DTA动态交通分配

DTA动态交通分配
DTA动态交通分配

(2005) 西安交通大学对具有排队的多模式动态交通分配问题及其相关应用进行研究。本文对动态交通分配模型发展进行了介绍和总结,并详细讨论了模型中的路段动态函数、流量传播约束、FIFO等相关特性。

将单一交通模式的点排队路段动态模型扩展到多模式动态路段模型,并且证明了各种模式的路段行程时间函数合乎模式内的FIFO特性,以及在拥挤情况下各模式车辆的速度收敛特性。

将多模式随机动态同时的路径与出发时间选择平衡条件描述为变分不等式问题,提出了两个不同的算法用于求解变分不等式问题:

算法一是基于路段的算法,这个算法给出了基于logit的同时的路径与出发时间选择的随机动态网络配载方法,并证明了这个方法的正确性;

算法二是基于路径的启发式算法。仿真试验验证了模型以及两个算法的有效性。提出了多模式多用户动态交通分配模型,用于评估ATIS对不同模式出行者和交通系统的影响。将每一模式的出行者分为两类:一类是装配ATIS的出行者,另一类是未装配ATIS的出行者。由于所能获得的交通信息质量的差异,他们将遵循不同的动态用户平衡条件。同时,每一种模式出行者在选择路径和出发时间时,不但考虑出行费用和进度延误费用的影响,而且还考虑油耗费用的影响。将多模式多用户动态用户平衡条件描述为统一的变分不等式问题,利用对角化算法计算相应的平衡流量状态,并通过仿真试验验证了模型与算法的有效性。使用nested-logit模型模拟ATIS的市场渗透率与服从率,模型的上层模拟了驾驶小汽车出行者的购买行为(市场渗透率),底层主要描述了装配ATIS设备的小汽车出行者的服从行为(服从率)。设计了固定点算法计算ATIS的平衡市场渗透率与服从率。并在简单的路网上进行了仿真研究,结果证明算法与模型是正确和有效的。提出了组合模式动态交通分配模型,模型中假设有两类出行者:一类是纯模式出行者,他们自己驾驶小汽车完成一次出行。另一类是组合模式出行者,在其一次出行的第一部分是自己驾驶小汽车完成的,剩余部分是乘公交车完成的。使用nested-logit模型模拟出行者的复杂出行选择行为。将各种不同的选择行为描述为一个变分不等式问题。并给出了启发式算法求解相应的变分不等式问题。最后,利用仿真研究验证了模型与算法的有效性。

交通分配:

(2005)所谓交通分配是指按照一定的原则,将各OD (Origin-Destination)对间的出行量分配到具体的交通网络上去,从而得到各路段的交通量,以判断各路段的负荷水平。近半个世纪以来,国内外学者对交通分配问题进行了大量的研究,提出了不少交通流分配模型与软件。总体来看,这些模型可以分为两大类:

平衡分配模型:遵循War drop用户最优(UO, User Optimum)准则或系统最优(SO, System Optimum)准则。它们或者使得个别交通参与者的出行费用最低,或者使得交通网络上所有出行者的总出行费用最低。

非平衡分配模型:运用启发式解法或其他近似解法的分配模型则统称为非平衡分配模型,如全有全无分配模型、容量受限分配模型、多路径概率分配模型、随机分配模型和嫡分配模型等。

静态模型不能反映交通流的时变特性,相反,动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。

DTA(Dynamic Traffic Assignment)

所谓动态交通分配, 就是将时变的交通出行合理分配到不同的路径上, 以降低个人的出行费用或系统总费用。动态交通分配是在交通供给状况以及交通需求状况均为已知的条件下, 分析其最优的交通流量分布模式, 从而为交通流管理、动态路径诱导等提供依据。

交通供给状况:网络拓扑结构、网段特性、既定控制策略等。

交通需求状况:在每时刻产生的出行需求及其分布。

动态交通分配的意义

建立在动态的交通流模型基础上的动态交通分配模型为解决交通控制与诱导问题提供了思路。

1、动态交通分配模型考虑了交通需求随时间变化的特性,以及路段特性(旅行时间)随时间

变化的特性,动态交通分配能够给出瞬时的交通流分布状态,从而可以分析预测交通阻塞何时何地发生,并采取相应的对策。

2、动态交通分配模型可用于评价缓解交通拥挤的各种对策的有效性,如错时上下班,弹性

工作制,以及对交通事故等紧急情况发生后交通流状态的预测。

3、动态交通分配模型是智能运输系统(ITS)的技术基础之一。先进的旅行者信息系统

(Advanced Traveler Information System, ATIS )的交通信息的提供以及路径诱导等,都基于该模型以正确地描述、预测交通流分布形态。

