热电偶温度计的测温原理、选型及其应用

热电偶温度计的测温原理、选型及其应用
热电偶温度计的测温原理、选型及其应用

《自动检测技术及仪表》课程设计报告

热电偶温度计的测温原理、选型及其应用

学院:

班级:

姓名:

学号:

目录

一摘要 (3)

二热电偶温度计的测温原理 (3)

2.1 热电偶的测温原理 (3)

2.2 接触电势 (4)

2.3 温差电势 (4)

2.4 热电偶温度计闭合回路的总热电势 (4)

三热电偶温度计的组成结构及其作用和特 (5)

3.1 热电偶温度计的组成结构 (5)

3.2 热电偶温度计的作用及特点 (6)

四热电偶温度计测温技术中涉及到的定则 (7)

4.1 均质导体定则 (7)

4.2 中间导体定则 (7)

4.3 连接导体和中间温度定则 (8)

五热电偶温度计的误差分析及选型 (8)

5.1 影响测量误差的主要因素 (8)

5.1.1插入深度 (8)

5.1.2响应时间 (9)

5.1.3热辐射 (10)

5.1.4冷端温度 (11)

5.2 热电偶温度计的选型 (11)

六现场安装及其注意事项 (13)

七总结 (13)

八参考文献 (15)

一、摘要

热电偶温度计是一种最简单﹑最普通,测温范围最广的温度传感器,是科研﹑生产最常用的温度传感器。在使用时不注意,也会引起较大测量误差。针对当前存在的问题,详细探讨影响测量误差的主要因素:热电偶插入深度﹑响应时间﹑热辐射及冷端温度等因素对测量的影响;在使用时应该怎样选择热电偶温度计,以及使用时的一些安装注意事项,这对提高测量精度,延长热电偶寿命,都有一定的意义。

二、热电偶温度计的测温原理

热电偶温度计是一种感温元件 , 把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。

热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端温度不同时 , 回路中就会产生电势,这种现象称为热电效应(或者塞贝克效应)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表;分度表是自由端温度在 0°C 时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。

热电偶温度计测温原理图如图所示:

其中,T是热端、工作端或者测量端,

T

称为冷端、自由端或者参比端。A 和B 称为热电极,热电势),(0T T E AB 的大小由接触电势和温差电势决定。

(1)接触电势:也叫珀尔电势,其大小表示为: BT AT

AB N N e KT T e ln )(=

其中:)(T e AB ——导体A 和B 在温度为T 时的接触电势,A 和B 的顺

序代表电动势的方向;k ——玻尔兹曼常数;T ——接触处的绝对温度; e ——单位电荷量;AT N 、BT N ——分别为金属A 和B 的自由电子密度。

由接触电势的公式可知:接触电势的数值取决于导体材料的性质和接触点的温度;接触点的温度越高,接触电势越大;两种导体电子密度的比值越大,接触电势也越大。

(2)温差电势:是基于汤姆逊效应产生的,即同一导体的两端因其温度不同而产生的电动势。

其大小表示为: ?=T T A A dT e

K T T e 0),(0δ ?=T T B B dT e K

T T e 0

),(0δ 其中:Δa 、δB ——分别为导体A 和B 的汤姆逊系数;

eA (T ,0T )、eB (T ,0T )——分别为导体A 和B 两端温度在T 和0T (T >0T )时的温差电势;K ——玻尔兹曼常数;T ——接触处的绝对

温度;e ——单位电荷量;

温差电势的大小与导体材料的性质及两端的温度差有关,温差越大,温差电势也越大,当T =T 0时,温差电势为零。

(3)热电偶温度计闭合回路的总热电势

如图所示,热电偶闭合回路中,回路总电势由4个部分组成,2个温差电势:A e (T ,0T )和B e (T ,0T ),2个接触电势AB e (T )和AB e (0T ),其大小和方向如图中所示,则总电势为

)

,()(),()(),(0000T T e T e T T e T e T T E A AB B AB AB --+=dT e K N N e KT dT e K N N e KT

T T B BT AT T T A BT AT

??--+=000

0ln ln 0δδ

)

()()()()()(),(000000

T f T f dt T e dt T e T T E T B A AB T

B A AB AB -=??????---??????--=??δδδδ

由上面的式子可知,热电偶总电势与两接点温度有关。

若使冷端温度0T 固定,即?(0T )= C (常数),则对确定的热电偶材

料,其总电势),(0T T E AB 只与热端温度T 有关,即

C T f T T E AB -=)(),(0

所以,热电偶所产生的热电势),(0T T E AB 只和热端温度T 有关,因此测得热电势的大小,就可求得热端温度T ,这就是用热电偶测量温度的工作原理。

三、 热电偶温度计的组成结构及其作用和特点

1、 热电偶温度计的组成结构

从结构形式上看,热电偶可以分为:普通型、铠装型、薄膜型三种。

热电偶的基本结构是热电极,绝缘材料和保护管;并与显示仪表、记录仪表或计算机等配套使用。在现场使用中根据环境,被测介质等多种因素研制成适合各种环境的热电偶。热电偶简单分为装配式热电

