如何抵抗卫星信号干扰器的干扰 Microsoft Word

如何抵抗卫星信号干扰器的干扰 Microsoft Word

教您如何抵抗卫星信号干扰器的干扰

随着,各地私装卫星接收天线用户不断增加的现象,一些地区的有线电视部门采用了地面卫星信号干扰器,对安装卫星天线用户较多的地方进行了局部微波干扰,使卫星电视接收的画面上出现了画面静止、画面黑屏、马赛克等现象,致使安装卫星天线的用户无法正常收看卫星电视节目。但是,目前的地面卫星信号干扰器一般是对C波段信号实施干扰,对Ku波段信号的干扰作用很小。因为Ku波段工作频率太高,所需器件昂贵,制作调试难度大,所以非常少见。这里,都给大家支招,伴您轻松解决卫星信号干扰器,让您的电视效果更好,其克服或减弱干扰的具体方法如下:

1.寻找屏蔽位置寻找干扰波不能干扰或干扰小的位置,即干扰死角。干扰波和卫星波都是直线波,行进途中遇到障碍物都会被反射,但这两种电波的区别在于,干扰波的场强大于卫星波数千万倍,致使遇到障碍物及建筑物后会四处反射,而卫星波如没有被天线所反射则易被地表所吸收。寻找屏蔽位置最简单的方法是降低天线高度,利用四周自然物体避开周围的强微波干扰信号,如:放在院子中要比放在屋顶上效果好;也可在地面上挖一个边长为2m ×2m的深方坑,深度可以根据情况自行掌握,原则是越深越好,但要注意天线前方(正南方向)不要被土遮挡,将天线置于坑底也就是说天线接收信号时不能被坑高遮挡:还可将天线移至建筑物另一面,利用建筑物来遮挡来自该方向的干扰源。

2.安装防干扰装置卫星干扰信号是从地面来的,而卫星信号来自天空。只要把地面的卫星干扰信号屏蔽掉就OK了。用铁皮或者铁丝网给卫星天线做个围墙,不挡住卫星信号但能挡住干扰信号,即可避免干扰。判断出干扰波的来源方位,在天线的一侧或多侧架设金属板(网)遮挡干扰波。金属板(网)架设高度需超过高频头,且不能挡到卫星信号的行进路线。由于C 波段信号波长在71.4mm~88.2mm之间,如果采用金属网屏蔽干扰波,为防止干扰源漏进金属网,网孔孔径应小于最短波长71.4mm的1/4,即小于17.85mm。干扰不太严重的话,也可在天线的外沿,垂直于锅口平面,加一圈宽度为10~20cm的金属带。当然,金属带宽度越宽抗干扰性能也就越强,不过一锅多星的天线不宜采用此法,它会遮挡非垂直于锅面的卫星信号接收。

3.转星或换Ku头接收Ku波段信号如果所要接收的信号,在其他卫星的C波段上也能够接收到,可转星接收,改变接收天线的方向,看看能否避开干扰波的干扰区域:另外也可转星或换Ku头接收Ku波段信号来避免干扰。这是最直接、最有效的方法

PLC系统信号的干扰及抗干扰措施 可编程控制器PLC具有编程简单、通用性好、功能强、易于扩展等优点。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。PLC中采用了高集成度的微电子器件,可靠性高,但由于使用时工业生产现场的工作环境恶劣,如大功率用电设备的起动或停止引起电网电压的波动形成低频干扰和电磁辐射等恶劣电磁环境,大大降低了PLC控制系统的可靠性。为了确保控制系统稳定工作,提高可靠性,必须对系统采取一定的抗干扰方法和措施。 1 影响PLC控制系统稳定的干扰类型 1.1 空间的辐射干扰 空间的辐射电磁场(EMI)主要由电力网络、电气设备、雷电、高频感应加热设备、大型整流设备等产生,通常称为辐射干扰,其分布极为复杂。其影响主要通过两条途径:一是对PLC 通讯网络的辐射,由通讯线路的感应引入干扰;二是直接对PLC内部的辐射,由电路感应产生干扰。若此时PLC置于其辐射场内,其信号、数据线和电源线即可充当天线接受辐射干扰。此种干扰与现场设备布置及设备所产生的电磁场的大小,特别是与频率有关。 1.2 传导干扰 (1)来自电源的干扰 在工业现场中,开关操作浪涌、大型电力设备的起停、交直流传动装置引起的谐波、电网短路暂态冲击等均能在电网中形成脉冲干扰。PLC的正常供电电源均由电网供电,因而会直接影响到PLC的正常工作。由于电网覆盖范围广,它将受到所有空间的电磁干扰而产生持续的高频谐波干扰。特别在断开电网中的感性负载时产生的瞬时电压峰值是额定值的几十倍,其脉冲功率足以损坏PLC半导体器件,并且含有大量的谐波可以通过半导体线路中的分布电容、绝缘电阻等侵入逻辑电路,引起误动作。 (2)来自信号传输线上的干扰 除了传输有效的信息外,PLC系统连接的各类信号传输线总会有外部干扰信号的侵入。此干扰主要有2种途径:①通过变送器供电电源或共用信号仪表的供电电源串人的电网干扰;②信号线上的外部感应干扰,其中静电放电、脉冲电场及切换电压为主要干扰来源。由信号线引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。若系统隔离性能较差,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动作甚至死机。 1.3 地电位的分布干扰 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。地电位的分布干扰主要是各个接地点的电位分布不均,不同接地点间存在地电位差,从而引起了地环路电流,该电流可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。由于PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 1.4 PLC系统内部产生的干扰 产生这种干扰的主要原因是系统内部元器件及电路间的相互电磁辐射。如逻辑电路相互辐射及其对模拟电路的影响;模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。 2 提高抗干扰能力的硬件措施 硬件抗干扰技术是系统设计时应首选的措施,它能有效抑制干扰源,阻断干扰传输通道。 2.1 供电电源