动态交通分配的目标:

以均衡分配为依据,从而得以及时地采取适当的控制或诱导策略,改善交通流的时空分布,提高路网使用效率,使网络高效流畅地运行。

动态交通分配理论研究:

2005年华中科技大学研究出了《基于计算机模拟的动态交通分配方法》。

它使用模拟技术进行动态交通分配的研究,该模拟模型按照Wardrop 用户平衡原理进行交通流分配,同时考虑了时变需求和车辆排队过程,并且在这几个方面都做了改进。在交通需求部分,把OD 对之间的交通需求视为时间分段常数,反映了高峰和平峰不同时段的交通拥挤程度;在车辆排队过程方面,放弃了传统的把车辆看作是无体积的质点的排队论,提出了基于车流集散波理论和方法确定交叉口前车辆长度的理论,提高了路段阻抗函数的计算精度;在交通流分配部分,采用了改进的多路径交通分配方法,克服了原来算法速度慢、容量小、难以应用于超大网络的弱点。新算法的快速和大容量,对于特大城市或大区域的交通规划、交通控制及交通诱导系统建设有很好的应用性。

动态交通分配分类:

数学模型

仿真模型:数学规划、最优控制、变分不等式

一、数学规划方法

Merchant 和Nemhauser(1978、1978)提出来离散的、非凸的非线性规划模型。Kuhn-Tucker 条件表明该模型符合动态的War drop 系统最优原则。在静态假定下,模型可以转换为静态的系统最优分配模型。

Ho(1980)提出了模型的分段线性化算法。

Carey(1986)解决了证明了在Merchant 和Nemhauser(1978)的文章中,M-N 模型的分析是基于模型满足正则条件的假设上的,并在1987 年将M-N 模型改进成为非线性的凸规划模型, 但模型的最大缺点是局限于多个起点、一个终点的简单网络。

Papageogious(1990)论述了动态交通分配的一些框架性问题,提出了一些新观点,但未提出具体模型。

Janson(1991)在静态交通分配的基础上提出了改进的动态交通模型,但其分配过程也是近似的,而不是均衡分配。

Carey(1992)提出动态交通分配的FIFO(first-in-first-out)规则,文章指出当网络扩展为多个终点时,FIFO 规则的这个性质使得动态交通分配的数学规划方法遇到了极大困难。Janson(1992)提出了一个多目标规划模型,但是该模型的某些假设违反了FIFO 规则。Jayakrishan 和Tsai 等(1995)改进了Janson 的多目标规划模型,使其满足FIFO 规则。该模

型利用改进的Greenshields 速度-密度关系,建立了单调递增的凸的路段费用函数。

Liu(1993)分析路段行走函数、路段流出函数和FIFO 规则的关系,提出了满足FIFO 规划的路段流出函数形式,并建立了动态系统最优和用户最优模型。但此类方法也存在着许多不足,如对于一般网络缺乏一种有效的解法。

二、最优化控制方法

Luque和Friesz(1980)提出一个应用最优化控制理论解决动态系统最优模型的新思想,将M-N 模型改进成为一个连续的最优控制问题,最优值条件由Pontryagain 极大值定理获得。

Ran 和Shimazaki(1989)、Ran 和Boyce 等(1993)、Friesz 和Luque(1989)、Wie 和Friesz 等(1990)的文章中建立的模型均采用了此种方法建模。

。Ran 和Boyce等(1993)就是将一个连续形式的用户最优转化为一个离散的非线性规划问题求解,解法采用F-W 凸组合法。Liu(1993)分析路段走行函数、路段流出函数与FIFO 规则的关系,提出了满足FIFO 规则的路段流出函数形式,并建立了动态系统最优和用户最优模型。最优控制理论方法建立的模型具有易于分析的特点,这类模型通常在求解时被转化为离散时间形式的非线性规划、线性规划问题求解。动态交通分配的最优控制模型是最优控制理论在交通领域的成功应用,其完备的理论体系为解决动态交通控制与诱导问题提供了清晰的思路。到目前为止,最优控制模型仍然是应用最为广泛的模型,但最终缺乏一个行之有效的算法。