偶,铠装式热电偶和特殊形式热电偶;按

使用环境细分有耐高温热电偶,耐磨热

电偶,耐腐热电偶,耐高压热电偶,隔爆

热电偶,铝液测温用热电偶,循环硫化床

用热电偶,水泥回转窑炉用热电偶,阳极焙烧炉用热电偶,高温热风炉用热电偶,汽化炉用热电偶,渗碳炉用热电偶,高温盐浴炉用热电偶,铜、铁及钢水用热电偶,抗氧化钨铼热电偶,真空炉用热电偶,铂铑热电偶等

为了保证热电偶可靠、稳定地工作,对它的结构要求如下:

(1)组成热电偶的两个热电极的焊接必须牢固;

(2)两个热电极彼此之间应很好地绝缘,以防短路;

(3)补偿导线与热电偶自由端的连接要方便可靠;

(4)保护套管应能保证热电极与有害介质充分隔离。

2、热电偶温度计的作用和特点

(1)作用:热电偶温度计实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。用于测量各种温度物体,测量范围极大,远远大于酒精、水银温度计。它适用于炼钢炉、炼焦炉等高温地区,也可测量液态氢、液态氮等低温物体。

(2)特点:① 测量精度高:热电偶与被测对象直接接触,把温度信

号直接转换成直流电势信号,便于信号的传递与显示,不受中间介质的影响;

② 动态响应时间快:热电偶对温度变化反应灵敏,可以远传4-20mA 电信号,便于自动控制和集中控制;

③ 测量范围广:可达-200 ~ 2000℃以上,是应用最广的测温传感器;

④结构简单、体积小、易加工,性能可靠,机械强度好;

⑤ 使用寿命长,安装方便。

四、热电偶温度计测温技术中涉及到的定则

1、均质导体定则

由均质材料(指电子密度处处相同)构成的热电偶,热电势仅与组成热电偶的材料、热端和冷端的温度有关,而与热电偶的几何形状、尺寸大小和沿电极温度分布无关。

结论:(1)热电偶必须由两种不同性质的材料组成,且热电偶两接点温度不同。(2)由一种材料组成的闭合回路存在温差时,回路如果产生热电势,便说明该材料是不均匀的。这也是检查热电极材料均匀性的一种方法。

2、中间导体定则

在热电偶回路的任何地方插入第三种均质导体,只要保证插入的第三种导体两端温度相同,则插入第三种导体后,对热电偶回路中的总电势没有影响。如图所示:

作用:为在热电偶回路中连接仪表、连接导线等提供理论依据。即只要保证连接导线、仪表等接入时两端温度相同,则不影响回路热电势。

3、连接导体和中间温度定则

在热电偶回路中,若

热电极A、B分别与导体

A’、B’相连,接点温度分

别为T,

T和0T时,则回路

n

总电势为热电偶的热电势EAB(T,

T)与连接导体热电势EA’B’

n

T,0T)的代数和—连接导体定律。

n

作用:在热电偶回路中应用补偿导线提供了理论依据;为制定和使用热电偶分度表奠定了基础。

五、热电偶温度计的误差分析及选型

1、影响测量误差的主要因素

(1)插入深度

其中包括:a.测温点的选择:热电偶的安装位置,即测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。

b.插入深度:由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些(约为直径的15—20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10-15倍)。

(2)响应时间: 接触法测温的基本原理是测温元件要与被测对象达到热平衡。因此,在测温时需要保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。而热响应时间主要取决于传感器的结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。

对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1秒钟,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。测温元件热响应误差可通过下式确定[1]。

Δθ=Δθ0exp(-t/η)⑴

其中 t—测量时间S,

Δθ—在 t时刻,测温元件引起的误差,K或℃

Δθ0—“t=0” 时刻,测温元件引起的误差,K或℃

η—时间常数S e ——自然对数的底(2.718)

因此,当t=η时,则Δθ=Δθ0/e即为0.368,

如果当t=2η时,则Δθ=Δθ0/e2即为0.135。

当被测对象的温度,以一定的速度α(k/s或℃/s)上升或下降时,经过足够的时间后,所产生的响应误差可用下式表示:

Δθ∞=-αη⑵

其中Δθ∞—经过足够时间后,测温元件引起的误差。

由式⑵式可以看出,响应误差与时间常数(η)成正比。

(3)热辐射

插入炉内用于测温的热电偶,将被高温物体发出的热辐射加热。假定炉内气体是透明的,而且,热电偶与炉壁的温差较大时,将因能量交换而产生测温误差。

在单位时间内,两者交换的辐射能为P,可用下式表示:

P=ζε(Tw4 - Tt4 )(2—3)

其中ζ—斯忒藩—波尔兹常数ε—发射率

Tt—热电偶的温度 , K Tw—炉壁的温度 ,K

在单位时间内,热电偶同周围的气体(温度为T),通过对流及热传导也将发生热量交换的能量为P′

P′=αA(T-Tt)(2—4)

