矩阵理论与应用(张跃辉)(上海交大)第六章参考答案

矩阵理论与应用(张跃辉)(上海交大)第六章参考答案
矩阵理论与应用(张跃辉)(上海交大)第六章参考答案

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

第一学期西南交大理论力学C第3次作业答案

本次作业是本门课程本学期的第3次作业,注释如下: 一、单项选择题(只有一个选项正确,共11道小题) 1. 一点作曲线运动,开始时速度 v0=10m/s , 某瞬时切向加速度a t=4m/s2,则2s末该点的速度的大小为。 (A) 2 m/s (B) 18 m/s (C) 12 m/s (D) 无法确定 你选择的答案:[前面作业中已经做正确] [正确] 正确答案:B 解答参考: 2. 点作曲线运动,若其法向加速度越来越大,则该点的速度。 (A) 越来越大 (B) 越来越小 (C) 大小变化不能确定 你选择的答案: C [正确] 正确答案:C 解答参考: 3. 若点的运动方程为,则它的运动轨迹是。 (A) 半圆弧 (B) 圆周 (C) 四分之一圆弧 (D) 椭圆 你选择的答案: B [正确] 正确答案:B 解答参考: 4. 图示均质杆的动量p= 。杆的质量为m,绕固定轴O转动,角速度均为 。

(A) mlω (B) mlω (C) mlω (D) 0 你选择的答案: A [正确] 正确答案:A 解答参考: 5. 图示均质圆盘质量为m,绕固定轴O转动,角速度均为ω。对转轴O的动量矩L O的大小和方向为。 (A) L O=mr2ω (顺时针方向) (B) L O=m r2ω (顺时针方向) (C) L O=m r2ω (顺时针方向)

你选择的答案:[前面作业中已经做正确] [正确] 正确答案:C 解答参考: 6. 已知P= kN,F1=,物体与地面间的静摩擦因数f s=,动摩擦因数f d=则 物体所受的摩擦力的大小为。 (A) kN (B) kN (C) kN (D) 0 你选择的答案:[前面作业中已经做正确] [正确] 正确答案:B 解答参考: 7. 已知物块与水平面间的摩擦角,今用力F1=推动物块,P=1kN。则物块将。 (A) 平衡 (B) 滑动 (C) 处于临界平衡状态 (D) 滑动与否不能确定 你选择的答案:[前面作业中已经做正确] [正确]

西安交大考试卷(理论力学英文)

课程名称 理论力学A1(英) 2003 —2004学年第 1 学期 学 号 开 课 系 工程力学系 年级 本科二年级 姓 名 任课老师 柳葆生 评分 规定:仅允许携带电子词典、计算器和教师提供的课程总结 1. Member BD exerts on member ABC a force P directed along line BD. Knowing that P must have a 360-N vertical component, determine (a) the magnitude of the force P, (b) its horizontal component. (零件BD 对零件 ABC 沿BD 线施加一个力P ,已知P 的垂直分量为360-N ,计算(a ) 力P 的大小,(b )力P 的水平分量 ) 2. Two forces P and Q are applied as shown to an aircraft connection. Knowing that the connection is in equilibrium and that P = 250 N and Q = 325 N, determined the magnitude of the forces exerted on the rods A and B. (如图所示,两个力P 和Q 施加于一个飞机连接器。已知连接器处于平衡状态,并且P = 250 N 和Q = 325 N ,确定施加于连杆A 和B 上力的大小) 3. A 150 N force, acting in a vertical plane parallel to the yz plane, is applied to the 200 mm long horizontal handle AB of a socket wrench. Replace the force with a equivalent force-couple system at the origin O of the coordinate system. (一个150 N 的力,作用在平行于yz 平面的 垂直平面内,施加于一个套筒扳手200 mm 长的水平手柄上。用一个 在坐标原点O 的等效力-力偶系统代替这一力 ) 4. Knowing that the tension in wire BD is 1500 N, determine the reaction at the fixed support C of the frame shown. (已知拉索BD 中 的张力为1500 N ,确定如图示在框架固定支撑端C 的约束反力)

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

矩阵分析试题中北大学33

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112 1222000?? ? ? = ? ? ?? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。

