液氨危害程度计算

液氨危害程度计算
液氨危害程度计算

4 可能发生事故的种类及严重程度

4.1事故发生的可能性

该项目液氨在贮氨器、氨油分离器、中间冷却器、低压循环桶及管道中循环,一旦某一点出现破损会引起液氨泄漏,另外如不按操作规程进行操作,如过量充装,也会出现泄漏,因此应对设备、管道定期检测,加强维护和保养,职工严格按照操作规程进行操作,控制系统定期进行调试和维护保养,则出现泄漏的可能性较小。

主要存在以下情况:

1)设计失误

①基础设计错误,如地基下沉,造成容器底部产生裂缝,或设备变形、错位等;②选材不当,如强度不够,耐腐蚀性差、规格不符等;③布置不合理,如管道没有弹性连接,因振动而使管道破裂;

④选用机械不合适,如转速过高、耐温、耐压性能差等;⑤选用计测仪器不合适;⑥储罐、贮槽未加液位计,反应器(炉)未加溢流管或放散管等。

2)设备原因

①加工不符合要求,或未经检验擅自采用代用材料;②加工质量差,特别是不具备操作证的焊工焊接质量差;③施工和安装精度不高,如泵和电机不同轴、机械设备不平衡、管道连接不严密等;

④选用的标准定型产品质量不合格;⑤对安装的设备没有按《机械设备安装工程及验收规范》进行验收;⑥设备长期使用后未按规定

检修期进行检修,或检修质量差造成泄漏;⑦计测仪表未定期校验,造成计量不准;⑧阀门损坏或开关泄漏,又未及时更换;⑨设备附件质量差,或长期使用后材料变质、腐蚀或破裂等。

3)管理原因

①没有制定完善的安全操作规程;②对安全漠不关心,已发现的问题不及时解决;③没有严格执行监督检查制度;④指挥错误,甚至违章指挥;⑤让未经培训的工人上岗,知识不足,不能判断错误;⑥检修制度不严,没有及时检修已出现故障的设备,使设备带病运转。

4)人为失误

①误操作,违反操作规程;②判断错误,如记错阀门位置而开错阀门;③擅自脱岗;④思想不集中;⑤发现异常现象不知如何处理。

4.2可能发生事故的危害程度

4.2.1氨燃烧后放出热量的计算

按储罐的储存系数按0.85计,液氨的相对密度为0.7(水=1)计算,液氨储存量为:

2.25×0.7×0.85=1.34t,

氨气的高燃烧热值为17250kJ/ m3=1.725×107J/m3,

氨贮罐中氨燃烧后放出的热量为:

1.34×1000÷17×2

2.4×1.725×107J/m3 =

3.04×1011J。

4.2.2氨相当于梯恩梯(TNT)的摩尔量的计算

1千克梯恩梯炸药释放的能量为4.5×106焦耳,梯恩梯的摩尔质量为227.131 g/mol 。

氨爆炸相当于梯恩梯(TNT )的摩尔量为:

(6.75×1011J)/( 227.131 g/mol ×4.5×103)=2.97×105mol 。 4.2.3氨蒸发泄漏后氨的泄漏速度

假设氨蒸发泄漏,氨以气态泄漏。

气体从设备的裂口泄漏时,其泄漏速度与空气的流动状态有关,因此,首先需要判断泄漏时气体流动属于亚音速流动还是音速流动,前者称为次临界流,后者称为临界流。

当有下式成立时,气体流动属于亚音速流动:

1

0)1

2(-+>γγ

γP P 当有下式成立时,气体流动属于音速流动:

1

0)1

2(-+≤γγ

γP P 上述两式中O P ,P 的意义同前;γ为比热比,即定压比热P

C 定容

比热V C 之比。

V

P

C C =

γ

气体呈亚音速流动时,泄漏速度0Q 为:

1

1

0)1

2(-++=γγγργP A YC Q d

气体呈音速流动时,泄漏速度0Q 为:

1

1

0)1

2()12(-++=γγγγρT R A YC Q d

上诉两式中,d C 气体泄漏系数,当裂口形状为圆形时取1.00;三角形时取0.95;长方形时取0.90;

Y-气体膨胀因子,对于亚音速流动,

])

(1[)()21)(11(1

02

011

γ

γγγγγγ--+-+-=P

P

P P Y

对于音速流动,Y=1

ρ—泄漏液体密度,㎏/m 3

R —气体常数,J/k mol ?; T —气体温度,K 。 计算如下: P 0=0.1013 P=0.1013+1.3

γ=1.313

10)1

2(-+≤γγ

γP P 成立, 氨气的泄漏速度为:1

1

0)1

2()12(

-++=γγγγρT R A YC Q d ])

(1[)()21)(11(1

02

011

γ

γγγγγγ--+-+-=P

P

P P Y

=54,

假设泄漏口为圆型,即C d=1,裂口面积为A=0.01㎡

氨的分子量约为:M =17,

=0.7kg/m3

R=8.3145J/(mol·K)

氨的温度为30℃,T=30+273=303K

氨的泄漏速度Q0=11.66kg /s。

4.2.4氨罐泄漏后的影响范围

为了更好地了解装置在发生氨气泄漏事故时,可能造成的人员伤亡和财产损失的严重程度,为制定防范措施提供参考依据,本评估报告以贮氨器泄漏来进行模拟计算。

本次评估假设2.25m3贮氨器发生泄漏。

1)基本数据的取值

(1)液氨质量W:按储罐的储存量为容量的85%,液氨的相对密度为0.7(水=1)计,

W=2.25×85%×0.7=1.34t=1.34×103kg;

(2)液氨储罐破裂前的介质温度t取12℃,即t=12℃;

(3)氨气的沸点t0= -33℃;

(4)液氨的平均比热c= 4.6kJ/kg?℃;

(5)氨气的分子量M=17;

(6)氨气的气化热q=1374kJ/kg;

(7)氨气在空气中的危险浓度值C(%):

吸入5~10min致死的浓度:C=0.5%;

人吸入后发生强烈的刺激症状,可耐受1.25min 的浓度:0.0818%。 2)中毒事故后果计算

(1)当贮氨器破裂时,罐内压力降至大气压,处于过热状态的液氨温度迅速降至标准沸点,此时全部液体所放出的热量为:

Q = W ?c (t-t 0)

=1.34×103kg ×4.6kJ/kg ?℃×[12-(-33)]℃ =2.77×105kJ

(2)设所放出的热量全部用于罐内液氨蒸发,则在沸点下的蒸发蒸气体积为:

Vg =(22.4Q/Mq )×(273+t 0)/273

=[22.4×2.77×105 /(17×1374)]×[(273-33)/273] =233.5m 3

(3)假设氨气以半球状向地面扩散,扩散半径为30944

.2/C

Vg R 将C=0.5%代入,得:R=28.15m ; 将0.0818%代入,得:R=51.5m 。 3)计算结果

根据计算有毒气体的半径R 可知:

在28.15m 的范围内吸入泄漏氨气5~10min 可致死;

在51.5m 的范围内人吸入后有强烈的刺激症状,可耐受1.25min 。 贮氨器泄漏中毒后果分析可为企业在制订事故应急救援预案时,设置隔离区及制订疏散路线等提供依据。 4.2.5氨蒸气云爆炸的影响范围

液氨具有火灾爆炸的危险性,采用蒸气云爆炸事故模型对液氨泄漏进行计算。

1)伤害半径计算公式

①死亡半径公式:R1=13.6(W TNT/1000)0.37

②重伤半径公式:

△P2=0.137Z2-3+0.119Z2-2+0.269Z2-1-0.019

Z2=R2/(E/P0)1/3

△P2=△P S/P0

式中:△P S-引起人员重伤的冲击峰超压值,取44000Pa;

P0-环境压力,取101300Pa;

E-爆炸总能量(J),E=W TNT×Q TNT

③轻伤半径公式:

△P3=0.137Z3-3+0.119Z3-2+0.269Z3-1-0.019

Z3=R3/(E/P0)1/3

△P3=△P S/P0

式中:△P S-引起人员重伤的冲击峰超压值,取17000Pa;

2)财产破坏半径计算公式

R财=(KⅡ×W TNT1/3)/[1+(3175/ W TNT)2]1/6

式中:KⅡ-财产破坏系数,一般取KⅡ=5.6。

3)TNT当量计算公式

W TNT=α× W f×Q f / Q TNT

式中:W TNT—蒸汽云的TNT当量,kg;

W f—蒸汽云中燃料的总质量,kg;

α—蒸汽云当量系数,统计平均值为0.04;

Q f—蒸汽的燃烧热,J/kg;

Q TNT—TNT的爆炸热,4500kJ/kg;

对于地面爆炸,由于地面反射使用使爆炸威力几乎加倍,一般应乘以地面爆炸系数1.8。

4)危险源基本情况表

表4.2.5-1 危险源基本情况表

表4.2.5-2 危险物质有关特性数据表

5)计算结果

泄漏物质的TNT当量如下表4.2.5-3所示:

表4.2.5-3 泄漏物质的TNT当量

伤害、破坏范围如下表4.2.5-4所示:

表4.2.5-4 火灾爆炸事故伤害、破坏范围一览表(m)

“液氨贮罐的机械设计”完美版

设计任务书 课题:液氨贮罐的机械设计 设计内容:根据给定的工艺参数设计一个液氨贮罐相关工艺参数: 最高使用温度:T=50℃ 公称直径:DN=2800mm 筒体长度(不含封头):L0=4500mm 设计操作步骤: 1.筒体材料的选择 2.罐的结构及尺寸 3.罐的制造施工 4.零部件型号及位置、接口 5.相关校核计算 设计人: XXX 学号:080801XXXX 下达时间:2011年11月25日 完成时间:2011年12月26日

目录 前言 (1) 1设计方案 (2) 1.1设计原则 (2) 1.2材料的选择 (2) 1.3结构的选择 (2) 2设计参数 (4) 3设计计算 (5) 3.1壁厚的计算 (5) 3.1.1筒体壁厚 (5) 3.1.2封头壁厚 (5) 3.2鞍座承载能力计算 (7) 3.2.1罐体质量m1 (7) 3.2.2封头质量m2 (7) 3.2.3液氨质量m3 7 3.2.4附件质量m4 (8) 3.3人孔补强计算 (8) 4附件选择 (11) 4.1人孔选择 (11) 4.2接口管的选择 (11) 4.2.1液氨进料管 (11) 4.2.2液氨出料管

(11) 4.2.3液面计接口管 (11) 4.2.4安全阀接口管 (11) 4.2.5放空阀接口管 (11) 4.2.6排污管 (11) 5参数校核 (12) 5.1筒体轴向应力校核 (12) 5.1.1筒体轴向弯矩计算 (12) 5.1.2筒体轴向应力计算 (12) 5.2筒体和封头切向应力校核 (14) 5.2.1筒体切向应力计算 (14) 5.2.2封头切向应力计算 (14) 5.3筒体环向应力校核 (15) 5.3.1环向应力计算 (15) 5.3.2环向应力校核 (16) 5.4鞍座有效断面平均压力 (16) 6设计汇总 (17) 7小结 (22) 参考文献 (23)

合成氨典型事故案例分析 【大中小】发布人:管理员来源:时间:2010-12-23 17:05:36 浏览1098 人次 一、氧含量超标,煤气气拒爆炸 事故经过:1986年6月22日,某氮肥厂正常生产时,1号煤气炉下行煤气阀阀杆在突然脱落,造成该阀门不能及时关闭,使正在吹风阶段时的空气通过该下行煤气阀直接进人煤气气柜,导致气柜内半水煤气中氧含量在短时间内迅速上升。造气岗位并没有及时发现,而是由变换岗位发现触媒层温度上升,要求分析人员进行气体中氧含量分析时,氧含量已经达到5.7%,正要向造气岗位报告时,气柜已经发生爆炸。重约6.57t的钟罩顶盖沿着焊缝被撕裂炸飞,落在45rn远的压缩机房路边,砸死1人。一根长6m的气柜放空管飞落在90m处的合成塔顶上.事故原因:操作人员未作巡回检查,未能及时发现阀门故障,致使气柜内形成爆炸性气体,由于静电作用引发爆炸。加之分析工未能及时报告分析数据,延误了时机,使气柜大量过氧,导致爆炸。 事故教训:煤气阀阀杆脱落是常见的设备故障,如果加强巡回检查,能及时发现,及时处理,就可以避免事故的发生。分析工发现分析数据有问题,必须立即报告有关岗位和调度室,

以便尽快处理,避免重大事故的发生。 二、夹套爆炸,煤气炉爆炸 事故经过:1994年4月19日,某化肥厂检修后,6号煤气炉开始制气,15分钟后煤气炉发生爆炸,4人死亡,煤气炉炉体坍塌,煤气护厂房楼面、楼顶被炸坏。 事故原因:操作人员违反操作规程,开车前未将汽包上面的蒸汽出口阀和安全阀下面的根部阀打开,至使锅炉夹套憋压,夹套爆裂,热汽水进人炉内,大量汽化,压力迅速上升,导致煤气炉爆炸。 事故教训:严格执行操作安全规程,开车前必须仔细检查每一个应该开和关的阀门。汽包蒸汽出口阀,在开车之前就必须仔细检查是否已经打开,不能等到开车后。汽包上安全阀的根部阀,按照氮肥生产安全规程,不允许关闭,开车前必须严格检查,不能失误。 三、静电除尘器爆炸 事故经过:1986年8月20日,某县化肥厂在检修静电除尘器时,没有对设备进行隔离、置换,不取样分析就开始检修,当电工使用摇表测量绝缘电阻时,产生火花发生爆炸,当场死亡1人。