其中α—热导率,A—热电偶的表面积

在正常状态下,P= P′,其误差为:

Tt-T=ζε(Tt4-Tw4)/αА(2—5)

对于单位面积而言其误差为

Tt-T=ζε(Tt4-Tw4)/α(2—6)

因此,为了减少热辐射误差,应增大热传导,并使炉壁温度Tw ,尽可能接近热电偶的温度Tt。另外,在安装时还应注意:

热电偶安装位置,应尽可能避开从固体发出的热辐射,使其不能辐射到热电偶表面;热电偶最好带有热辐射遮蔽套;热阻抗增加的影响。(4)冷端温度:在热电偶测温的过程中,要求热电偶冷端温度必须保持在0°,但是在实际测量过程中,热电偶的热端与冷端离得很近;冷端又暴露在空间;受到设备温度和环境温度的影响,等种种原因使冷端温度偏离0℃,因此测量结果就产生了偏差。

所以要用分度表对热电偶进行标定,实现对温度的准确测量。具体措施是对冷端温度的变化所引起的冷端温度误差予以补偿。

方法:a、补偿导线法;b、冷端恒温法;c、计算修正法;d、模拟补偿法;e、数字补偿法。

2、热电偶温度计的选型

在熟悉被测对象、掌握各种热电偶特性的基础上,根据使用气氛、温度的高低正确地选择热电偶。一般按照下面几个原则来选择:

(1)按使用温度选择

当T<1000℃时,多选用廉金属热电偶,如K型热电偶。特点:使用温度范围宽,高温下性能较稳定;

当T=-200~300℃时,最好选用T型热电偶,廉金属热电偶中准确度最高的;或者选择E型热电偶,廉金属金属中热电势变化率最大、灵敏度最高;

当T=1000~1400℃时,多选用R、S型热电偶;

当T<1300℃时,可选用N型或者K型热电偶;

当T=1400~1800℃时,多选用B型热电偶。

当T<1600℃时,短期可用S型或R型热电偶。

当T>1800℃时,常选用钨铼热电偶。

(2)根据被测介质选择

①氧化性气氛:当T<1300℃时,多选用N型或K型热电偶,廉金属热电偶中抗氧化性最强;当T>1300℃时,选用铂铑系热电偶。

②真空、还原性气氛:当T<950℃时,选用J型热电偶,既可以在氧化性气氛下工作,又可以在还原性气氛下工作工作;当T>1600℃时,应选用钨铼热电偶。

(3)根据热电偶丝的直径与长度选择

热电极直径:由材料的价格、机械强度、电导率、用途及测温范围等决定。

长度:由插入深度及安装条件决定。

①对于快速反应,选用细直径的电极丝;

②细直径的电极测量端越小、越灵敏,但电阻也越大;

③粗直径的热电极丝,提高了测温范围和寿命,但要延长响应时间;

④热电偶丝的直径与长度,不影响热电势的大小,但与热电偶的使用

寿命、动态响应特性及线路电阻有关。

六、现场安装及其注意事项

1、安装方向:与被测介质形成逆流或正交。如图所示:

2、安装位置:工作端应处于管道中流速最大的地方;保护管的末端

应越过管道中心线约5~10mm。

3、插入深度:插入深度增加,测温误差将减小;斜插或沿管道轴线

方向安装;在最大的允许插入深度条件下,尽可能深插。

4、细管道内(直径<80mm)流体温度的测量

常因插入深度不够而引起测量误差;安装时应接扩大管,选

择适宜部位,减小或消除该误差。

5、负压管道中流体温度的测量

必须保证其密封性,防外界冷空气吸入,使测量值偏低。

6、接线盒的安装:穿管前检查导线及电缆等有无断头和绝缘性能;管内导线不得有接头或加接线盒;接线盒盖朝上以免雨水或其他流体的侵入。

7、如果被测物体很小安装时注意不要改变原来的热传导及对流条件。

七、总结

热电偶测温是应用最广泛的测温元件之一,应用热电偶测温,其测温范围广,在一定温度范围内使用精度高,性能稳定,结构简单,

使用方便,动态特性好,把温度信号直接转换为直流电势信号进行测量。热电偶温度计测温属于接触式测温,直接与被测对象接触,不受中间介质的影响,可以减小测量的误差,提高测量的精度。但是因为测温元件与被测介质需要充分进行热交换,需要一定的时间才能到达热平衡,存在测温延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。

通过这次的课程设计,我对自己所学的专业和方向有了更深的认识和了解,仪表的学习和使用对我们过程控制方向的同学是很重要的。学习完《自动检测技术与仪表》这门课程以后,对课程的系统框架结构有了一个清晰地认识,但是要具体到哪一个传感器或者是哪一种检测仪表,我就有些模糊了,基本都是记忆的知识点,太多了,比较混乱。但是通过这次课程设计以后,我对课程的知识点不再那么模糊,让我学到了许多关于热电偶测温系统方面的知识。