卫星导航抗干扰技术应用 发表时间:2018-11-15T20:03:58.540Z 来源:《基层建设》2018年第28期作者:倪大森 [导读] 摘要:抗干扰技术一直是卫星导航领域的研究热点。 天津七六四通信导航技术有限公司天津 300210 摘要:抗干扰技术一直是卫星导航领域的研究热点。在众多的抗干扰方法中,采用基于空时联合处理的阵列天线抗干扰是目前最有效且应用最广的一种方法。而对于阵列天线抗干扰,权值精度和权值更新速度是决定其抗干扰性能优劣的重要因素。当采用相同的自适应算法时,权值精度越高,权值更新速度越快,则抗干扰处理的效果越好。为此,在接下来的文章中,将围绕卫星导航抗干扰技术应用方面展开详细分析,希望能够给相关人士提供重要的参考价值。 关键词:卫星导航;抗干扰技术 引言:卫星导航定位系统提供精确的位置、时间和速度的同时,存在着信号微弱,易受干扰的天然弱点。在定位导航过程中,导航接收机的抗干扰能力是决定导航定位服务可用性的关键因素,伴随着卫星导航的推广应用和深入研究,抗干扰技术不断迭代更新。文章对卫星导航系统的抗干扰接收技术进行分析。 1.抗干扰技术分析 抗干扰是指设备能够防止经过天线输入端,设备的外壳以及沿电源线作用于设备的电磁干扰。雷达往往工作在复杂的电磁环境中,雷达抗干扰性能的优劣直接决定了整个雷达系统的性能。然而,如何评价雷达抗干扰性能的优劣,至今还没有公认的标准。因此人们难以把握雷达抗干扰能力的好坏,严重阻碍了雷达抗干扰技术和战术的发展。目前对于雷达抗干扰性能的评估,已经有了部分研究成果,但存在以下缺点:第一,干扰和抗干扰性能分开评估,没有把两者联系起来,这不符合实际情况;第二,由于雷达系统的复杂性,往往不能表征整个雷达的抗干扰性能,而仅从雷达采取的抗干扰措施或雷达本身固有的特性来研究;第三,度量值具有不可测性,计算繁琐 1.1虚拟卫星法 虚拟卫星法是在卫星导航抗干扰接收系统中广泛应用的一种方法,利用小型无人机或者地基发射装置播发模拟卫星信号,增强导航接收机的接收信号进而改善信噪比,从而实现抗干扰的目的。 1.2天线抗干扰法 天线抗干扰法是卫星导航抗干扰系统中的关键技术,其应用具有多种优势,技术操作简单,成本相对较低。天线抗干扰法可以通过提升波速发生量的方式来完成天线阵元的加权工作,从而将外界干扰信号的强度控制在较小的范围,减小或避免对导航接收机的影响。 1.3扩展频谱抗干扰法 这种方法可使导航接收机有效抑制干扰信号。采用直接序列扩频,当接收机解扩之后将有用的信号变成了窄带信号,原来一些频带比较窄的干扰信号就会变成宽带信号,从而使得信号中的大部分能量都被窄带滤波器滤除掉,提高了信干比。当前扩展频谱抗干扰法的应用十分广泛,尤其是在工业领域普及程度很高。 1.4光通信技术 光通信技术是卫星导航干扰接收系统的主要技术之一,是结合现代科学技术产生的一种新技术。与传统的卫星导航抗干扰技术相比较而言,光通信技术更高效、科学,但是其原理相对复杂,应用成本相对较高,当前还处于推广阶段。 1.5编码调制技术 编码调制技术在卫星导航抗干扰接收系统中的应用,可以借助卫星导航系统的修正、调整、编排优势,增强抗干扰接收系统稳定工作的持续性。 2.抗干扰导航接收机实现 2.1波束形成抗干扰方法 形成抗干扰波束并借助惯性测量数据或者卫星历史数据,可以抵御和消除外界的干扰信号,从而提高导航接收机的抗干扰能力。卫星信号和干扰信号都会通过全向天线阵列进入大动态射频转换器前端,大动态射频转换器对射频信号进行初步处理再移交后端的数模转换器。大动态射频转换器的设计,可以采用自动增益控制技术,在射频与中频之间设置多个程控衰减器,每一个衰减器都会使得信号逐渐衰减变小,而且信号是逐级衰减,防止其中的敏感元件出现饱和状态。这种衰减结构是比较灵活的,可以对进入模数转换器的信号电平进行精确控制,实现对信号与噪声之间的比值的优化。当射频转换器把信号变成中频的时候,数字化中频信号就会进入波束形成算法模块,同时,在惯性测量数据可用的情况下,还可以从惯性测量数据获得自身的姿态信息,并且可以结合卫星历史数据,通过波束控制模块产生波束自适应控制权值,然后将该值传输到波束形成算法模块中,波束形成算法模块根据波束自适应控制权值,对数字化中频信号进行自适应滤波,可以降低或者消除进入导航接收机的干扰信号影响。波束形成算法模块可以对输入的数字中频数据进行处理,并且可以得到所有通道的数字波束总和,根据这个值再进入导航接收机的捕获跟踪模块。在整个传输过程中,波束形成算法模块可以同时对都不同方向的波束进行控制,在卫星信号中如果存在干扰信号,则该模块可以对数据中的干扰成分进行降低或者完全消除,从而减少干扰信号对卫星信号带来的影响,得到更准确的定位结果。 2.2自适应零陷抗干扰方法 如果缺乏惯性导航设备、电磁罗经等设备的惯性测量数据,导航接收机很难确定卫星接收天线的姿态。此种情况下,自适应零陷抗干扰方法更合适,这种方法的基本原理是功率倒置算法,确保期望信号增益为常数时输出的功率最小。按照功率倒置算法所形成的天线方向图,可以在各个干扰方向上产生对应的零陷,零陷与干扰信号的强度成正比。当卫星信号从空中传输到导航接收机的天线时,信号电平会衰减得十分微弱,甚至低于噪声,所以算法不会剔除有效的卫星信号。算法在强干扰方向上产生零陷,可以有效抑制干扰信号的影响,提高导航接收机的信噪比[1]。 2.3抗干扰导航接收机实现技术 从抗干扰导航接收机的结构来看,卫星导航系统的抗干扰导航接收机主要有两个模块,一个是自适应抗干扰模块,一个是基带接收机模块。自适应抗干扰模块中一共有7组天线,这些天线的数据经过采集之后,可以通过FPGA的SRAM存储器将数据转存送入DSP中,再对数字进行加权计算,另外也可以利用上次计算所得到的权值在FPGA中对当前采样的数据做波束形成或者零陷滤波处理,最终生成I、Q两