三、VI 模型

除了数学规划模型和最优控制模型以外,近十年来研究较多的还有VI 模型。

Smith (1993 )采用了VI 理论建立了基于路径的动态路径选择模型,以及基于路径的出行时间和出行路径双重选择模型。

在基于路径的VI 模型基础上,Ran & Boyce(1994)建立了基于路段的用户最优路径选择VI 模型以及基于路段的用户最优出行时间和出行路径双重选择VI 模型。VI (Variational inequality)模型的基本思路是将动态交通分配分解为网络加载和网络分配两个过程。

VI 模型的网络加载过程是基于路径的,因此用户在起点按照最小旅行时间原则选定好路径后,就不允许中途改变路径。这样才能按照预计时间和预选路径将交通量迭加到路网中,进行下一步的均衡分配。但是在动态交通中,随着路段流量的变化,用户的最小旅行时间是随时变化的,车辆在行驶过程中会不断改变路径,所以VI 模型不太适用于真实的交通网络,但它的网络加载和网络分配方法可以应用于计算机模拟技术上。

四、计算机模拟技术

Yagar(1970、1971、1974) 提出了第一个计算机模拟的交通分配模型。该模型满足wardrop 用户最优原则, 考虑了随时间变化的需求以及排队的形成。

Yagar(1970)也提出了一个具有启发性的动态系统最优模型的算法,该算法被vanAerde和Yaga(1988)改进。

Barstow(1973) 提出了另一个动态用户最优问题的计算机模拟模型。在他的模型中, 随时间段为常值的需求函数通过流量-密度关系转换为随距离分段为常值的函数。

Mahmasani和peeta(1993 )J ayakrishnan(1992)的模型也是计算机模拟的模型。

计算机模拟的交通分配模型在每一次迭代分配中对出行者的行为假设进行模拟。这类模型的优点在于相对容易地将交通控制等措施集成进来, 可用来评价I T S 项目中交通信息服务路径诱导的效果。其缺点是模型的分析能力差, 无法从模型本身分析其解的收敛性以及分析精度等。可以说, 此类模型从学术的观点上看不如数学规划模型以及最优控制理论模型对研究者有吸引力

从组织结构上讲,DTA包含两个部分:出行选择规则和交通流传播。出行选择模块是解决出行者如何决定是否出行,如果出行,如何选择出行路线、出发时间、出行方式和目的地。交通流

传播模块主要解决交通流如何在交通网络内部高效地传播。

2008年武汉大学研究出《变分不等式的算法及其在动态交通分配中的应用》变分不等式理论在处理不对称方面的优势以及其清晰的解析特性,使得交通分配的变分不等式模型的研究迅速发展,目前,利用变分不等式理论研究网络均衡分析模型已经成为静态、动态最优化理论并行、交叉的有效途径之一。文章作者受Han与Luo 对He与Zhou改进的启发,对Han与Luo中的步长规则进行改进,得到新的修正交替方向法,并验证了算法的收敛性,并举例说明如何把变分不等式算法应用到动态交通分配的变分不等式模型中去。

2012年西北工业大学研究出《基于改进遗传算法的动态交通分配优化研究》

传统的优化算法大多数由于计算量大或者容易使性能指标落入局部最优值而严重制约了模型的应用与发展,而用遗传算法等新的智能算法求解则会很简洁和方便。文章针对遗传算法在应用中存在的局限性,采用了小生境技术的遗传算法,结合精英保留策略、种群多样性保持方案、新的适应度值标定方式等改进遗传算法。通过对动态交通分配的特点分析,建立了动态交通分配模型,利用改进的遗传算法对模型进行求解。仿真结果体现了动态交通分配模型的有效性和改进遗传算法的优越性,大大提高了动态交通分配模型的实用价值。

2014年青岛城市规划设计院研究了《基于Vissim 仿真的动态交通分配》

该研究针对城市交通的理论算法和模型虽然从形式上体现出了动态交通分配的一些特点,但在完整刻画路网交通状态方面还有不足,引进基于Vissim 仿真动态交通分配的思想,介绍微观仿真软件Vissim理论基础,并利用Vissim 仿真软件对路段进行动态交通流分配仿真,得出仿真软件在动态交通流方面的应用能够实时、准确、有效地仿真出来。