首先,对于热电偶的工作原理及用途有了更进一步的认识。因为课程设计的任务,在我选定课题后,我必须熟悉这个课题有关的内容,才能完成我的课程设计。期间,我也遇到了一些困难,对影响热电偶测温的因素不太明白,因为教材上没有更多的说明。因为近期图书馆都没有开放,所以我只能请同学帮忙,还有上网查资料,在同学的帮助和自己的努力下,我很快就把这一知识点弄明白了。

只有通过自己的努力与实践,才能真正的掌握知识,通过这次课程设计,我才切身体会到“纸上得来终觉浅,绝知此事要躬行”的学习态度。

八、参考文献

1、王俊杰《检测技术与仪表》第二版,武汉理工大学出版社

2、施仁《自动化仪表与过程控制》,电子工业出版社,1990

3、童敏明,唐守峰《检测与转换技术》,中国矿业大学出版社,2008

4、王魁汉,温度测量技术,东北工学院出版社,1992

热电偶测温的使用原理

热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线

(完整word版)热电偶温度计的测温原理、选型及其应用

《自动检测技术及仪表》课程设计报告 热电偶温度计的测温原理、选型及其应用 学院: 班级: 姓名: 学号:

目录 一摘要 (3) 二热电偶温度计的测温原理 (3) 2.1 热电偶的测温原理 (3) 2.2 接触电势 (4) 2.3 温差电势 (4) 2.4 热电偶温度计闭合回路的总热电势 (4) 三热电偶温度计的组成结构及其作用和特 (5) 3.1 热电偶温度计的组成结构 (5) 3.2 热电偶温度计的作用及特点 (6) 四热电偶温度计测温技术中涉及到的定则 (7) 4.1 均质导体定则 (7) 4.2 中间导体定则 (7) 4.3 连接导体和中间温度定则 (8) 五热电偶温度计的误差分析及选型 (8) 5.1 影响测量误差的主要因素 (8) 5.1.1插入深度 (8) 5.1.2响应时间 (9) 5.1.3热辐射 (10) 5.1.4冷端温度 (11) 5.2 热电偶温度计的选型 (11) 六现场安装及其注意事项 (13) 七总结 (13) 八参考文献 (15)

一、摘要 热电偶温度计是一种最简单﹑最普通,测温范围最广的温度传感器,是科研﹑生产最常用的温度传感器。在使用时不注意,也会引起较大测量误差。针对当前存在的问题,详细探讨影响测量误差的主要因素:热电偶插入深度﹑响应时间﹑热辐射及冷端温度等因素对测量的影响;在使用时应该怎样选择热电偶温度计,以及使用时的一些安装注意事项,这对提高测量精度,延长热电偶寿命,都有一定的意义。 二、热电偶温度计的测温原理 热电偶温度计是一种感温元件 , 把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端温度不同时 , 回路中就会产生电势,这种现象称为热电效应(或者塞贝克效应)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表;分度表是自由端温度在 0°C 时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。 热电偶温度计测温原理图如图所示: 其中,T是热端、工作端或者测量端, T

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

热电阻的单片机测温系统

摘要 电子温度计是日常生活中最普遍的电子产品之一,常用的转换元件有热电阻、热敏电阻、热电偶等,通常我们将这些转换元件通过非电量转化电量的检测方法,结合电量和温度之间的关系,我们可以计算出其温度值。在本课题中将介绍一种利用电阻电桥失衡输出的电压转换温度的设计。在设计中,利用AT89S系列单片机作为控制器,计算铂电阻(PT100)电量与温度的转换,并在LED显示温度。 关键词:AT89S52 ADC0832 Abstract Electronic thermometer isin daily lifethe mostcommon oneof electronicproducts, and thecommoninterface element havehe at resistance,thermal resistance, thermocouple,etc., usually we will these interface element through the non-electricity into electricity d etection methods, combined with power and the relationshipbetween the temperature, we can calculate the temperature value. In this topicwill introducea kind of makeuse of the resistance br idgeunbalanced output voltage transition temperature design. In the design,the use of AT89S seriesmicrocontrolleras the controller, calculationof platinum resistance(PT100) powe rand temperatureconversion, and intheLEDdisplay temperature. ?Keyword:AT89S52 ADC0832