485信号抗干扰问题 在各种现场中,485总线应用的非常的广泛,但是485总线比较容易出现故障,现在将485总线容易出现故障的情况并且可以排除这些故障的方法罗列如下: 1.由于485信号使用的是一对非平衡差分信号,意味485网络中的每一个设备都必须通过一个信号回路连接到地,以减少数据线上的噪音,所以数据线最好由双绞线组成,并且在外面加上屏蔽层作为地线,将485网络中485设备连接起来,并且在一个点可靠接地。 2.在工业现场当中,现场情况非常复杂,各个节点之间存在很高的共模电压,485接口使用的是差分传输方式,有抗共模干扰能力,但是当共模电压大于+12V或者小于-9V时,超过485接收器的极限接收电压。接收器就无法工作,甚至可能会烧毁芯片和一起设备。可以在485总线中使用485光隔离中继器,将485信号及电源完全隔离,从而消除共模电压的影响。 3.485总线随着传输距离的延长,会产生回波反射信号,如果485总线的传输距离如果超过100米,建议施工时在485通讯的开始端和结束端120欧姆的终端电阻。 4.485总线中485节点要尽量减少与主干之间的距离,一般建议485总线采用手牵手的总线拓扑结构。星型结构会产生反射信号,影响485通信质量。如果在施工过程中必须要求485节点离485总线主干的距离超过一定距离,使用485中继器可以作出一个485总线的分叉。如果施工过程中要求使用星型拓扑结构,可以使用485集线器可以解决这个问题。 5.影响485总线的负载能力的因素:通讯距离,线材的品质,波特率,转换器供电能力,485设备的防雷保护,485芯片的选择。如果485总线上的485设备比较多的话,建议使用带有电源的485转换器,无源型的485转换器由于时从串口窃电,供电能力不是很足,负载能力不够。选用好的线材,如有可能使用尽可能低的波特率,选择高负载能力的485芯片,都可以提高485总线的负载能力。485设备的防雷保护中的防雷管会吸收电压,导致485总线负载能力降低,去掉防雷保护可以提高485总线负载能力。如果在现场施工中,相关的因素不能改变,建议使用深圳市富永通科技有限公司的485中继器或者485集线器来提供485总线的负载能力。 提高RS-485总线可靠性的几种方法及常见故障处理 在MCU之间中长距离通信的诸多方案中,RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。 一、RS-485接口电路的硬件设计 1、总线匹配 总线匹配有两种方法,一种是加匹配电阻,如图1a所示。位于总线两端的差分端口VA与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。

浅谈卫星导航抗干扰技术的发展 【摘要】卫星导航在现在的军事领域起到了至关重要的作用,本文介绍了卫星的干扰类型和工作原理。然后介绍了现有的几种抗干扰技术、工作原理和特点。最后,对卫星导航的抗干扰技术进行了预测。 【关键词】卫星导航;干扰技术;抗干扰技术 卫星导航在社会生活和军事领域当中起到了越来越多的作用,从日常的定位,到军用的精确制导,都离不开卫星导航。然而,在实际应用当中,由于种种原因,卫星系统会受到干扰,影响了使用国和用户的。因此,如何提高卫星系统的抗干扰的技术是当前各国研究者重点的研究课题[1]。本文介绍了干扰的类型和工具原理,抗干扰技术的分类和发展动向,为我国的卫星导航抗干扰技术的发展提供借鉴。 1.干扰的类型 对卫星的导航一般主要分为干扰型和压制型两种,由于卫星导航也是电子系统的一个集成,因此,一般的电子干扰技术也能用在对卫星的干扰上。 1.1压制式干扰 压制式的干扰就是利用特殊的发射装置对卫星发射电磁信号,让卫星不能正常的接受和发射信号,也无法进行导航。这种干扰方式的特点是技术难度低,使用相对简单,功率大的。但这种干扰方式也会使本方的导航通讯出现不畅,因此,使用范围比较受限制[2]。 1.2干扰型干扰 与压制式干扰不同,干扰型干扰向卫星发射假的信号,造成卫星的导航信息不准确,或者发出错误的信号,起不到应有的导航作用。这种干扰方式的特点是技术难度比较高,需要知道所要干扰的卫星系统的具体工作参数,虽然效果要比压制式干扰好,且不影响本方正常的通讯,但是掌握难度非常的高。 2.抗干扰技术的发展 所谓的抗干扰就是利用特定的手段对卫星的信息接收,传送方式和功率等进行处理,使卫星能够分辨有用和无用信号,正确的接收所需要的信号。在卫星抗干扰技术中主要有以下几种。 2.1伪卫星法 伪卫星法就是在地面设定发射装置,或者发射无人驾驶飞行器,或者小卫星