定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 11212212000?? ? ? = ? ? ?? n n nn a a a L a a a 称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三角复(实)矩阵。 定理1设,?∈n n n A C (下标表示秩)则A 可唯一地分解为 1=A U R 其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为 2=A LU 其中2U 是酉矩阵,L 是正线下三角复矩阵。 推论1设,?∈n n n A R 则A 可唯一地分解为 1=A Q R 其中1Q 是正交矩阵,R 是正线上三角实矩阵;或者A 可唯一地分解为 2=A LQ 其中2Q 是正交矩阵,L 是正线下三角实矩阵。 推论2 设A 是实对称正交矩阵,则存在唯一的正线上三角实矩阵R ,使得 =T A R R 推论3设A 是正定Hermite 矩阵,则存在唯一的正线上三角复矩阵R ,使得 =T A R R

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

第二章习题及参考解答 注:第27题(2)(3)错(可将“证明”改为证明或否定),第28题可不布置。第50题(含)以后属于附加内容,没有参考解答。 1.证明子空间判别法:设U是线性空间V的一个非空子集.则U是子空间??对任 意λ∈F,α,β∈U,有α+β∈U与λα∈U. 证明:必要性是显然的,下证充分性。设U关于加法“+”与数乘均封闭。则U中加法“+”的结合律与交换律以及数乘与“+”的分配律、1α=α均自动成立,因为U?V.由 于U关于数乘封闭,而0=0α∈U,?α=?1α∈U,因此U是子空间。 2.证明子空间的下述性质。(1)传递性:即若U是V的子空间,W是U的子空间,则W 也是V的子空间; (2)任意多个(可以无限)子空间的交集仍是子空间,且是含于这些子空间的最大子空间; 特别,两个子空间U与W的交U∩W仍是子空间. 证明:(1)由子空间判别法立即可得。 (2)由子空间判别法可知任意多个(可以无限)子空间的交集仍是子空间,且若某个子空 间含于所有这些子空间,则该子空间必然含于这些子空间的交。 3.(1)设V是线性空间,U与W是V的两个子空间.证明: dim(U+W)=(dim U+dim W)?dim(U∩W). (2)设V是有限维线性空间.证明并解释下面的维数公式: dim V=max{m|0=V0?V1?···?V m?1?V m=V,V i是V i+1的真子空间} 证明:(1)设dim U=s,dim W=t,dim(U∩W)=r.任取U∩W的一组基α1,α2,···,αr.由于U∩W是U与W的公共子空间,故U∩W的基是U与W的线性无关的向量组,因此 可以扩充成U或W的基.设 α1,α2,···,αr,βr+1,βr+2,···,βs(0.0.1) 与 α1,α2,···,αr,γr+1,γr+2,···,γt(0.0.2) 分别是U与W的基.我们证明 α1,α2,···,αr,βr+1,βr+2,···,βs,γr+1,γr+2,···,γt(0.0.3) 是U+W的一组基.为此需要证明该向量组线性无关,且U+W的任何向量均可由这些向量 线性表示. 设 k1α1+k2α2+···+k rαr+b r+1βr+1+···+b sβs+c r+1γr+1+···+c tγt=0.(0.0.4) 12

西交大《理论力学》在线作业.