实验二十一__热电偶的原理及现象实验

热电偶的原理及现象 一、实验目的:了解热电偶测温原理。 二、基本原理:1821年德国物理学家赛贝克(T?J?Seebeck)发现和证明了两种不同材料的导体A和B组成的闭合回路,当两个结点温度不相同时,回路中将产生电动势。这种物理现象称为热电效应(塞贝克效应)。 热电偶测温原理是利用热电效应。如图21—1所示,热电偶就是将A和B二种不同金属材料的一端焊接而成。A和B称为热电极,焊接 的一端是接触热场的T端称为工作端或测量端, 也称热端;未焊接的一端处在温度T0称为自由端 或参考端,也称冷端(接引线用来连接测量仪表的图21—1热电偶 两根导线C是同样的材料,可以与A和B不同种材料)。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。热电偶一般用来测量较高的温度,应用在冶金、化工和炼油行业,用于测量、控制较高的温度。 本实验只是定性了解热电偶的热电势现象,实验仪所配的热电偶是由铜—康铜组成的简易热电偶,分度号为T。实验仪有二个热电偶,它们封装在悬臂双平行梁上、下梁的上、下表面中,二个热电偶串联在一起,产生热电势为二者之和。 三、需用器件与单元:机头平行梁中的热电偶、加热器;显示面板中的F/V表(或电压表)、-15V电源;调理电路面板中传感器输出单元中的热电偶、加热器;调理电路单元中的差动放大器;室温温度计(自备)。 四、实验步骤: 1、热电偶无温差时差动放大器调零:将电压表量程切换到2V档,按图21—2示意接线,检查接线无误后合上主、副电源开关。将差动放大器的增益电位器顺时针方向缓慢转到底(增益为101倍),再逆时针回转一点点(防电位器的可调触点在极限端点位置接触不良);再调节差动放大器的调零旋钮,使电压表显示0V左右,再将电压表量程切换到200mV档继续调零,使电压表显示0V。并记录下自备温度计所测的室温tn。

基于单片机的热电偶测温系统的设计

技术创新 《微计算机信息》 (嵌入式与SOC )2009年第25卷8-2期360元/年邮局订阅号:82-946 《现场总线技术应用200例》 单片机开发与应用 基于单片机的热电偶测温系统的设计 The Design of Thermocouple Temperature Measurement System Based on SCM (西安外事学院) 荆海霞周琳勃王仁道廖娜 JING Hai-xia ZHOU Lin-bo WANG Ren-dao LIAO Na 摘要:在现代化的工业现场,常用热电偶测试高温,测试结果送至主控机。由于热电偶的热电势与温度呈非线性关系,所以必 须对热电偶进行线性化处理以保持测试精度。该系统通过高精度模/数转换器AD7705对热电偶电动势进行采样、放大,并在单片机内采用一定算法实现对热电偶的线性化处理,再通过数/模转换器AD421进行数/模转换产生4mA~20mA 电流,送主控中心。 关键词:热电偶;线性化;AD 转换;DA 转换;单片机中图分类号:TP273文献标识码:A Abstract:Thermocouple is used frequently in high-temperature test in the modernized industry scene,then the test results are deliv -ered to master control machine.As the non -linear relationship between thermoelectric potential and temperature,it must be carried out on the thermocouple linear processing in order to maintain accuracy of test.This article is for the linearization of thermocouple.The general idea is to study high-precision A/D converter AD7705,which samples and enlarges the thermoelectric potential from the thermocouple,to use a certain algorithm for the linearization processing in the microcontroller,and to convert the data to produce the 4mA-20mA current through high precision A/D converter AD421. Key words:Thermocouple;Linearization;AD conversion;DA conversion;Single-chip-micro-computer 文章编号:1008-0570(2009)08-2-0088-02 1引言 热电偶是工程上应用最广泛的温度传感器之一,它具有构造简单、使用方便、准确度、热惯性小、稳定性及复现性好、温度 测量范围宽等优点,适用于信号的远传、 自动纪录和集中控制,在温度测量中占有重要地位。但由于热电偶的热电势与温度呈 非线性关系,增加了显示与处理的复杂性;且随着工业发展、 自动化的不断加强,对温度精度要求越来越高。为了提高热电偶测量温度的精度,必须从硬件和软件两方面同时入手:硬件设计必须使用高精度A/D 和D/A 器件,软件设计必须设计出合理的满足工业要求的线性化算法,从这两方面解决热电偶测试高温的精度问题。 本文提出的系统以单片机为核心,硬件设计使用高精度模/数转换器AD7705和高精度数/模转换器AD421,分别实现对热电偶电动势的采样、放大、AD 转换和对线性化处理的数据转换,软件设计提出一种“最佳非等距离分段算法”,并在程序中 采用修正后的数据,实现热电偶的线性化处理。 试验结果表明,该系统能很好的解决热电偶测试高温的精度问题,使仪器仪表精度达到1/1000,满足工业设计要求。 2硬件电路设计 本设计是基于STC89C52单片机的硬件设计。系统总原理 框图如图1所示。 控制电路以单片机为中心,控制其他部分完成各自的功能。其中模/数转换部分采用16位高精度AD 转化器AD7705,采用自校准,提高其抗干扰能力和精度;数/模转换部分采用高 精度DA 转换器AD421,在电路设计上,采用光隔离,控制 AD421完成其功能,AD421为16位高精度数/模转换器,它将来自单片机线性化处理后的数据进行DA 转化,产生4mA-20mA 电流,送控制中心。 图1系统框图 2.1模/数转换电路 图2AD 转化电路 模/数转换电路部分,采用16位、双通道、低成本、高精度模/数转换功能的AD7705。AD7705是AD 公司推出的16位∑-Δ(电荷平衡式)A/D 转换器,包括由缓冲器和增益可编程放大器(PGA )组成的前端模拟调节电路、∑-Δ调制器及可编程数字滤波器等,能直接对来自传感器的微弱信号进行A/D 转换。此外他还具有高分辨率、宽动态范围、自校准,低功耗及优良的抗噪声性能,因此非常适用于仪表测量和工业控制等领域。使用时通过单片机控制其单双极性、增益倍数、选择通道的输入和 荆海霞:教师讲师硕士 88--