一、抗干扰方法: 为了使高频电路板的设计更合理,抗干扰性能更好,在进行PCB 设计时应从以下几个方面考虑: 1、合理选择层数:利用中间内层平面作为电源和地线层,可以起到屏蔽的作用,有效降低寄生电感、缩短信号线长度、降低信号间的交叉干扰,一般情况下,四层板比两层板的噪声低20dB。 2、走线方式:走线必须按照45°角拐弯,这样可以减小高频信号的发射和相互之间的耦合。 3、走线长度:走线长度越短越好,两根线并行距离越短越好。 4、过孔数量:过孔数量越少越好。 5、层间布线方向:层间布线方向应该取垂直方向,就是顶层为水平方向,底层为垂直方向,这样可以减小信号间的干扰。 6、敷铜:增加接地的敷铜可以减小信号间的干扰。 7、包地:对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。 8、信号线:信号走线不能环路,需要按照菊花链方式布线。 9、去耦电容:在集成电路的电源端跨接去耦电容。 10、高频扼流。数字地、模拟地等连接公共地线时要接高频扼流器件,一般是中心孔穿有导线的高频铁氧体磁珠。 二、包地法 抗干扰包地: 电路板设计中抗干扰的措施还可以采取包地的办法,即用接地的导线将某一网络包住,采用接地屏蔽的办法来抵抗外界干扰。 网络包地的使用步骤如下: 1.1、选择需要包地的网络或者导线。从主菜单中执行命令Edit/Select/Net (E+S+N),光标将变成十字形状,移动光标一要进行包 地的网络处单击,选中该网络。如果是组件没有定义网络,可以执行主菜单命令Select/Connected Copper 选中要包地的导 线。 1.2、放置包地导线。从主菜单中执行命令Tools/Outline Selected Objects(T+J)。系统自动对已经选中的网络或导线进行包地操 作。 1.3、对包地导线的删除。如果不再需要包地的导线,可以在主菜单中执行命令Edit/Select/Connected Copper 。此时光标将变成 十字形状,移动光标选中要删除的包地导线,按Delect键即可删除不需要的包地导线。

卫星导航系统接收机抗干扰关键技术综述 卫星导航系统,就是用于对目标定位、导航、监管,提供目标位置、速度等相关信息的卫星系统。卫星导航系统具有很多优点,定位精度非常高,如美国的GPS(全球定位系统)精度可达厘米和毫米级;效率高,体现在观测时间短,可随时定位;全天候的连续实时提供导航服务。因此,卫星导航系统广泛应用于各个领域,发展前景十分广阔。但是,卫星导航系统有一个缺点,就是卫星信号的功率比较低,信道容易受到其他形式的各种干扰,导致卫星导航接收机的性能下降。因此,为了提升我国的卫星导航系统的抗干扰能力,本文主要研究探讨了卫星导航系统接收机抗干扰的关键技术。 1 卫星导航系统抗干扰技术 卫星导航系统接收机的干扰主要有三种形式,欺骗式干扰、压制式干扰、欺骗式/压制式组合干扰。欺骗式干扰有针对民码的干扰和针对军码的干扰;压制式干扰有宽带压制式干扰和窄带压制式干扰。为了应对各种干扰,卫星导航系统使用扩频技术,扩频技术具有很好的隐蔽性,能够精密测距,并且可以实现多址通信,抗干扰能力大大增加。而对于连续波干扰、窄带干扰,就要采用带阻频谱滤波方法滤掉干扰信号。而对于宽带干扰,这些方法效果都不理想,一般选择自适应阵列天线技术,这种技术能够根据外部的信号强弱,自动改变各个针元的加权系数,从而对准干扰信号方向。 1.1 自适应滤波技术 自适应滤波技术是随着自适应滤波理论与算法的发展而发展起来的,最小均方算法和最小二乘算法对自适应滤波技术起到的非常大的作用。除此以外,采样矩阵求逆算法也属于另一种自适应算法,直接矩阵求逆算法使得系统处理速度大大提升。 1.2 卡尔曼滤波技术 卡尔曼滤波技术是卡尔曼在20世纪60年代提出的,卡尔曼滤波技术是在被提取信号的相关测量中利用实时递推算法来估计所需信号的一种滤波技术。这种技术的理论基础是随机估计理论,在估计过程中,用观测方程、系统状态方程以及白噪声激励的特性作为滤波算法。卡尔曼滤波技术不仅用于估计一维的平稳的随机过程,而且可以用于多维的非平稳随机过程估计。卡尔曼滤波技术实质上属于一种最优估计方法。虽然卡尔曼滤波技术操作简单,应用范围十分广泛,但有一个基本要求,就是必须在计算机上实现。 2 抗压制式宽带干扰技术 2.1 压制式宽带干扰的工作原理 所谓压制式干扰,就是指干扰信号的强度远远高于经过扩散后的卫星信号强度,进而使卫星导航系统接收机无法获取准确信号,从而达到干扰卫星导航系统的目的。压制式干扰有窄带压制式和宽带压制式干扰。窄带单频连续波干扰,是一台干扰机对卫星导航系统发射单频信号,当单频信号与用伪码调制的宽带进行混频后,就输出宽带干扰信号。宽带扩频相关干扰,原理是利用卫星信号的伪码序列与干扰信号的伪码序列的强关联性来干扰接收机的接受能力。这种干扰可以以较小的干扰功率就能达到有效干扰目的。 2.2 自适应阵列天线技术 阵列天线的结构决定抗干扰性能,阵列天线的几何结构对抗干扰性能的影响主要体现在三个方面。第一,阵列天线的阵元间隔。第二,阵列天线的几何布局。第三,阵列天线的阵元个数。确定阵元间的相对距离,要考虑的因素有,较小的阵元之间的间隔形成的互藕效应,和半波长的阵元间隔形成的旁瓣。一般的阵元间隔选择半波长,能够有效避免大的旁瓣的产生,并且此时的互藕效应最小。阵列天线的几何结构布局不同,对应的最佳阵元的个数就不同。所以在进行干扰抑制性能的量化比较时,不能将阵元个数相同的,但阵元几何结构不同