30m3液氨储罐设计说明书

前言 本说明书为《30m3液氨储罐设计说明书》。本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。

目录 第一章绪论 (4) (一)设计任务 (4) (二)设计思想 (4) (三)设计特点 (4) 第二章材料及结构的选择与论证 (4) (一)材料选择 (4) (二)结构选择与论证 (4) 第三章设计计算 (6) (一)计算筒体的壁厚 (6) (二)计算封头的壁厚 (7) (三)水压试验及强度校核 (7) (四)选择人孔并开孔确定补强 (8) (五)核算承载能力并选择鞍座 (8) (六)选择液面计 (9) (七)选配工艺接管 (9) 第四章设计汇总 (10) 第五章结束语 (11) 第六章参考文献 (11)

第一章绪论 (一)设计任务: 针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。(二)设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 (三)设计特点: 容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 第二章材料及结构的选择与论证 (一)材料选择: 纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。如果纯粹从技术角度看,建议选用20R类的低碳钢板,16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济,且16MnR机械加工性能、强度和塑性指标都比较号,所以在此选择16MnR钢板作为制造筒体和封头材料。 (二)结构选择与论证: 1.封头的选择: 从受力与制造方面分析来看,球形封头是最理想的结构形式。但缺点是深度大,冲压较为困难;椭圆封头浓度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。从钢材耗用量来年:球形封头用材最少,比椭圆开封头节约,平板封头用材最

《化工安全与环保》课程期末考核 任课教师:林俊杰 院系:环境与化学工程学院 专业:化学工程与工艺班级:2011级化工1班学号:4107姓名:董浩月 案例1 2004年,某制药厂发生甲苯反应釜爆炸事故,造成两人死亡,一人受伤。事故的主要原因是某车间的液氨、甲苯等化工原料泄露遇高温而引发爆炸。 案例分析: 液氨:熔点—c,沸点—C,自燃点C,蒸气密度,蒸气压(C)。蒸气与空气混合物爆炸极限16?25 %(最易引燃浓度17 %)。液氨会侵蚀某些塑料制品、橡胶和涂层。遇热、明火,难以点燃而危险性较低;但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。与硫酸或其它强无机酸反应放热,混合物可达到沸腾。 甲苯:熔点「C):;沸点(C):;相对蒸气密度(空气=1):;;饱和蒸气压(kPa): (30C);燃烧热(kJ/mol):;临界温度(C):;临界压力(MPa):。闪点(C ):4;爆炸上 限%(V/V):;弓I燃温度(C ):535;爆炸下限%(V/V):。 爆炸是一种极为迅速的物理或化学的能量释放过程。在此过程中,空间内的物质以极快的速度把其内部所含有的能量释放出来,转变成机械功、光和热等能 量形态。所以一旦失控,发生爆炸事故,就会产生巨大的破坏作用,爆炸发生破坏作用的根本原因是构成爆炸的体系内存有高压气体或在爆炸瞬间生成的高温

高压气体。爆炸体系和它周围的介质之间发生急剧的压力突变是爆炸的最重要特征,这种压力差的急剧变化是产生爆炸破坏作用的直接原因。爆炸必须具备的 三个条件: 1)爆炸性物质:能与氧气(空气)反应的物质,包括气体、液体和固体。氢气,乙炔,甲烷等;液体:酒精,汽油;固体:粉尘,纤维粉尘等。 2)助燃物:空气、氧气等 3)点火源:包括明火、电气火花、机械火花、静电火花、高温、化学反应、光能等。爆炸事故,是指由于人为、环境或管理等原因,物质发生急剧的物理、化学变化,瞬间释放出大量能量,并伴有强烈的冲击波、高温高压和地震效应等,造成财产损失、物体破坏或人身伤亡等的事故。分为物理爆炸事故和化学爆炸事故。 防止爆炸伤害,必须做到以下几点: (一)在思想上对于爆炸事故的性质、危害应当随时有足够的认识,从而引起高度的警觉。 (二)加强对化学物品的保管、使用和储存的管理,做好实验设备特别是压力容器的定期检验。 (三)参加工作时,必须严格遵守操作规程和操作步骤,在技术人员的指导下顺利完成实验。 (四)在与爆炸物品接触时,要做到七防”:防止可燃气体粉尘与空气混合,防止明火,防止磨擦和撞击,防止电火花,防止静电放电,防止雷击,防止化学反应。事故对策建议:

《过程设备设计》 课程设计说明书 设计项目: 20M3液氨储罐设计 所属院系:化学化工学院 专业班级:化学工程与工艺1304班 学号: 学生姓名: 指导教师:张铱鈖 2016年01月20日

摘要 本次课程设计任务为设计一个容积为20m3的液氨储罐,采用常规设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管等进行设计,然后对其进行强度校核,最后形成合理的设计方案。 设计说明书的正文部分包括工艺设计和机械设计,其中机械设计包括结构设计和强度计算两部分内容,结构设计中包括设备一系列零部件的数据,强度计算包括厚度计算、水压试验、气密性试验等。

一、设计任务书 20M3液氨储罐设计 课程设计要求及原始数据(资料) 一、课程设计基本要求 1、按照国家压力容器设计标准、规范设计要求,掌握典型过程设备设计的过程。 2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠。 3、工程图纸要求计算机绘图。 4、独立完成。 二、原始数据 表1 设计条件表

目录 一、设计任务书 (2) 二、课程设计内容 (5) 工艺设计 (5) 一、设计压力的确定 (5) 二、设计温度的确定 (6) 机械设计 (6) 一、结构设计 (6) ①设计条件 (6) ②结构设计 (7) 1、压力容器选择 (7) 物料的物理化学性质 压力容器的类型 压力容器的用材 2、筒体和封头的结构设计 (8) 容器的筒体和封头壁厚的设计 (8) 三·设备的设计计算 1、筒体名义厚度的初步确定 (8) 2、封头壁厚的计算 (8) 容器的水压试验 (10) 3、各个接管的位置及法兰的选择 (11) 接管的设计 法兰的设计 垫片的选择