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定 律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统

毕业论文 基于单片机的热电偶测温系统 摘要 热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。本文设计了基于单片机的热电偶测温系统,该测温系统由温度测量电路、运算放大电路、A/D转换电路及显示电路组成,以AT89C51单片机为主控单元。文中首先介绍了热电偶的测温原理,热电偶冷端补偿方法,结构形式,及其特点等,另外简答介绍了硬件平台中相关模块的功能及用法。另外对硬件电路包括温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件及温度采集电路、温度转换电路、数码管显示电路做了详细的介绍及说明。 关键词温度传感器热电偶热时间常数冷端补偿

The thermocouple temperature measurement system based on single chip microcomputer ABSTRACT Thermocouple sensor is currently the most widely used in non-contact temperature measurement of thermoelectric sensors, in the industry with a temperature sensor and its important status. This paper designed the thermocouple temperature measurement system based on single chip microcomputer, the temperature measurement system composed of temperature measuring circuit, operational amplifier circuit, A/D conversion circuit and display circuit, AT89C51 single chip processor as the main control unit. This paper first introduces the principle of thermocouple temperature measurement, the thermocouple cold junction compensation method, structure form, and its characteristics, etc., in the hardware platform are introduced another short answer function and usage of related modules. In addition to hardware circuit including temperature conversion chip MAX6675, K type thermocouple, 89 c51, digital tube and other components and temperature acquisition circuit, temperature conversion circuit, digital tube display circuit made detailed introduction and description. KEY WORDS Temperature sensor Thermocouple Thermal time constant Cold junction compensation

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电偶测量原理

热电偶测量原理 摘要:温度,无论是在工业还是农业生产过程中都属于很普遍又很重要的指标。测量温度信号使用各种类型的温度传感器实现,如热电偶(TC)、热电阻(RTD)、热敏电阻(NTC)等。本文主要介绍热电偶测量原理及其类型,以及对热电偶选取的简单介绍。 一、何为热电偶 两种不同材料的导体或半导体(通常称为热点极)两端接合(接合点A与B)形成回路时候,当两端的接合点T A≠T B时,在回路中就会产生电动势,通过温度差变化引起电动势的变化称为热电效应,该电动势又被称为热电势,如图 1所示。由于该热电势是由两种不同的导体材料产生的,又称之为热电偶。由热电偶的定义可以发现,热电偶可将温度直接转化电信号,使得测量可以很容易简单的进行。 图 1 热电效应原理 二、热电偶类型 对于热电偶热电势的产生需要达到如下条件: 1.两种不同材料的导体或半导体; 2.温度差的产生,即TA≠TB; 改变T A(称之为测量端,也叫热端)结点温度时,保持T B(称之为参考端,也叫冷端)处于一恒温状态,就能通过热电势与温度关系得出该两种材料所形成的热电偶分度表,由于热电势指的是E AB(T A,T B),两端接合点温度差所对应的电势差有关,而温度差相同但温度段不同时对应的信号大小也是不一致的,例如0~50℃和50~100℃的温度差相同,但信号大小却是不相同,为了准确测量温度信号就必须把其中一头的温度固定下来,通常分度表的T B一般为0℃。所以从理论上讲,任何两种导体都可以配制为热电偶,但得到的并不全是满足测量需求的,如测温精度、测温范围、测温瞬变程度等。在多年的时间测试了许多种热电材料组合的热电特性,经过百多年的发展已经对产品的规格及性能都已标准化。目前常用的热电偶类型有8种,S、R、B、E、T、J、K、N。其中S、R、B属于贵金属材料热电偶;E、T、J、K、N属于廉金属材料热电偶。对于热电偶类型所选用的材料均可在网上找到对应资料。 对于不同型号类型热电偶拥有自己所测量的最优温度区间,将在后续选取中进一步介绍。 三、热电偶测量原理 四个热电偶基本经验定律: 1.均质导体定律:由同一种均质材料两端焊接组成闭合回路时,无论导体两端及其截面温度如何分布,均不产生接触电势,而温差电势相互抵消,总电势为零; 2.中间导体定律:在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路的总电势没有影响;