1. 导航战及GPS干扰 导航战是指在战场环境下,用电子干扰的方法对敌方导航系统进行干扰或攻击,使其不能正常导航或降低导航精度,并对敌方对己方导航系统所实施的干扰进行抗干扰,使其在干扰条件下仍能高精度地工作。 GPS干扰: (1) 瞄准式阻塞干扰 保证阻塞式干扰在GPS 接收机的带宽内产生均匀的干扰频谱(梭状和连续波) , 在时域上呈等幅包络, 该干扰信号的功率达到一定程度时, 便可对GPS 信号产生全面的阻塞作用. (2) 伪随机噪声阻塞干扰 人为地产生伪随机码噪声, 这些伪随机码噪声在被GPS 接收机相关解扩过程后的信号功率只要大于GPS 接收机的干信比, 就足以有效干扰GPS接收机. (3) 转发式欺骗干扰 将某一区域内GPS 卫星信号通过一些特殊的设备(如DRFM) 进行降频、采样、存储、延时、调制、再升频后转发出去. 这样在空中就形成与GPS接收机真实信号相参性很好的欺骗信号, 通过GPS接收机相关解扩后, 起到欺骗使用. 这些信号人为地改变了在空中的传输时间、相位和频率. 最终使得GPS 接收机的定位精度产生很大误差. (4) 组合干扰 由于每一种干扰方式的优缺点不尽相同, 为了取长补短, 我们可以同时采用两种或两种以上的干扰方式, 以求达到更好的干扰效果. 如伪随机噪声阻塞干扰与转发式欺骗干扰的组合. 2. GPS抗干扰措施 由于GPS空间卫星的设计起点主要考虑战争环境下导航和定位的军事安全,而没有把干扰环境下的工作能力提到突出的位置。实际上,GPS卫星信号到达地面用户时其信号很弱,信噪比很低,从而导致了GPS用户接收机很容易遭受欺骗性干扰和压制性干扰。加上导航战中民用频段的军用化,导致美国与其敌对双方突出较量于战场,迫使其GPS系统不得不采取抗干扰措施或者改革其体制。为此,美军正在从GPS卫星、地面控制站、用户接收设备等方面采取措施,提高该系统的抗干扰能力。其中主要包括:①提高GPS星座后续星的发射功率,研制第三代GPS卫星;②军用GPS接收机采用保密结构、自适应调零天线、抗干扰信号处理技术;③在武器应用方面,特别强调复合使用GPS与惯性制导系统(INS),“联合直接攻击弹药”(JDAM)就是如此;④研制GPS干扰源探测定位系统。 2.1 美国GPS抗干扰技术研究现状: 一、研制抗干扰GPS 接收机天线。 美国陆军航空与导弹司令部导弹研究发展与工程中心将投资“创新研究”工程,研制小型廉价的GPS 接收机天线,用于各种导弹和火箭弹上的GPS 接收机。目前这类弹药上的GPS 接收机天线对干扰信号的跟踪和抑制过程需要50 秒,而有效制导多管火箭炮和陆军战术导弹系统要求该过程不能超过10 毫秒,所以必须使用小于10 ×10 ×2. 5cm3 的天线。“创新研究”计划的目标是研制一种可抗连续波、宽带噪声、脉冲等多种干扰的抗干扰GPS 接收机天线,并用其取代现有天线。如果获得成功,将制造10 套天线用于飞行等各种试验。

卫星通信抗干扰系统 一般可理解为,通信装备及系统为对抗干扰方利用电磁能和定向能控制、攻击通信电磁频谱,以提高其在通信对抗中的生存能力所采取的通信反对抗技术体系、方法和措施。 一般说,通信抗干扰的基本体系、方法、措施可分为三类: 1、信号处理。如直接序列扩频技术(DS-SS),其关键参量是作为时间函数的相位;跳频技术(FH-SS)其关键参量是作为时间函数的载频;等等。 2、空间处理。如采用自适应天线调零技术,当接收端受到干扰时,使其天线方向图零点自动指向干扰方向,以提高通信接收机的信干比。 3、时间处理。如猝发传输技术,由于通信信号在传输过程中暴露的时间很短暂,从而大大降低了被干扰方侦察、截获的概率。 通信抗干扰技术研究的就是在已知或预测敌方的干扰手段情况下,在上述技术基础上(当然不排除以后有新的技术类别)选取适当的技术手段来消除或减轻敌方干扰,而使我方需要进行的通信能够延续的一项技术。对敌方的干扰性质,强度、种类、手段、采用的体系,了解得越清楚,采取的措施越有针对性,取得的效果也越好。由于敌方的对抗手段往往是综合的、多变的,有的可能是完全新颖的,所以抗干扰的手段也必须采取多种方式的结合才能取得较好的效果。 通信抗干扰技术的特点: 1、对抗性强,技术综合性强,难度高,发展快,某种程度上说是敌我双方智慧和技术的斗争。通信的成败关系着战争的胜负,所以此技术对抗性很强。通信抗 干扰有了新技术,搞对抗的就想新的对策,反过来也一样,这样就促进了技术的发展和难度的提高。 2、对技术的实用性和可靠性的要求高,通信抗干扰必须在战场上实际解决问题。指标高而不可靠或不实用是不能容忍的,其后果不堪设想。 [相关技术]通信对抗;扩频技术;抗干扰电台;卫星通信抗干扰 [技术难点] 1、提高跳频速率有利于抗干扰,但跳速提高需解决如下问题:接收机中频滤 波器产生的瞬时扰动问题;发射机功率输出截止状态产生的过渡问题;频率合成器