西交《理论力学》在线作业一,单选题 1. 一重量P=500 N的物体,放在倾角为20°的斜面上。现有一力F=1000 N,当它从与斜面垂直的方向逆时针转到与斜面夹角为60°时,物体才开始下滑。则摩擦角为()。 A. 26.67 B. 30 C. 12 D. 40 正确答案:A 2. 在任一瞬时定轴转动刚体上任一点的全加速度大小都与该点的转动半径成正比,其方向与各点所在转动半径夹角()。 A. 都相同且小于90° B. 都不相同 C. 为任意角 D. 不知道正确答案:A 3. A物体放在在B平面,A重力为60kN,拉力大小为20kN,方向斜向上与水平线夹角30°,两物体间的静摩擦因数为0.5,动摩擦因数为0.4,则物块A所受的摩擦力的大小为()。 A. 25kN B. 20kN C. 17.32051kN D. 0 正确答案:C 4. 对任何一个平面力系()。 A. 总可以用一个力来与之平衡 B. 总可以用一个力偶来与之平衡 C. 总可以用合适的两个力来与之平衡 D. 总可以用一个力和一个力偶来与之平衡正确答案:C 5. 二力平衡条件的适用范围 是()。 A. 刚体 B. 刚体系统 C. 变形系统 D. 任何物体或物体系统正确答案:A 6. 三力平衡定理是()。 A. 共面不平行的三个力互相平衡必汇交于一点 B. 共面三力若平衡,必汇交于一点 C. 三力汇交于一点,则这三个力必互相平衡 D. 三力若平衡必汇交一点正确答案:A 7. 在拉车时,根据轮子的滚动条件分析可知,如果道路硬,轮胎变形小且()那么拉车就省力。 A. 轮胎变形大 B. 不知道 C. 车轮直径大D. 车轮直径小正确答案:C 8. 质点系动能对时间的()导数,等于作用于质点系的所有力的功率的代数和。 A. 一阶 B. 二阶 C. 三阶 D. 四阶正确答案:A 9. 当物 体处于临界平衡状态时,静摩擦力Fs的大小()。 A. 与物体的质量成正比 B. 与 物体的重力在支承面的法线方向的大小成正比 C. 与相互接触物体之间的正压力大小成正比 D. 由力系的平衡方程来确定正确答案:C 10. 以下运动着的物体不为自 由体的是()。 A. 飞行的飞机 B. 飞行的导弹 C. 出枪膛后做抛物线运动的子弹 D. 在轨道上高速奔驰的列车正确答案:D 11. 一力与x轴正向之间的夹角θ为钝角,则该力在x轴上的投影为()。 A. Fx=-Fsinθ B. Fx=Fsinθ C. Fx=-Fcosθ D. Fx=Fcosθ 正确答案:C 12. 在直角坐标系的点(2,2)作用一力,力的方向沿y轴正向,大小为10N,则该力对原点的力矩为()。 A. 20N.m B. 10N.m C. 40N.m D. 28.28N.m 正确答案:A 13. 当牵连运动为平移时,则牵连加速度等于牵连速度对时

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

矩阵论的实际应用(朱月)

“矩阵论”课程研究报告科目:矩阵理论及其应用教师:舒永录 姓名:朱月学号:20140702057t 专业:机械工程类别:学术 上课时间:2014 年9月至2014年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

相关变量的独立变换 摘要:用矩阵的理论及方法来处理实际生活中或现代工程中的各种问题已 越来越普遍。在工程中引进矩阵理论不仅是理论的表达极为简洁,而且对理论的实质刻画也更为深刻,这一点是毋庸置疑的。本文将矩阵论的知识用于解决实用机械可靠性设计问题。 正文 一、问题描述 在建立机械系统可靠性模型时,一般总假设个元素间关于强度相互独立。但是实际中,各元素间关于应力和强度又往往是相关的,并且这种相关性有时会对系统的可靠度产生显著影响。对于一些随机变量之间不是完全相关,但也不是完全独立的情况,就要进行相关变量的独立变换。 二、方法简述 设系统的基本变量为),,(21n x x x X ,??,各变量之间相关,则随机变量x 的 n 维正态概率密度函数为[1] )1()()(21exp ||2()(1 2 12 ? ??--???-=---X X T X X n X C X C X f μμπ) 式中 ?? ? ???????????=2321232212131212 ),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(21n X n n n n X n X X x x x x x x x x x x x x x x x x x x C σσσ 称为随机变量X 的协方差矩阵。矩阵中的任意元素),cov(j i x x 是变量i x 与变 量j x 的协方差,|C X |是协方差矩阵的行列式,1 -X C 是协方差矩阵的逆矩阵,X ,X μ及 )X X μ-(是n 维列向量 ?? ? ?? ?????--=-????? ?????=?? ??? ?????=n n X n X n x x X x x μμμμμμ 1111, , X