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统 一设计简述 本文设计了基于单片机的热电偶测温系统,介绍了热电偶的测温原理,热电偶冷端补偿方法,简单设计了硬件电路,信号放大电路采用放大器LTC2053将热电偶的输出mv型号放大,再经过ICL7109转换器转换为12位的数字信号,输入给单片机,驱动数码管显示电路显示4位温度值。扩展部分有键盘电路和报警电路。软件部分设计了转换器和键盘及显示电路。 关键字:热电偶;LTC2053放大器;ICL7109转换器;数码管 二设计内容 随着人们生活水平的提高,人们对家用电子产品的智能化、多功能化提出了更高的要求,而电子技术的飞速发展使得单片机在各种家用电子产品领域中的应用越来越广泛。 把以单片机为核心,开发出来的各种测量及控制系统作为家用电子产品的一个组成部分嵌入其中,使其更具智能化、拥有更多功能、便于人们操作和使用,更具时代感,这是家用电子产品的发展方向和趋势所在。有的家用电器领域要求增加显示、报警和自动诊断等功能。这就要求我们的生产具有自动控制系统,自动控制主要是由计算机的离线控制和在线控制来实现的,离线应用包括利用计算机实现对控制系统总体的分析、设计、仿真及建模等工作;在线应用就是以计算机代替常规的模拟或数字控制电路使控制系统“软化”,使计算机位于其中,并成为控制系统、测试系统及信号处理系统的一个组成部分,这类控制由于计算机要身处其中,因此对计算机有体积小、功耗低、价格廉以及控制功能强有很高的要求,为满足这些要求,应当使用单片机。 2热电偶测温原理 1.1热电效应 将两种不同成分的导体组成一闭合回路,如图1所示。

图1 当闭合回路的两个接点分别置于不同的温度场中时,回路中将产生一个电势,该电势的方向和大小与导体的材料及两接点的温度有关,这种现象称为“热电效应”。 1.2接触电势 A和B两种不同材料的导体接触时,由于电子的扩散运动,A与B两导体的接触处产生了电位差,称为接触电势。接触电势的大小与导体材料、接点的温度有关,与导体的直径、长度及几何形状无关。 对于温度分别为t和t0的两接点,可得下列接触电势公式:(温度为t时的接触电势,温度为t0时的接触电势) e AB(T0)=U At0 - U Bt0 1.3温差电动势 将某一导体两端分别置于不同的温度场t、t0中,在导体内部,热端自由电子具有较大的动能,向冷端移动,这样,导体两端便产生了电势,这个电势称为温差电势。 导体A、B在两端温度分别为t和t0时形成的电势 e A(t,t0)=U At–U At0 e B(t,t0)=U Bt–U Bt0 1.4热电偶的电势 将由A和B组成的热电偶的两接点分别放在t和t0中,热电耦的电势为: E AB(t,t0)=e AB(t)-e AB(t0)-e A(t,t0)- e B(t,t0) 由于接触电势比温差电势大的多,可将温差电势忽略掉,则热电偶的电势为 E AB(t,t0)= e AB(T)- e AB(T0) (AB的顺序表示电势的方向;当改变脚注的顺序时,电势前面的符号(正、负号)也应随之改变) 综上所述,可以得出以下结论: 热电偶热电势的大小,只与组成热电偶的材料和两接点的温度有关,而与热电偶的形状尺寸无关,当热电偶两电极材料固定后,热电势便是两接点电势差。 1.5热电偶的基本定律

热电偶的测温原理

热电偶的测温原理 摘要:通过对金属的接触电动势和温差电动势来进行简化的数学推导,从根源来阐述热电偶的工作原理,并通过实验来简化。从而系统地解释了热电偶的输入量(温度)和输出量(电流,电压)的线性关系。以及热电偶的选型要求,和材料性能。 关键词:热电效应、电动势、选型、材料; 0 引言 温度测量是通过某些测温物质的各种物理性能变化,例如固体的尺寸,密度,硬度 粘度,电导率,热辐射等的变化来判断被测物体的温度。在许多测量方法中,热电偶测温的应用为最广泛之一。主要优点:①接触式测温,准确度较高;②结构简单,体积小,安装方便;③测量范围广:-150oC----1600oC,采用特殊材料时可达2800oC。④热容量小,响应速度快,热电极不受形状限制 1热电偶传感器的工作原理 1.1 热电效应 如图1所示,由两种导体A,B 构成一个闭合回路,使两端结点处于不同温度下。回路中便产生热电势和电流。这种物理现象称为热电效应。 图 1 定义:导体A,B为热电极;测温结点处在T温度场下为测量端,或工作端,热端。结点处在To温度场下为参考端,或自由端,冷端。 1.2 热电偶中的电势 1.2.1接触电势(伯尔帖电势) 互相接触的两种金属导体内部因自由电子密度不同,当接触时两种导体在接触界面上会发生电子扩散。电子扩散的速率与自由电子的密度及金属所

处的温度呈正比。假定,金属A 的自由电子的密度为NA,金属B 的自由电子的密度为NB. 自由电子的密度大的向自由电子的密度小的方向扩散。 失去电子一方带正电,得到电子一方带负电。 这种扩散运动逐渐在界面上建立电势,类似于势垒,它又阻碍自由电子进一步扩散,产生了一个动态平衡。 图 2 接触电势的关系式: 图 3 K:波尔兹曼常数 J/K T:接触界面处的温度 e:电子电荷量 C NA,NB 分别为金属A,B 的自由电子密度. 对于To 结点有: 回路总接触电势: B A AB N N e kT T e ln )( =