浅谈地面卫星信号干扰器及抗干扰法 2009-08-08 21:58 针对农村各地私人安装卫星接收天线用户不断增加的现象,一些地区的有线电视部门采用了地面卫星信号干扰器,对安装卫星天线用户较多的地方进行了局部微波干扰,使卫星电视接收的画面上出现了画面静止、画面黑屏、马赛克等现象,致使安装卫星天线的用户无法正常收看卫星电视节目。 地面卫星信号干扰器究竟为何物?在此笔者将其工作原理简介如下: 地面卫星信号干扰器由发射机和喇叭天线组成。发射机的外壳类似有线电视上的干线放大器,喇叭天线呈45。夹角,面对需要干扰的区域,采用扫频式(3.7GHz~4.2GHz)宽带脉冲定向扫描,实施地面横向干扰,使某一特定区域内的C波段卫星接收天线失去接收能力或直接损毁降频器(我国法律规定:C波段信号是地面微波通信和卫星通信国际上规定的通用信号资源,是受保护的,无论任何理由都不允许人为干扰)。 地面卫星信号干扰器从干扰手段上,可分为数字电视图像信号干扰和载波(或窄带)信号干扰。前者是采用非法图像干扰,即采用和正常广播信号同样的数字形式,使正常图像出现马赛克或黑屏。干扰以功率占用为主,即同向发射大功率同频信号,对卫星接收通道在一定频率范围内实行功率占用,使得干扰信号的场强远远大于正常卫星到达地面的信号场强,达到干扰压制卫星信号接收的目的。而后者分为同频干扰和非同频干扰;对于同频干扰来讲,干扰信号可使图像产生严重的马赛克或停顿现象,干扰严重时还会出现黑屏。对于非同频干扰,由于卫星接收机的选频作用,允许干扰电平大于信号电平,但干扰电平大到使高频头进入饱和状态的话,此时电视画面就会出现黑屏现象。不过,卫星信号干扰器受距离和方位限制,因为发送的干扰微波传播损耗与工作频率和传播距离有关,所以在自由空间传播条件下,距离越远,干扰的能力也就越差。对于3.7GHz~4.2GHz卫星信号干扰系统传输距离一般不超过3km。 另外,目前的地面卫星信号干扰器一般是对C波段信号实施干扰,对Ku波段信号的干扰作用很小。因为Ku波段工作频率太高,所需器件昂贵,制作调试难度大,所以非常少见。 对于以上的两种微波信号的干扰,可通过下面的一些方法来克服或减弱其干扰: 1.寻找屏蔽位置寻找干扰波不能干扰或干扰小的位置,即干扰死角。干扰波和卫星波都是直线波,行进途中遇到障碍物都会被反射,但这两种电波的区别在于,干扰波的场强大于卫星波数千万倍,致使遇到障碍物及建筑物后会四处反射,而卫星波如没有被天线所反射则易被地表所吸收。寻找屏蔽位置最简单的方法是降低天线高度,利用四周自然物体避开周围的强微波干扰信号,如:放在院子中要比放在屋顶上效果好;也可在地面上挖一个边长为2m×2m的深方坑,深度可以根据情况自行掌握,原则是越深越好,但要注意天线前方(正南方向)不要被土遮挡,将天线置于坑底也就是说天线接收信号时不能被坑高遮挡:还可将天线移至建筑物另一面,利用建筑物来遮挡来自该方向的干扰源。 2.安装防干扰装置

信号抗干扰解决办法 The Standardization Office was revised on the afternoon of December 13, 2020

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例. 图一 PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换

地面大锅卫星信号及抗干扰法(装锅者可参考下) 另外,目前的地面卫星信号**一般是对C波段信号实施干扰,对Ku波段信号的干扰作用很小。因为Ku波段工作频率太高,所需器件昂贵,制作调试难度大,所以非常少见。对于以上的两种微波信号的干扰,可通过下面的一些方法来克服或减弱其干扰:1.寻找屏蔽位置寻找干扰波不能干扰或干扰小的位置,即干扰死角。干扰波和卫星波都是直线波,行进途中遇到障碍物都会被反射,但这两种电波的区别在于,干扰波的场强大于卫星波数千万倍,致使遇到障碍物及建筑物后会四处反射,而卫星波如没有被天线所反射则易被地表所吸收。寻找屏蔽位置最简单的方法是降低天线高度,利用四周自然物体避开周围的强微波干扰信号,如:放在院子中要比放在屋顶上效果好;还可将天线移至建筑物另一面,利用建筑物来遮挡来自该方向的干扰源。2.安装防干扰装置卫星干扰信号是从地面来的,而卫星信号来自天空。只要把地面的卫星干扰信号屏蔽掉就OK了。用铁皮或者铁丝网给卫星天线做个围墙,不挡住卫星信号但能挡住干扰信号,即可避免干扰。 判断出干扰波的来源方位,在天线的一侧或多侧架设金属板(网)遮挡干扰波。金属板(网)架设高度需超过高频头,且不能挡到卫星信号的行进路线。由于C波段信号波长在

71.4mm~88.2mm之间,如果采用金属网屏蔽干扰波,为防止干扰源漏进金属网,网孔孔径应小于最短波长 71.4mm的1/4,即小于17.85mm。干扰不太严重的话,也可在天线的外沿,垂直于锅口平面,加一圈宽度为10~20cm的金属带。当然,金属带宽度越宽抗干扰性能也就越强,不过一锅多星的天线不宜采用此法,它会遮挡非垂直于锅面的卫星信号接收。3.转星或换Ku头接收Ku波段信号如果所要接收的信号,在其他卫星的C波段上也能够接收到,可转星接收,改变接收天线的方向,看看能否避开干扰波的干扰区域:另外也可转星或换Ku头接收Ku波段信号来避免干扰。这是最直接、最有效的方法。

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例.

图一PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将0.1V电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换后,由12个光耦实现与主机隔离。它的八个通道输入之间并没有隔离,致使八个通道输入信号每个单独接入采集板均正常,接入两个或多于两个外部信号时,显示数字乱跳,故障无法排除。又如航天某部门测试发动机各点温度,使用K型偶作为传感器,同上述相似,仅测试一点一切正常,但是向主机接入两点或两点以上温度时,显示的温度明显错误。这两种情况在接入隔离器后,均正常。隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着+10V干扰的10V-20V经隔离后均为0-10V,也即隔离后新建立的PLC“地”与外部设备、仪表“地”没关系。正是由于这个原因,也实现输入到PLC主机