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

上海交通大学理论力学2012-2013学年期中试卷(含答案)81学时

1. 如图所示,平衡系统由杆OA ﹑杆AB ﹑杆BD ﹑杆BC 和杆CD 组成。铰O 为固定端支座,铰D 为固定铰支座,铰A ﹑B ﹑C 为圆柱铰。图示位置AB 和CD 水平,OA 和BC 铅垂。 已知:a CD BC AB OA ====。杆CD 的中点E 作用铅垂力F v ,大小为F 。杆OA 上作用一力偶1M ,力偶矩的大小为Fa M 21=,杆BC 上作用一力偶2M ,力偶矩的大小为Fa M =2,不计各物体的重量。 求:(1) 杆BD 的内力(注明拉压力); (2) 固定端O 作用于杆OA 的约束力和约束力偶。(20分) 解: 由于不计各物体的重量,杆AB 和杆BD 均为两力杆。 如图建立参考基[]T y x v v r =e , 以杆BD ﹑杆CD 和杆BD 组成的系统为研究对象:

0)(1 =∑=i n i z D F M v 02 1 2=+?a S M aF AB (3分) 解得:2 F S AB =(拉力)(1分) 以杆BD 为研究对象: 0)(1 =∑=i n i z C F M v 02 12=?? M a S a S BD AB (3分) 解得:F S BD 2 2 ? =(压力)(1分) AB S r BD S r D AB S r

以杆OA 为研究对象: 01=∑=n i ix F ,0=+AB x O S F (2分) 01=∑=n i iy F ,0=y O F (2分) 0)(1 =∑=i n i z O F M v 01=++?O AB M M a S (3分) 解得:F F x O 21?=,0=y O F ,Fa M O 2 3 ?=(2分) 2. 如图所示,梯子由杆OA 和杆AB 组成, 铰O 为固定铰支座,铰A 为圆柱铰,杆AB 搁置在地面上,接触点为端点B 。杆OA 和杆AB 的长度均为l ,图示位置杆OA 和杆AB 的倾角均为60o 。杆AB 与地面接触点B 的静摩擦因数为3 21= s f 。人的重量为W , 不计杆OA 和杆AB 的重量。设梯子始终保持平衡,计算 (1) 人到达的最高点P 与点B 的距离x 。 (2) 如果人能够到达的最高点A ,接触点B 的摩擦角至少应该多大? (15分) M

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

2014矩阵分析试卷

2014矩阵分析试卷 一、判断题(不要求证明)(20分) 1.设n 是大于1的整数,{()|()}V f x f x n F =是次数小于的域上的多项式,V 关于多项式的加法与数乘是一个域F 上的线性空间。 ( √ ) 2.设a r 为XOY 面上的非零向量,V 为XOY 面内所有不平行于a r 的向量构成的集合,V 关于向量的加法与数乘是一个域R 上的线性空间。 ( × ) 3.设V 是域F 上的线性空间, V α∈不是零向量,映射:,()V V ξξα→=+A A 是V 上的线性变 换。 ( × ) 4. 设A 是数域R 上的对称阵,映射:,()n n R R A αα→=A A 是n R 上的对称变换。 ( √ ) 二、计算题 1. (1,1,1,1)T 2. 已知1 12212W ={,},W ={,}Span a a Span b b ,而 1212(0,1,1,1),(1,0,2,0);(0,3,3,1),(1,2,0,0)a a b b =-==-=。 12W W ?的基为(1,1,3,1)T --与维数1; 12122212W +W ={,,}={,,}span span ααβαββ的基122,,ααβ或212,,αββ与维数3 3. 23:,()R R A ββ→=A A ,基 123(1,0,0),(0,1,0);(0,0,1) ααα===及基 12(1,0),(0,1)ββ==下的矩阵为110=211T B ?? ? ?? 。 4. (10分)设线性变换22:R R →A ,在基12(1,0),(0,1)ββ==的矩阵为12=24A ?? ??? ,求A 的核为{k(-2,1)| k}T ?、值域的基1 2+2β β,维数1。 6.(8分)求矩阵11010=0111123131A ?? ? ? ??? 的满秩分解 7.(24分)设矩阵308=3-16-20-5A ?? ? ? ??? ,求可逆矩阵P ,使得1 P AP -为约当阵。 A E -λ = ??? ? ? ??+-+---502613803 λλλ→ ????? ??++2)1(0001 0001λλ,

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 __________, __________, ________________。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (), 12 3设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差1 11 X σ=的方差 21X g = 1公因子f 对的贡献121330.93400.1280.9340.4170.83511 00.4170.8940.02700.8940.44730.8350.4470.1032013R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ?? ?