热电偶测温原理

热电偶测温原理 教育知识 热电偶测温原理与检定 前言 热电偶是热电效应理论的具体应用,它在温度测量中得到了广泛的应用。热电偶具有结构简单,容易制造,使用方便和测量精度高等优点。 本论文阐述了热电偶的测温原理、热电偶的安装使用方法以及热电偶检定等方面,特别重点讨论了热电偶的测温原理和检定方法,以便能重点突出本论文的写作目的及观点。通过撰写此论文,使自己能更进一步地掌握和熟悉这些关于热电偶的知识点,为以后在工作岗位上的实践和对热电偶进一步的讨论中打下坚实而有力的基础。 撰写人:王彭 2006年1月12日 摘要:热电偶的测温原理是将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 关键词:原理,使用,检定,实例 热电偶测温原理与检定 第一章热电偶测温原理及正确使用 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶

仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1—1)中,如果对接点a加热,那么,a,b两接点的温度就会不同,温度不同,就会有电流产生,使得接在电路中的电流表发生偏转。这一现象现今称为温差电效应或塞贝克效应,相应的电势称为温差热电势或塞贝克电势,它在热电偶回路中产生的电流称为热电流。A、B称为热电极,接点a是用焊接的方法连接一起的,测温时,将它置于被测温度场中,称为测量端或者工作端,接点b一般要求恒定在某一温度称为参考端或自由端。 A A T a b T0 图1—1塞贝克效应示意图 不同的导体材料的电子密度不同,即使相同的导体材料,温度不同,其电子密度也不相同,当异质金属A、B组成闭合回路,由于接点a、b的温度不同(设T>T0),则同一导体温度高的地方自由电子密度大,温度低的地方自由电子密度小,即NA,T>NA,T0;NB,T>NB,T0。由于两金属导体的自由电子密度不同(设NA,T>NB,T;NA,T0>NB,T0),所以在闭合回路中,自由电子密度大的要向自由电子密度小的区域扩散,这样在回路中就产生了“净”电荷流动,即回路中有电动势eAB,这就是产生塞贝克电动势原因。实验证明,当热电极材料一定后,则热电势仅与两接点的温度有关,即: dEAB(T,T0)=SABdT (1—1) 式中:SAB——热电势率或塞贝克系数,其随热电极材料和两接点温度而定。 当两接点的温度分别为T,T0时,回路的热电势为: EAB(T,T0)= SABdT=eAB (T)- eAB (T0) (1—2) 式中:eAB (T),eAB (T0)——接点a,b的分热电势或分塞贝克电势 式(1—2)中角标A、B表示不同的热电极材料,按正极写在前,负极写在后的顺序排列。当温度T>T0时,eAB(T)与总电动势的方向一致,eAB (T0)与总热电动势的方向相反。如果接点的分热电势角标颠倒,它不会改变分热电势的大小,而改变热电势的方向,即: eAB (T0)=- eBA(T0) (1—3) 代入式(1—2)得: EAB(T,T0)= eAB (T)+ eBA(T0) (1—4) 由此可知,热电偶回路的总热电动势的大小仅与热电极的材料和两接点的温度有关,与热电极中间温度分布无关。 对于已定的热电偶,当其参考端温度T0恒定时,eAB(T0)为一常数,则热电势EAB(T,T0)仅是测量端温度的函数,即:

智能热电偶测温系统设计

摘要 温度是表征物体冷热程度的物理量。在工农业生产和日常生活中,对温度的测量控制始终占据着重要地位。温度传感器应用范围之广、使用数量之大,也高居各类传感器之首。 本文使用温度传感器设计了一个完整的测温系统。该系统所采用的温度传感器为热电偶,A/D转换器件为ADC0809,微型计算机采用的是MCS-51单片机。系统将温度变换、显示和控制集成于一体,用软件实现系统升、降温的调节,控制采用了模糊控制原理对系统进行控制。 设计的系统所满足的技术指标:测温范围为500—800℃,响应时间为小于等于1s,误差范围为-5℃—+5℃。 关键词:热电偶A/D转换模糊控制 ABSTRACT Temperature is the physical quantity of symptom object cold hot level. In the daily life and production of industry and agriculture, occupy important position all along for the measure control of temperature. Temperature sensor application broad scope and use big quantity, also hold the head of each kind of sensor high. This paper uses temperature sensor and has designed , is a and complete to measure warm system. The temperature sensor adopted by this system is thermocouple, the converter of A/D is ADC0809, what personal computer adopt is that MCS-51 only flat machine. System alternates temperature , shows and controls to be more integrated than one body , realizes system with software to rise , cool down regulation, control has adopted vague control principle as system controls. The technical index of design satisfied by system: Measure warm scope is 500 —

相关文档
最新文档