青岛崂特啤酒厂1吨氨水泄漏村民被熏出家门 作者:青岛早报文章来源:青岛早报 点击数:71 更新时间:2007-6-18 11:21:56 16日晚8时许,位于崂山区崂山路的青岛崂特啤酒有限公司制冷车间的氨水出现泄漏,险情发生后,厂内的职工及周边村庄的村民们迅速疏散,急救人员将附近敬老院中6名出现不适反应的老人送至医院,经抢救,老人们都已脱离危险。 氨水泄漏得到控制 昨晚8时30分,记者闻讯赶到青岛崂特啤酒有限公司时,闻到了一股浓重的氨水气味,10多辆消防车和5辆120急救车停靠在崂山路上,消防人员和急救人员戴着防毒面罩冲进了公司车间,“氨水泄漏已得到初步控制,我们正在现场喷水,稀释空气中的氨气量。”负责现场抢险的消防人员告诉记者,昨晚8时,119指挥中心接到市民报警,称沙子口一带大面积出现异味,经调查,氨气来源于“崂特”公司制冷车间,一个装有1吨多的氨水罐阀门破损泄漏,接到报警后,消防部门调集了15辆消防车抢险。 不少村民熏出家门 险情发生后,“崂特”公司立即疏散了厂内正在加班的职工,紧邻该公司的砖塔岭村村民闻到异味后也从家中跑了出来。“我当时正在家里看电视,当我闻到了这股怪味后,立刻推醒了正在睡觉的孩子,带着老人跑了出来。”一名村民捂着鼻子向记者介绍说,当时许多村民都闻到了这股怪味,当他们发现氨气是从“崂特”公司泄漏的后,连忙跑到上风口,躲避氨气的“袭击”。 启动紧急预案救人 记者采访了解到,由于抢险及时,此次氨水泄漏事故没有造成人员死亡,但与“崂特”公司仅一墙之隔的沙子口街道中心敬老院众多老人却出现了不适反应。“有6人出现恶心头晕等不适症状。”敬老院护理员王爱欣向记者介绍。“我们启动了紧急救助预案。”昨晚,市急救中心主任赵珊介绍,险情发生后,他们立即带着5辆急救车赶来救人,并已准备好第二梯队。 事故原因正在调查 昨晚10时,记者赶到解放军409医院时见到了6名正在接受治疗的老人,6名老人中有5位女性1位

2005年京沪高速公路江苏淮安段“3.29”液氯泄漏事故 2005年3月29日18时50分,在江苏省淮安市境内,一辆由山东开往上海方向的鲁H-0009槽罐运输车,装有30余吨液氯危险品,在行至京沪高速公路江苏淮安段时,与一辆鲁QA0938解放牌大货车迎面相撞,导致鲁H-0009侧翻。由于肇事的槽罐运输车驾驶员逃逸,货车驾驶员身亡,延误了最佳抢险救援时机,造成了液氯的大面积泄漏,公路旁3个乡镇的村民遭受重大伤亡。造成29人死亡,436名村民和抢救人员中毒住院治疗,门诊留治人员1560人,10500多名村民被迫疏散转移,大量家畜(家禽)、农作物死亡和损失,已造成直接经济损失1700余万元。 肇事的重型罐式半挂车属山东济宁市科迪化学危险货物运输中心。这辆核定载重为15吨的运载剧毒化学品液氯的槽罐车严重超载,事发时实际运载液氯多达40.44吨,超载169.6%。而且使用报废轮胎,导致左前轮爆胎,在行驶的过程中槽罐车侧翻,致使液氯泄漏。肇事车驾驶员、押运员在事故发生后逃离现场,失去最佳救援时机,直接导致事故后果的扩大。 济宁市科迪化学危险货物运输中心对挂靠的这辆危险化学品运输车疏于安全管理,未能及时纠正车主使用报废轮胎和车辆超载行为,是这起事故的间接原因。 专业人员在检查过程中还发现该车押运员没有参加相关的培训和考核,不具备押运危险化学品的资质。这是事故发生乃至伤亡损失扩大的另一个重要间接原因。江苏淮安液氯泄漏事故28人死亡发生二次泄漏 2004年江西油脂化工厂“4.20”液氯残液泄漏事故 2004年4月20日21时左右,江西油脂化工厂(以下简称油化厂)发生液氯残液泄漏事故,造成282人出现中毒反应,其中住院治疗128人,留院观察154人。 事故的直接原因:由于液氯钢瓶的瓶阀出气口及阀杆严重腐蚀,气温升高,瓶体内气体膨胀,将阀门腐蚀堵塞物冲出,导致液氯残液泄漏。 为严肃党纪政纪,有11人分别受到撤职等党纪、政纪的严肃处理。反思这一事故,有

课程设计任务书 广东石油化工学院 《化工机械基础》课程设计任务书 1.设计题目:液氨储罐机械设计 2. 设计数据: 技术特性 公称容积V0(m3) 16 公称直径D i(mm) 2000介质液氨筒体长度L(mm) 4000 工作压力(MPa) 2.07 工作温度(0C) ≤50 厂址茂名推荐材料16MnR 管口表 编号名称公称直径(mm) 编号名称公称直径(mm) a1-2 液位计15 e 安全阀32 b 进料管50 f 放空管25 c 出料管32 g 人孔500 d 压力表15 h 排污管50 工艺条件图

广东石油化工学院课程设计毕业书 3.计算及说明部分内容(设计内容): 第一部分绪论: (1)设计任务、设计思想、设计特点; (2)主要设计参数的确定及说明。 第二部分材料及结构的选择与论证 (1)材料选择与论证; (2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍式支座的选择确定。 第三部分设计计算 (1)计算筒体的壁厚; (2)计算封头的壁厚; (3)水压试验压力及其强度校核; (4)选择人孔并核算开孔补强; (5)选择鞍座并核算承载能力; 第四章主要附件的选用 (1)、液面计选择 (2)、各进出口的选择 (3)、压力表选择 第五章设计小结 附设计参考资料清单 4.绘图部分内容: 总装配图一张(1#) 5.设计期限:1周(2014 年 07 月 07 日—— 2014 年 07月 11 日) 6、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天 7.参考资料: [1]《化工过程设备机械基础》,李多民、俞慧敏主编,中国石化大学出版社

化 工典型安全事故案例 汇总

目录 1目录............................................................................................................................ 4第一章火灾事故案例.................................................................................................. 一山东赫达股份有限公司"9.12"爆燃事故 (4) 二淄博中轩生化有限公司"6.16"火灾事故 (5) 三吉林化学工业公司化肥厂火灾事故 (6) 四菏泽海润化工有限公司小井乡黄庄储备库11.23 爆燃事故 (7) 五兴化化工公司甲醇储罐爆炸燃烧事故 (9) 六制度不全操作不当引发爆燃事故“2005.9.28”燃爆事故 (11) 七济南市某化工厂氮氢气压缩机放空管雷击着火事故 (12) 八锅炉长期高负荷运行引发火灾事故 (13) 九爆炸危险区域使用非防爆电气设备引发火灾 (15) 十一起氧气管道燃爆事故 (16) 十一某化工厂动火措施不完善气柜方箱着火事故 (19) 十二中石油兰州石化爆炸事故 (20) 第二章爆炸事故案例................................................................................................ 22 一安徽某化肥厂汽车槽车液氨储罐爆炸 (22) 二大庆石油化工总厂2004.10.27硫磺装置酸性水罐爆炸事故分析 (23) 三山东德齐龙化工集团有限公司“7.11”爆炸事故 (25) 四河北省某银矿空气压缩机油气分离储气箱爆炸 (27) 五某石化总厂化工一厂换热器爆炸 (28) 六锅炉炉膛煤气爆炸事故案例 (29) 七山东德齐龙化工集团氮氢气体泄漏爆炸事故 (31) 八动火前检查欠详作业中爆炸伤人 (32) 九山东博丰大地工贸有限公司“7.27”爆炸事故 (33) 十山西某化工厂压力容器爆炸事故案例 (34) 十一南京化工厂爆炸事故 (34) 十二大连输油管道爆炸事故 (36) 38 第三章中毒事故案例................................................................................................