浅谈卫星通信抗干扰技术及发展趋势 摘要数字通信技术是现代远程通信中的重要手段之一,在运用卫星通信的过程中,其会受到各种因素的影响,主要有自身因素还有一些环境因素。特别是一些开放系统,更容易受到恶性干扰。所以,在实际应用的过程中,必须加大抗干扰技术,不断增强卫星通信的抗毁性以及抗干扰能力。本文结合目前我国卫星通信技术的发展现状,分析卫星通信可能遭受的干扰,并针对一些具体的抗干扰技术进行详细的分析,最后展望了卫星通信抗干扰技术的发展趋势。 关键词卫星通信;抗干扰技术;发展趋势 1 我国卫星通信发展现状 随着现代化进程的加快,我国也十分的重视卫星通信的建设与发展,在这方面投入了大量的资金支持,不断完善卫星通信系统,为现代的卫星通信需求不断创新,我国的卫星通信发展现状主要表现如下两个方面。 1.1 宽带多媒体卫星通信 宽带多媒体卫星通信主要是将卫星通信技术建立在一定的多媒体技术以及互联网技术的基础上,使得卫星通信的传播更加的高效和快速。这项应用主要是从地面宽带IP技术中发展而来,它可以承载各种业务,包括图像、声音、视频等,所展现出的是高速度、创新的特点,并且能为用户提供大量的分组数据业务,其所花费的成本较低。目前宽带多媒体卫星通信对卫星应用产业的一项重要的发展趋势,国家已经针对这些能够应用做了长远的规划[1]。 1.2 规划研究S频段同步轨道移动通信系统 我国相对于一些发达国家来说,卫星通信技术兴起的较晚,很多的技术也是借鉴一些发达国家的经验,很久都没有建立自主的卫星通信系统。S频段卫星移动通信系统具有十分广阔的应用价值,其应该作为我国的基础信息设施来建设。目前规划研制的S频段地球同步轨道卫星移动通信系统,它包括很多设备,主要包括有效载荷、移动载体、嵌入式终端和信关站等设,覆盖范围广,设计的业务类型也广,能够为各种用户提供移动通信保障。 2 卫星通信可能遭受的干扰 在卫星通信中,可以分为上行链路和下行链路,不同的链路所受到的干扰源不同,对于上行链路来说,其有可能受到的干扰源有车载、固定式干扰机、与干扰卫星等,通常情况下这些干扰源不会对下行链路造成干扰。如果下行链路被干扰,其在信号辐射以及覆盖面积上会受到很大的局限。 卫星通信系统所受到的干扰类型是多种多样的,并且这些类型的分类方法也

关于电视卫星信号被干扰的一些解决办法 依据《中华人民共和国无线电管理条例》》,严禁任何单位和依据《中华人民共和国无线电管理条例 个人非法设置、使用卫星电视无线电干扰器!! 个人非法设置、使用卫星电视无线电干扰器 针对农村各地私人安装卫星接收天线用户不断增加的现象,近来,一些地方出现少数单位出于部门利益考虑,非法使用卫星电视无线电干扰器,一些地区的有线电视部门采用了“地面卫星信号干扰器”,对安装卫星天线用户较多的地方进行了局部微波干扰,使卫星电视接收的画面上出现了画面静止、画面黑屏、马赛克等现象,导致部分城市发生区域性卫星电视受到干扰,甚至造成中央电视台有的频道完全没有电视信号,群众不能正常收看电视节目,影响社会的和谐稳定。 地面卫星信号干扰器究竟为何物?在此笔者将其工作原理简介如下: 地面卫星信号干扰器由发射机和喇叭天线组成。发射机的外壳类似有线电视上的干线放大器,喇叭天线呈45度夹角,面对需要干扰的区域,采用扫频式(3.7GHz—4.2GHz)宽带脉冲定向扫描,实施地面横向干扰,使某一特定区域内的C波段卫星接收天线失去接收能力或直接损毁降频器(我国法律规定:C波段信号是地面微波通信和卫星通信国际上规定的通用信号资源,是受保护的,无论任何理由都不允许人为干扰)。 地面卫星信号干扰器从干扰手段上,可分为数字电视图像信号干扰和载波(或窄带)信号干扰。前者是采用非法图像干扰,即采用和正常广播信号同样的数字形式,使正常图像出现“马赛克”或“黑屏”。?干扰以功率占用为主,即同向发射大功率同频信号,对卫星接收通道在一定频率范围内实行功率占用,使得干扰信号的场强远远大于正常卫星到达地面的信号场强,达到干扰压制卫星信号接收的目的。而后者分为同频干扰和非同频干扰;对于同频干扰来讲,干扰信号可使图像产生严重的马赛克或停顿现象,干扰严重时还会出现黑屏。对于非同频干扰,由于卫星接收机的选频作用,允许干扰电平大于信号电平,但干扰电平大到使高频头进入饱和状态的话,此时电视画面就会出现黑屏现象。不过,卫星信号干扰器受距离和方位限制,因为发送的干扰微波传播损耗与工作频率和传播距离有关,所以在自由空间传播条件下,距离越远,干扰酌能力也就越差。对于3.7GHz-4.2GHz卫星信号干扰系统传

滨江学院 卫星通信 题目卫星通信抗干扰技术的发展趋势 学生姓名张洁 学号20082334019 院系滨江学院 专业通信工程 二O一一年六月二十日

卫星通信抗干扰技术的发展趋势 姓名:张洁 学校:南京信息工程大学 摘要:列出卫星通信系统可能遭受的各种干扰的类型,研究已提出的各种抗干 扰处理方法包括天线、扩频和星上处理等方法的原理、特点和国外的研究现状。指出研究基于星上信号处理、便于综合运用多种抗干扰处理措施的卫星通信系统新体制是卫星通信抗干扰技术研究的发展方向,提出今后值得进一步研究的问题。 关键词:军事卫星通信;抗干扰;扩频;星上处理 1 引言 卫星通信系统由于具有覆盖范围广、传输质量好、部署迅速、组网方便、通信系统投资几乎与通信距离无关、通信可到达地点几乎不受地理环境条件限制等特点,在军事上具有特别重要的实用价值。军事卫星通信系统负责为战时基本需求提供保密、抗干扰的指挥与通信保障,具有一定的抗干扰能力是其基本要求。深入广泛地研究抗干扰技术,提高它的抗干扰能力和抗毁性,具有很重要的意义。 本文针对军事通信中的战术干扰,列出卫星通信系统可能遭受的各种干扰的类型,研究已提出的各种抗干扰处理方法原理、特点和国外的研究现状。最后对卫星通信抗干扰技术研究的发展方向和今后值得进一步研究的问题进行论述。 2 卫星通信系统可能遭受的干扰 对卫星通信而言,其上行链路可能遭受的电磁干扰源包括陆地固定式干扰机、车载和舰载移动式干扰机、机载干扰机和干扰卫星,而干扰卫星和机载式、飞航式、伞挂式干扰机则可对下行链路进行干扰。干扰下行链路时,干扰源对于卫星转发器,虽然在功率和距离方面容易取得较大的优势,但是在覆盖面和信号辐射方向上通常都处于明显的劣势。即使采用机载干扰机在10 km以上的高空施放强干扰,其影响面也只能达一百多公里的半径,更远距离的地面站容易采用旁瓣遮挡技术排除其干扰,况且地面站容易采用综合抗干扰措施排除各种类型的干扰。 因此,相对而言,卫星通信的上行链路比较脆弱,是敌方干扰的重点,这样上行链路抗干扰的研究更为重要。无线通信系统中的干扰有很多,按照不同的分类依据,可以有很多分类方法。如按其形成方式可分为欺骗式干扰、搅扰式干扰和压制式干扰;按引导方式可分为定频守候式干扰、连续搜索干扰、重点搜索干扰、跳频跟踪干扰、扩频跟踪干扰和转发式干扰;按频谱形式可分为瞄准式干扰,阻塞式干扰,部分频带式干扰和扫频式干扰;按发射的控制方式可分为人工干扰和自动干扰等。 目前,国外有源电子干扰技术的干扰频率范围已达到0.5GHz--20GHz。干扰