矩阵的特征值与特征向量的理论与应用开题报告

毕业设计(论文)材料之二(2) 本科毕业设计(论文)开题报告 题目:矩阵的特征值与特征向量 的理论与应用 课题类型:科研□ 论文√ 模拟□ 实践□ 学生姓名:王家琪 学号:3090801105 专业班级:数学091 学院:数理学院 指导教师:万上海 开题时间:2013年3月16日 2013 年3月15日

开题报告内容与要求 一、毕业设计(论文)内容及研究意义(价值) 矩阵的特征值与特征向量是高等代数的重要组成部分,通过对矩阵特征值与特征向量的性质介绍,以及对矩阵特征值与特征向量理论的分析,将特征值与特征向量应用于方程组的求解问题是高等代数中的重要内容。 随着计算机的迅速发展 , 现代社会的进步和科技的突飞猛进 , 高等代数作为一门基础的工具学科已经向一切领域渗透 , 它的作用越来越为世人所重视。在多数高等代数教材中,特征值与特征向量描述为线性空间中线性变换A的特征值与特征向量;而在大部分线性代数教材中,特征值与特征向量的讨论被作为矩阵理论研究的一个重要组成,定义为n阶矩阵A的特征值与特征向量.从理 论上来讲,只要求出线性变换A的特征值与特征向量,就可知矩阵A的特征值与特征向量,反之亦然。因此求矩阵的特征值与特征向量就变得尤为重要的引入是为了研究线性空间中线性变换A的属性。 物理、力学、工程技术中的许多问题在数学上都归结为求矩阵的特征值与特征向量问题。又特征方程求特征值是比较困难的,而在现有的教材和参考资料由特征方程求特征值总要解带参数的行列式,且只有先求出特征值方可由方程组求特征向量。一些文章给出了只需通过行变换即可同步求出特征值及特征向量的新方法,但仍未摆脱带参数行列式的计算问题。本文对矩阵特征值与特征向量相关问题进行系统的归纳,给出一种能够迅速找出特征值和特征向量以及它们在解题解决一些复杂问题方面有较其他方法更为方便实用的地方。 二、毕业设计(论文)研究现状和发展趋势(文献综述) 汤正华[1]在2008年讨论了矩阵的特征值与特征向量的定义、性质;特征值与特征向量的求法等问题。 李延敏[2]在2004年通过对矩阵进行行列互换,同步求出矩阵特征值与特征向量,解决了不少带参数求特征值问题,并给出一些新定理。 赵院娥、李顺琴[3]在2009年进一步研究几种矩阵的特征值问题。邵丽丽[4]在2006年通过对n阶矩阵的特征值与特征向量的研究,针对n阶矩阵的特征值与特征向量的应用进行了3方面的探讨,并给出了相关命题的证明及相应的例题。 黄金伟[5]在2007年给出求解矩阵的特征值与特征向量的两种简易方法:列行互逆变换方法与列初等变换方法。向以华[6]在对矩阵特征值与特征向量相关问题进行系统的归纳,得出了通过对矩阵进行行列互逆变换就可同时求出特征值与特征向量的结论,同时讨论了反问题。 张红玉[7]在2009年通过n阶方阵A的特征值得出一系列相关矩阵的特征值,再由特征值与正定矩阵关系得出正定矩阵的结论。王英瑛[8]在2008年利用矩阵的初等变换理论,详细讨论了矩阵特征值和特征向量的求法。 夏慧明、周永权[9]在2008年提出一种基于进化策略求解矩阵特征值及特征向量的新方法。郭华、刘小明[10]在2004年从方阵的特征值与特征向量的性质出发,结合具体例子阐述了特征值与特征向量在简化矩阵运算中所起的作用。 岳嵘[11]在2007年通过对已知n阶对称矩阵A的k个互不相等的特征值及 k 个特征向量,给出矩阵A的计算公式,并给出证明及应用举例。 1 贤锋[12]在2006年通过建模实例介绍了最大特征值及特征向量的应用。 王秀芬[13]在2004年推导出一种方法,通过此方法可以利用特征值与特征向量

相关文档
最新文档