化工设备机械基础课程设计题目:液氨贮罐的机械设计 班级: 学号:0708010213 姓名:陈剑 指导教师:崔岳峰 沈阳理工大学环境与化学工程学院 2010年11月 设计任务书 课题:液氨储罐的机械设计 设计内容:根据给定的工艺参数设计一台液氨储罐。 已知工艺参数: 最高使用温度:T=50℃

公称直径:DN=3000mm 筒体长度:L=4500mm 具体内容包括: (1)筒体材料的选择 (2)储罐的结构和尺寸 (3)罐的制造施工(焊接焊缝) (4)零部件的型号、位置和接口 (5)相关校核计算 设计人:陈剑 学号:0708010213 下达时间:2010年11月19日 完成时间:2010年12月24日 目录 前言 1 1液氨储罐的设计背景 2 2液氨储罐的分类和选型 3

2.1 储罐的分类 3 2.2 储罐的选型 3 3 材料用钢的选取 4 3.1容器用钢 4 3.2附件用钢 4 4工艺尺寸的确定 5 4.1储罐的体积 5 5工艺计算 6 5.1筒体壁厚的计算 6 5.2封头壁厚的计算6 5.3水压试验7 5.4支座7 5.4.1支座的选取7 5.4.2鞍座的计算7 5.4.3安装高度9 5.5人孔的选取9 5.6人孔补强9 5.6.1人孔补强的计算9 5.6.2 不需补强的最大开孔直径11 5.7接口管12 5.7.1液氨进料管12

5.7.2液氨出料管12 5.7.3排污管12 5.7.4液面计接管12 5.7.5放空接口管13 5.7.6安装阀接口管13 6参数校核14 6.1筒体轴向应力校核14 6.1.1 筒体轴向弯矩的计算14 6.1.2筒体轴向应力的计算14 6.2 筒体和封头切向应力的校核15 6.2.1筒体切向应力的计算15 6.2.2封头切向应力的计算16 6.3筒体环向应力的计算与校核16 6.3.1环向应力的计算16 6.3.2环向应力校核17 6.4鞍座有效断面平均压力17 7总结18 8设计结果一览表19 9液氨储罐化工设计图20 参考文献21

** 氨库装置 消防专篇编制: 校核: 审核:

1 设计原则、依据及规范 1.1 设计原则 认真贯彻“预防为主,防消结合”的方针,严格遵循国家和地方的有关防火规范及规定,搞好本项目的防火设计。充分利用装置所在地域现有的消防设施,尽量节约投资。 1.2 设计依据 1.2.1 设计合同。 1.2.2 **提供的设计基础资料。 1.3 国家和地方的相关法规和规定 1.3.1 《中华人民共和国消防法》(中华人民共和国主席令第4号) 1.3.2 建筑工程消防监督审核管理规定(公安部30号令) 1.3.3 《危险化学品安全管理条例》(中华人民共和国国务院令第344号) 1.3.4 《中华人民共和国安全生产法》(中华人民共和国主席令第70号) 1.3.5 《中华人民共和国劳动法》(中华人民共和国主席令第28号) 1.3.6 《特种设备安全监察条例》(中华人民共和国国务院令373号) 1.3.7 《国务院关于进一步加强安全生产工作的规定》(国发【2004】2号)1.3.8 《关于加强安全生产事故应急预案监督管理工作的通知》(国务院安全生 产委员会安委办字【2005】48号) 1.4 设计中执行的主要标准、规范 1)《建筑设计防火规范》(GB50016-2006) 2)《化工企业安全卫生设计规定》(HG20571-1995) 3)《石油化工企业设计防火规范》(GB50160-1992,1999年版) 4)《建筑抗震设计规范》(GB50011-2001) 5)《建筑物防雷设计规范》(GB50057-94,2000版) 6)《建筑防腐蚀工程施工及验收规范》(GB50212-2002) 7)《钢结构设计规范》(GB50017-2003) 8)《爆炸和火灾危险环境电力装置设计规范》(GB50058-1992) 9)《工业企业噪声控制设计规范》(GBJ87-1985) 10)《石油化工企业可燃气体和有毒气体检测报警设计规范》(SH3063-1999)

化工安全事故案例汇总

目录 目录 (1) 第一章火灾事故案例 (4) 一山东赫达股份有限公司"9.12"爆燃事故 (4) 二淄博中轩生化有限公司"6.16"火灾事故 (5) 三吉林化学工业公司化肥厂火灾事故 (6) 四菏泽海润化工有限公司小井乡黄庄储备库11.23 爆燃事故 (7) 五兴化化工公司甲醇储罐爆炸燃烧事故 (9) 六制度不全操作不当引发爆燃事故?2005.9.28?燃爆事故 (11) 七济南市某化工厂氮氢气压缩机放空管雷击着火事故 (12) 八锅炉长期高负荷运行引发火灾事故 (13) 九爆炸危险区域使用非防爆电气设备引发火灾 (15) 十一起氧气管道燃爆事故 (16) 十一某化工厂动火措施不完善气柜方箱着火事故 (19) 十二中石油兰州石化爆炸事故 (20) 第二章爆炸事故案例 (22) 一安徽某化肥厂汽车槽车液氨储罐爆炸 (22) 二大庆石油化工总厂2004.10.27硫磺装置酸性水罐爆炸事故分析 (23) 三山东德齐龙化工集团有限公司?7.11?爆炸事故 (25) 四河北省某银矿空气压缩机油气分离储气箱爆炸 (27) 五某石化总厂化工一厂换热器爆炸 (28) 六锅炉炉膛煤气爆炸事故案例 (29) 七山东德齐龙化工集团氮氢气体泄漏爆炸事故 (31) 八动火前检查欠详作业中爆炸伤人 (32) 九山东博丰大地工贸有限公司?7.27?爆炸事故 (33) 十山西某化工厂压力容器爆炸事故案例 (34) 十一南京化工厂爆炸事故 (34) 十二大连输油管道爆炸事故 (36) 第三章中毒事故案例 (38)