《新一代无线通信关键技术》课程报告无线通信抗干扰技术及发展趋势

摘要 无线通信技术特别是个人移动通信蜂窝小区的快速发展,使用户摆脱有线终端的弊端,实现实际的个人移动性。而完善的抗干扰技术,是保证通信有序和畅通的先决条件。在当今日益恶劣的电磁环境中,无线通信时常面临各种干扰,因此对无线通信的抗干扰技术要进行深入的研究。在现代的无线通信系统中,由于所处的电磁环境相当复杂,这种干扰不仅有自然干扰,还有人为干扰。实际上信息化的发展,不仅要求点对点的通信系统具有抗干扰能力,更重要的是整个通信系统和网络要具有综合抗干扰的能力,衰落和干扰是制约无线通信系统性能的主要因素。为了能在任何复杂的电磁环境下完成信息传输,尤其是面对极端恶劣通信环境中微弱信号检测时,无线通信抗干扰技术研究和应用,以及抗干扰技术的综合优化具有重要的现实意义和工程价值,也已逐渐成为无线通信研究领域中的一个热点。 关键词:无线通信,抗干扰,综合抗干扰,研究进展

第一章引言 1.综合抗干扰通信的研究背景 近年来,无线通信技术发展迅猛,各种无线和移动通信设备被广泛应用在各个领域,如工业、医药、传媒、安全、网络、个人通信等,有效提高了信息传递的效率,促进了社会生产力的发展,丰富了人们的日常生活,成为了人类文明不可分割的一部分。 然而,随着无线通信应用范围不断拓展,一些极端通信条件下的无线通信应用已经融入在人们的日常生活中,如卫星导航、卫星通信和深空通信等。这些无线通信系统的发射功率受到限制,信号传播距离远,信道环境恶劣,接收端信号非常微弱,信噪比极低,容易受到自然和人为的干扰。 无线通信各种自然和人为性的干扰信号,包括机器噪声,码间干扰,单音干扰,宽窄带干扰,多址干扰,天线之间的干扰等。各种形式的干扰信号为通信系统带来了巨大的损害,因此为了使信息能安全可靠地传输,必须在无线通信手段中采用各种抗干扰技术。深入研究抗干扰信号处理技术,通信系统、网络级综合抗干扰的内涵、相关要素和体系结构,研究综合抗干扰的基本理论,开发通信系统和网络的综合抗干扰技术,优化通信系统和网络的抗干扰性能,是通信信号处理和研究中的要点和重点。随着抗干扰通信技术的进步和发展,特别是综合抗干扰通信技术的研究、发展与应用,一些迫切需要解决的问题出现在我们面前各种扩频的、非扩频的,时域的、频域的、功率域的抗干扰技术与措施由于它们的抗干扰机理不同,目前尚无统一的抗干扰理论进行定性和定量分析。 一般面对多系统共存通信对高频谱利用率的要求,多天线技术能够利用阵列增益,有效提高抑制信道干扰的能力,从而提高通信系统的数据传输率,增大了系统容量。而基于多天线技术的多入多出(Multiple Input Multiple Output,MIMO),利用编码技术,除阵列增益以外,还能获得分集增益和复用增益,进一步提高了系统的容量和抗干扰能力。为了更加有效地利用频谱资源,研究人员提出了正交频分复用(OFDM) 技术和基于OFDM 的多址接入技术OFDMA。应用中发现,OFDMA信号的缺点也明显,由于信号具有较高峰均比(PAPR)特性,为了保证发射机输出误差向量幅度(EVM)和杂散满足指标要求,需要发射机功放有较大的线性范围,从而导致发射机效率下降,不适宜在手持终端中使用。针对OFDMA的缺点,第三代移动通信长期演进(LTE)上行链路的多址接入方案选择了单载波频分复用(SC-FDMA)技术。与OFDMA技术相比,SC-FDMA有效降低了PAPR,发射机设计时可以选择较为廉价的功放,降低了设备的成本,同时延长了手持终端的可使用时间。 第二章无线通信抗干扰技术研究现状 1.无线传播环境 无线传播环境非常复杂:首先,无线信道对所有无线设备都是开放的,各种电子设备和无线通信系统共存于其中。其次,无线信号传播路径异常复杂,不仅有视距传播中的路径损耗,还会面临各种复杂的地理环境,如丘陵、山地或城市建筑群等。因此,无线信号到达接收端时,经过了信道畸变,并叠加了各种干扰。作为无线通信中的典型应用,卫星导航、卫星通信和深空通信是远距离。远距离通信过程中,无线信号经过路径损耗和多径衰落等影响,达到接收端时已经非常微弱。 伴随着个人移动通信服务的广泛应用,通用移动通信系统获得了迅猛发展。从20 世纪80 年代,“第一代”移动通信系统实现大规模商业应用,到LTE标准的制定,仅仅用了20多年的时间。如此短时间的更新换代,以及投资成本、用户群等因素,“第四代”将和“第三代”、“第二代”长期共存。为了各系统能够有效利用无线频谱资源,ITU-R为这些技术分配了相应的频段。但是,实际的多系统通信环境中,无线通信设备发射机输出信号存在带外

相关文档
最新文档