ZG,土压力竖直方向分力为Ey,水平方向分力为Ex,Ex对墙趾O点的力臂为Zy, Ey对墙趾O点的力臂为Zx,地基反力为地基极限承载力Pu,地基反力分布宽度为L,对墙趾0点的力臂为L/2,基底摩擦因数为f,不计墙趾前被动土压力。挡土墙在倾覆破坏发生前瞬时抗倾覆应处于极限平衡状态, K0可由静力平衡条件求得。

第一章绪论 1.1 引言 随着国民经济的发展,水利建设,交通运输和国防工程等建设工程中所遇到的岩质边坡稳定性问题也相应地增多。由于工程建设的需要,往往在一定程度上破坏或扰动原来较为稳定或岩体而形成新的人工边坡,诱发新的地质灾害。地质灾害已经成为制约我国经济及社会可持续发展的一个重大问题。 岩质边坡滑坡作为地质灾害中一个十分突出的问题,给国民经济建设的各个部门带来了严重的干扰和损失。1993年三峡库区巫溪县南门岩体崩滑造成200余人丧生。2000年彭水县山体滑坡造成70余人丧生。2004年12月11日,雨台温高速公路柳市附近突发大面积山体滑坡事故。滑坡的山体高约100m、宽约70m.甫台温高速公路70余米的路段完全被滑落的大石封死,致使温州大桥白鹭屿至乐成镇一段的高速公路双向车道全部瘫痪。地震作用诱发的边坡滑动和坍塌也是常见的灾害之一。特别是在山区和丘陵地带,地震诱发的滑坡往往分布广、数量多、危害大。 我国是一个多地震的国家,西部地区又是地中海一喜玛拉雅地震带经过的地方,是亚欧大陆最主要的地震带,也是我国地震活动最活跃的地区,因地震而导致的滑坡灾害非常严重。大量崩塌与滑动主要发生在多震的西部地区,而这些地区正是我国的水电能源和各种矿产资源的主要蕴藏地。随着国家西部大开发战略的实施,将加速对西部地区水电、矿产资源开发、及公路、铁路等基础设施建设,愈来愈多的工程(如水电、矿山、能源、核废料储存及溶质运移)都建设在岩体之上,几乎所有的土木工程建设都涉及到边坡的动力稳定问题。 在大多数岩体力学问题的研究中,都假定岩体在外力作用下是静止的,所以,考虑问题的角度也一般是从静力学角度出发,其结果与实际情况不尽相符,往往对结果作一些折减。通常,在许多实际情况中,荷载常具有动力特性,如上所述的地震滑坡灾害等,沿用静力学的原理和方法来求解这类问题,结构的动载特性无法反应出来,这显然是不合适的。例如,在地震作用和影响下,岩质边坡的稳定;隧洞围岩和衬砌结构的安全;筑造在岩层中的导弹发射竖井能否继续使用;修建大型水库以后是否存在诱发地震的可能性,以及在诱发地震一旦发生时,大坝

第一章功能概述 理正岩质边坡(稳定)分析软件主要功能是分析计算简单平面、复杂平面、简单三维楔体岩质边坡的稳定计算及相关的分析。 考虑的因素包括:岩体结构的结构面、裂隙、裂隙水、外加荷载、锚杆及结构面的抗剪强度、地震作用等。 简单平面稳定问题: 1)利用极限平衡法及莫尔-库仑准则进行分析,计算岩体的稳定安全系数、设计锚杆、及反分析滑面的抗剪强度指标; 2)可分析坡角、坡高、裂隙水等与安全系数的关系曲线; 3)可按几种不同方法计算岩石压力等。 复杂平面稳定问题: 1)对于不加锚杆、不加外部荷载的情况可采用Sarma法计算安全;对于有锚杆、有外部荷载的情况只能采用通用方法(扩展Sarma法)计算安全系数,这是理正依据Sarma法改进的公式计算安全系数; 2)分析计算临界地震加速度系数; 3)分析计算临界地震加速度系数与安全系数的关系曲线等。 简单三维楔体稳定问题: 1)利用空间张量法分析空间三维楔体的形状,并分析三维楔体在体积力、锚杆力、地震作用、外加荷载等作用,考虑结构面的抗剪强度,计算三维楔体的稳定系数; 2)分析在给定安全系数的条件下,计算锚杆的最小拉力等。

第二章快速操作指南 2.1 操作流程 理正岩质边坡稳定分析软件的操作流程如图2.1-1,每一步骤都有相对应的菜单操作。 图2.1-1 操作流程 2.2 快速操作指南 2.2.1 选择工作路径 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某一计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。 2.2.2 选择岩质边坡型式 选择参与计算的岩质边坡型式,选择界面如下图:

相关文档
最新文档