一河南濮阳中原大化集团有限责任公司?2.23?较大中毒窒息事故 (38) 二莘县化肥有限责任公司?7.8?液氨泄漏事故 (39) 三淄博市周村区?5.21?危化品槽罐车中毒死亡事故 (43) 四山东阿斯德化工有限公司?8.6?一氧化碳中毒事故 (44) 五山东滨化集团化工公司?4.15?氮气窒息事故 (45) 六山东晋煤同辉化工有限公司?4.21?事故 (46) 七苯中毒事故案例 (48) 八制度不执行,入罐作业酿事故 (49) 九某化工厂急性硫化氢中毒事故分析 (50) 十二氧化硫中毒事故案例 (52) 第四章国外化工安全事故案例 (55) 一美国乔治亚州奥古斯塔BP-阿莫科聚合物工厂爆炸事故 (55) 二美国路易斯安那州Sonat Exploration公司油气分离厂火灾爆炸事故 (57) 三美国托斯科埃文炼油厂爆炸事故 (61) 四日本甲醇精馏塔爆炸事故 (65) 五美国环氧乙烷再蒸馏塔爆炸事故 (66) 六韩国幸福公司的ABS树脂厂火灾爆炸事故 (68) 七日本一合成氨装置爆炸事故 (69) 八印度马弗罗炼油厂储罐区爆炸事故 (70) 九墨西哥城液化石油气站火灾爆炸事故 (70) 十西班牙液化丙烯罐车爆炸事故 (73) 十一美国联合碳化物公司氮气窒息事故 (76) 十二印度博帕尔甲基异氰酸酯泄漏事故 (79) 十三日本一化工厂生产农药时焦油状废物分解泄漏事故 (83) 十四塞内加尔液氨储罐发生爆炸事故 (84)

2012年安全工程师《安全生产事故案例分析》考试试题及答案 一、2011年11月29日4时,A铁矿390平巷直竖井的罐笼在提升矿石时发生卡罐故障罐笼被撞破损后卡在距离井口2.5m处,当班绞车工甲随即升井向矿长乙和维修工丙报告后,乙和丙下井检修。丙在没有采取任何防护措施的情况下,3次对罐笼角、井筒护架进行切割与焊接,切割与焊接作业至7时结束。随后乙和丙升井返回地面。 当日7时29分,甲在绞车房发现提升罐笼的钢丝绳异动,前往井口观察,发现直竖井内起火,当即返回绞车房,关闭向井下送电的电源开关。并立即升井向乙和丙报告。随后甲和丙一起下井,到达390平巷时烟雾很大,能见度不足5m,甲和丙前行到达离起火直竖井约300m处,无法继续前行,遂返回地面向乙汇报,乙立即报警,调矿山救护队救援,并启动A矿山应急救援预案。 截至11月27日10时,核实井下被困人员共122人,其中救护队救出52人,70人遇难,遇难人员中包括周边的4座铁矿61名井下作业人员。 事故调查发现,A铁矿与周边的4座铁矿越巷开采,井下巷道及未*****区互相贯通,各矿均未形成独立的** 通风系统,且安全出口和标志均不符合安全规定 事故调查组确认,该起事故的直接原因是丙在切割与焊接作业时,切割下来的高温金属残块及焊渣掉落在井槽充填护*的**上,造成荆笆着火,引燃****的可燃物,引发火灾。该起事故的经济损失包括:人员伤亡后所支出的费用9523万元,善后处理费用3052万元,财产损失1850万元,停产损失580万元,处理环境污染费用5万元。 1、根据《火灾分类》(GB/T4968-2008),A铁矿直竖井发生的火灾类别属于(A) A、A类火灾 B、B类火灾 C、C类火灾 D、D类火灾 E、E类火灾 2、在A铁矿390平巷直竖井进行切割与焊接作业,应办理的许可手续是(C) A、有限空间作业许可 B、带电作业许可 C、动火作业许可 D、高温作业许可 E、潮湿作业许可 3、该起事故的直接经济损失为(C)万元 A 8523 B 12575 C 14425 D 15005 E 15010

化工设备机械基础课程设计 题目:液氨贮罐的机械设计 班级:07080102 学号:0708010213 姓名:陈剑 指导教师:崔岳峰 沈阳理工大学环境与化学工程学院 2010年11月

设计任务书 课题:液氨储罐的机械设计 设计内容:根据给定的工艺参数设计一台液氨储罐。已知工艺参数: 最高使用温度:T=50℃ 公称直径:DN=3000mm 筒体长度:L=4500mm 具体内容包括: (1)筒体材料的选择 (2)储罐的结构和尺寸 (3)罐的制造施工(焊接焊缝) (4)零部件的型号、位置和接口 (5)相关校核计算 设计人:陈剑 学号:0708010213 下达时间:2010年11月19日 完成时间:2010年12月24日

目录 前言 (1) 1液氨储罐的设计背景 (2) 2液氨储罐的分类和选型 (3) 2.1储罐的分类 (3) 2.2 储罐的选型 (3) 3 材料用钢的选取 (4) 3.1容器用钢 (4) 3.2附件用钢 (4) 4工艺尺寸的确定 (5) 4.1储罐的体积 (5) 5工艺计算 (6) 5.1筒体壁厚的计算 (6) 5.2封头壁厚的计算 (6) 5.3水压试验 (7) 5.4支座 (7) 5.4.1支座的选取 (7) 5.4.2鞍座的计算 (7) 5.4.3安装高度 (9) 5.5人孔的选取 (9) 5.6人孔补强 (9) 5.6.1人孔补强的计算 (9) 5.6.2 不需补强的最大开孔直径 (11) 5.7接口管 (12) 5.7.1液氨进料管 (12) 5.7.2液氨出料管 (12) 5.7.3排污管 (12) 5.7.4液面计接管 (12) 5.7.5放空接口管 (13)

液氨泄漏事中毒故案例集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

液氨泄漏事中毒故案例1)事故经过 2002年7月8日2时09分,聊城市莘县化肥有限责任公司发生液氨泄漏事故。这起事故共泄漏液氨约20.1吨,造成死亡13人,重度中毒24人,直接经济损失约72.62万元。 2002年7月8日凌晨0点20分,一辆个体液氨罐车,在莘县化肥有限责任公司液氨库区灌装场地进行液氨灌装,到凌晨2点左右灌装基本结束时,液氨连接导管突然破裂,大量液氨泄漏。驾驶员吩咐押运员立即关闭灌装区西侧约64米处的紧急切断阀,自己迅速赶到罐车尾部,对罐车的紧急切断装置采取关闭措施,一边与厂值班人员联系并电话报警。 2时09分,接到报警后,公安、消防等部门及县委、县政府主要领导先后赶到现场,组织事故抢险和群众疏散。同时,企业值班领导组织职工对生产系统紧急停车。 4时40分,消防官兵将液氨罐车2个制动阀门和1个灌装截止阀关闭。抢险搜救工作一直持续到6点30分。参与抢险搜救的干部、群众和公安、消防干警500多名,车辆32部,共解救、疏散群众2000余人。

2)事故原因 (1)液相连接导管破裂是造成事故的直接原因。初步查明,液相连接导管供货单位是河北省无生产许可证的一家镇办企业。经公安部门侦察鉴定,液相连接导管破裂排除了人为破坏因素。从发生事故前的记录看,液相连接导管的工作压力、温度及使用期限均未超出规定范围,是在正常使用条件下发生的破裂,这是造成这起事故的直接原因。 (2)液氨罐车上的紧急切断装置失灵是液氨泄漏扩大的主要原因。事故发生后,氨库西侧约64米处的紧急切断阀很快被关闭,防止了液氨储槽中液氨的继续泄漏。虽然驾驶员对罐车上的紧急切断阀采取了紧急切断措施,但由于该装置失灵,致使罐车上液氨倒流泄漏,导致事故的进一步扩大。 (3)液氨罐区与周围居民区防护间距不符合规范要求,是导致事故伤亡扩大的重要原因。根据《小型氨肥厂卫生防护标准》(GB11666-89)和当地气象条件,卫生防护距离要求为1000米,而实际最近距离不足25米,远远低于规范要求。因此,液氨罐区与周围居民区防护间距不符合规范要求,是导致事故伤亡扩大的重要原因。 (4)安全管理制度和责任制不落实是发生事故的重要原因。

液氨贮罐的设计及计算 第一章贮罐筒体与封头的设计 一、罐体DN、PN的确定 1、罐体DN 的确定 液氨贮罐的长径比L/Di一般取3~3.5,本设计取L/Di=3.2,由V=(πDi2/4) ·L=10 L/Di=3.2得:Di =( 40/ 3.2π)1/3 =1.585 m= 1585 mm 因圆筒的内径已系列化,由Di=1585 mm可知: DN=1600 mm 2、釜体PN 的确定 因操作压力P=16 Kgf/cm2,由文献 [1]可知:PN=1.6 MPa 二、筒体壁厚的设计 1、设计参数的确定 p=(1.05-1.1) p w ,p =1.1×1.6MPa=1.76MPa,p c =p+p ∵ p 液< 5 % P ,∴可以忽略p 液 p c =p=1.76 MPa , t = 100 ℃,Ф=1(双面焊,100%无损探伤), c 2 =2 mm(微弱腐蚀) 2、筒体壁厚的设计 设筒体的壁厚S n ′=14 mm,[σ]t=170MPa ,c 1 =0.8 mm 由公式S d =p c Di/(2 [σ]tФ-P c)+c 可得: S d =1.76×1600/(2×170×1-1.76)+ 2 +0.8=11.13(mm) 圆整S n =12 mm ∵S n ≠ S n ′∴假设S n = 14mm是不合理的. 故筒体壁厚取S n =12 mm 3、刚度条件设计筒体的最小壁厚 ∵ Di=1600 mm < 3800 mm ,S min =2 Di /1000且不小于3 mm 另加 C 2 , ∴ S n =5.2 mm 按强度条件设计的筒体壁厚S n =12 mm >S n =5.2 mm,满足刚度条件的要求. 三、罐体封头壁厚的设计 1、设计参数的确定 p=(1.05-1.1) p w ,p =1.1×1.6MPa=1.76MPa,p c =p+p 液 ,∵ p 液 < 5 % p , ∴可以忽略p 液 p c =p=1.76 MPa , t=40 ℃,Ф=1(双面焊,100%无损探伤), c 2 =2 mm(微弱腐蚀) 2、封头的壁厚的设计 采用标准椭圆形封头,设封头的壁厚S n ′=14 mm,[σ]t=170 MPa ,c 1 = 0.8 mm 由公式S d =P c Di/(2 [σ]tФ-0.5P c )+c 可得: S d =1.76×1600/(2×170×1-0.5×1. 76)+ 2 +0.8=11.10 mm 圆整 S n =12 mm

. 燕京理工学院Yanching Institute of Technology (2018)届本科生化工设备机械基础大作业题目:液氨储罐的设计 学院:化工与材料工程学院专业:应用化学 学号: 140140023 姓名:游超杰 指导教师:周莉莉 2017年6月30日 .

目录 1、设计任务书 (1) 2、前言 (2) 3.设计方案 (3) 3.1设计依据及原则 (3) 3.2、设计要求 (3) 技术特性表 (3) 4、设计计算 (5) 4.1、圆筒厚度设计 (5) 4.2、封头壁厚设计 (6) 4.3、水压试验及强度校核 (6) 5、选择人孔并核算开孔补强 (7) 5.1、人孔参数确定 (7) 5.2、开孔补强的计算 (8) 6、接口管设计 (10) 6.1、进料管 (10) 6.2、出料管 (10) 6.3、液位计接口管 (10) 6.4、放空阀接口管 (11) 6.5、安全阀接口管 (11) 6.6、排污管 (11) 6.7、压力表接口 (11) 7、鞍座负载设计 (11) 首先粗略计算鞍座负荷 (11) 7.1、罐体质量m1 (12) 7.2、封头质量m2 (12) 7.3、液氨质量m3 (12) 7.4、附件质量m4 (12) 8、设计汇总 (13)

1、设计任务书 课题: 液氨储罐的设计(家乡衡水) 设计内容: 根据既定的工艺参数设计一台液氨储罐 已知工艺参数: 最高使用温度T=40℃ 罐体容积V=12mm3 此时氨的饱和蒸汽压P=1.55MPa 具体的内容包括: 1.筒体材料选择 2.罐的结构及尺寸(内径、长度)形状(卧式、球形、立式),罐体厚度,封 头形状及厚度,支座的选择,人孔及接管,开孔补强 下达时间:2017年6月16日 完成时间:2017年6月30日

液氨泄漏事中毒故案例1)事故经过 2002年7月8日2时09分,聊城市莘县化肥有限责任公司发生液氨泄漏事故。这起事故共泄漏液氨约20.1吨,造成死亡13人,重度中毒24人,直接经济损失约72.62万元。 2002年7月8日凌晨0点20分,一辆个体液氨罐车,在莘县化肥有限责任公司液氨库区灌装场地进行液氨灌装,到凌晨2点左右灌装基本结束时,液氨连接导管突然破裂,大量液氨泄漏。驾驶员吩咐押运员立即关闭灌装区西侧约64米处的紧急切断阀,自己迅速赶到罐车尾部,对罐车的紧急切断装置采取关闭措施,一边与厂值班人员联系并电话报警。 2时09分,接到报警后,公安、消防等部门及县委、县政府主要领导先后赶到现场,组织事故抢险和群众疏散。同时,企业值班领导组织职工对生产系统紧急停车。

4时40分,消防官兵将液氨罐车2个制动阀门和1个灌装截止阀关闭。抢险搜救工作一直持续到6点30分。参与抢险搜救的干部、群众和公安、消防干警500多名,车辆32部,共解救、疏散群众2000余人。 2)事故原因 (1)液相连接导管破裂是造成事故的直接原因。初步查明,液相连接导管供货单位是河北省无生产许可证的一家镇办企业。经公安部门侦察鉴定,液相连接导管破裂排除了人为破坏因素。从发生事故前的记录看,液相连接导管的工作压力、温度及使用期限均未超出规定范围,是在正常使用条件下发生的破裂,这是造成这起事故的直接原因。 (2)液氨罐车上的紧急切断装置失灵是液氨泄漏扩大的主要原因。事故发生后,氨库西侧约64米处的紧急切断阀很快被关闭,防止了液氨储槽中液氨的继续泄漏。虽然驾驶员对罐车上的紧急切断阀采取了紧急切断措施,但由于该装置失灵,致使罐车上液氨倒流泄漏,导致事故的进一步扩大。

设计任务书 课题:液氨贮罐的机械设计 设计内容:根据给定的工艺参数设计一个液氨贮罐相关工艺参数: 最高使用温度:T=50℃ 公称直径:DN=2800mm 筒体长度(不含封头):L0=4500mm 设计操作步骤: 1.筒体材料的选择 2.罐的结构及尺寸 3.罐的制造施工 4.零部件型号及位置、接口 5.相关校核计算 设计人: XXX 学号:080801XXXX 下达时间:2011年11月25日 完成时间:2011年12月26日

目录 前言 (1) 1 设计方案 (2) 1.1 设计原则 (2) 1.2 材料的选择 (2) 1.3 结构的选择 (2) 2 设计参数 (5) 3 设计计算 (6) 3.1 壁厚的计算 (6) 3.1.1筒体壁厚 6 3.1.2封头壁厚 7 3.2 鞍座承载能力计算 (8) 3.2.1罐体质量m1 8 3.2.2封头质量m2 8 3.2.3 液氨质量m3 (9) 3.2.4附件质量m4 9 3.3 人孔补强计算 (10) 4 附件选择 (13) 4.1 人孔选择 (13) 4.2 接口管的选择 (13) 4.2.1液氨进料管 13 4.2.2液氨出料管 13

4.2.3液面计接口管 13 4.2.4安全阀接口管 13 4.2.5放空阀接口管 13 4.2.6排污管 14 5 参数校核 (15) 5.1 筒体轴向应力校核 (15) 5.1.1筒体轴向弯矩计算 15 5.1.2筒体轴向应力计算 15 5.2 筒体和封头切向应力校核 (17) 5.2.1筒体切向应力计算 17 5.2.2封头切向应力计算 18 5.3 筒体环向应力校核 (18) 5.3.1环向应力计算 18 5.3.2环向应力校核 19 5.4 鞍座有效断面平均压力 (19) 6 设计汇总 (21) 7 小结 (25) 参考文献 (26)

一起液氨泄漏事故案例分 精品资源~临风文档。 一起液氨泄漏事故案例分 一、事故经 某日~某化工厂合成车间加氨阀填料压盖破裂~有少量的液氨滴漏。维修工徐某遵照车间指令~对加氨阀门进行填料更换。徐某没敢大意~首先找来操作工~关闭了加氨阀门前后两道阀门,并牵来一根水管浇在阀门填料上~稀释和吸收氨味~消除氨液释放出的氨雾,又从厂安全室借来一套防化服和一套过滤式防毒面具~佩戴整齐后即投入阀门检修。可当他卸掉阀门压盖时~阀门填料跟着冲了出来~瞬间一股液氨猛然喷出~并释放出大片氨雾~包围了整个检修作业点~临近的甲醇岗位和铜洗岗位也笼罩在浓烈的氨味中~情况十分紧急危险。临近岗位的操作人员和安全环保部的安全员发现险情后~纷纷从各处提着消防和防护器材赶来。有的接通了消防水带打开了消火栓~大量喷水压制和稀释氨雾,有的穿上防化服~戴好防毒面具~冲进氨雾中协助处理险情。闻讯赶到的厂领导协助车间指挥~生产调度抓紧指挥操作人员减量调整生产负荷~关闭远距离的相关阀门~停止系统加氨~事故得到有效控制和妥善处理~并快速更换了阀门填料~堵住了漏点 1 这次事故虽然没有造成人员伤亡和财产损失~但是还是暴露了企业在安全生产中存在的一些漏洞。我们可以从分析事故原因中得到一些启示 二、事故原 1、合成车间在检修处理加氨阀填料漏点过程中~未制订周密完整的检修方案~未制订和认真落实必要的安全措施~维修工贸然接受任务~不加思考就投入检修

2、合成车间领导在获知加氨阀门填料泄漏后~没有足够重视~没有向生产、设备、安全环保部门按程序汇报~自作主张~草率行事~擅自行事 3、当加氨阀门填料冲出有大量氨液泄漏时~合成车间组织不力~指挥不统一~手忙脚乱~延误了事故处置的最佳有效时间 4、加氨阀门前后备用阀关不死内漏~合成车间对危险化学品事故处置思想上麻痹重视不够~安全意识严重不足。人员组织不力~只指派一名维修工去处理,物质准备不充分~现场现找、现领阀门 三、预防措 1、安全环保部应责成合成车间把此次加氨泄漏事故编印成事故案例~供全厂各车间、岗位学习~开展事故案例教育~并展开事故大讨论~要求人人谈认识~人人写体会~签字登记在案 2 2、责成合成车间将此次氨泄漏事故~编制氨泄漏事故处置救援预案~组织全员性的化学事故处置救援抢险抢修模拟演练~要求不漏一人地学会氨泄漏抢险抢修处置方法~ldquo;预防为主”真正落到实处 3、合成车间应组织全体操作工和维修工~进行氨、氢、一氧化碳、甲醇、甲烷、硫化氢、二氧化碳等化学危险品的理化特性以及事故处置方法的安全技术知识培训~由车间安全员负责组织一次全员性的消防、防化、防护器材的使用知识培训~在合成车间内形成一道预防化学事故和防消事故的牢固大堤 4、发动全厂职工提合理化建议~查找身边事故隐患苗头~力争对事故隐患早发现早整改~及时处理~从源头上堵塞住事故隐患漏洞~为生产创造一个安全稳定的环境 3

相关文档
最新文档