DTA组成部分:出行选择法则和交通流传播。

出行选择法则:指出行者选择出行路径依据的规则。确定出行者选择法则的主要因素包括:出发时间(Departure Time)和路线选择(Route Choice)。交通网络中的路段行程时间是交通分配中出行者进行路径选择的主要依据。出行选择法则确定后,可以得到路段流入率,进而推导出路段流出函数。路段流出函数的显著特征是能很好地反映交通拥挤特性,因而它是动态交通分配理论中的关键和特殊之处。

交通流传播:指动态的交通流沿着路径在时间和空间上的分布特征,它是时间和空间的函数。描述交通流传播的方法有两种:点排队(Point Queue)和物理排队(Physical Queue)。两者之间的区别在于是否考虑车辆的物理长度对交通流的影响。在路网拥挤并且出现排队的条件下,车辆的物理长度对交通流的影响比较显著。

动态交通分配的特性

动态交通分配区别于静态交通分配最显著的特点就是在交通分配模型中加入了时间变量,从而把静态交通分配中的路阻和流量的二维问题转化为路阻、流量和时间的三维问题。

动态交通分配的典型特征包括:因果性、先进先出原则、路段状态方程、路段流出函数、路段特性函数和路段阻抗函数。

1. 因果性(Causality)

DTA:假设在时变的条件下,当前出行者的行为只受到其他出行者过去行为的影响,而不受其将来行为的影响(出行者行为始终受下游车流的影响而不受上游车流的影响)。这一假设是路段特性函数体现出依赖下游车流的特殊条件

STA:假设为当前出行者选择行为与过去和未来出行者选择行为均无关。

2. 先进先出规则(First-In-First-Out)

DTA:假设先进入路段的车辆必须先离开路段,即假设同时进入同一路段的车辆均以相同速度行驶,并花费相同的时间,不存在后车超越前车的现象。假设明确了输入流、输出流与路径行程时间三者之间的关系。

STA:假设沿着某一路径的所有出行者都在同一时刻同时上路。在动态交通网络中,当交通网络是多个终点时,FIFO规则会导致模型解的可行域为非凸集合,当该规则得不到满足时,模型的解就不合理。

3. 路段状态方程(Link StateFunction)

DTA:采用的状态变量不是静态交通分配中的交通量,而是交通负荷(Traffic Load)。交通负荷则是指某一个时刻一个路段上存在的车辆数,是一个时空观测量。交通量适合于静态描述,而交通负荷适合于动态描述。在动态交通网络条件下,路段上的交通负荷能表现出波动的交通流分布特征。

4. 路段流出函数(Link ExitFunction)

DTA:路段流出函数是反映交通拥挤、抓住网络动态本质的关键。一旦出行者路径选择法则确立,路段流出率便可以确定,从而得出路段流出函数。

STA:没有路段流出函数的概念。

5. 路段特性函数(Link PerformanceFunction)

DTA:路段特性函数以拥挤的车流为研究对象,它是交通负荷与走行费用的关系函数。交通负荷是一个与时间有关的变量,便使得整个函数预测精度高。

STA:路段特性函数则是交通量与走行费用的关系函数。它以交通规划为服务对象,不用来描述拥挤的网络,也没有时间的概念,因而对于预测的精度要求相对较低。

6. 路径阻抗函数(Path Cost Function)

DTA:路径阻抗包括两种:实际路径阻抗(Realistic Route Travel Cost)和瞬间路径阻抗(Instantaneous RouteTravel Cost)。实际路径阻抗是指出行者走完一条路径的实际花费时间。瞬间路径阻抗则是指一条路径在某一个时刻各路段阻抗的总和。

STA:路段阻抗等于该路径各个路段阻抗之和,它不随时间变化而变化。

VISSIM,PARAMICS,TSIS仿真软件对比分析

三大著名的仿真软件 (VISSIM/PARAMICS/TSIS)对比分析VISSIM仿真系统 VISSIM是德国PTV公司开发的微观仿真软件,是一种微观的、以时间为参照、以交通行为模型为基础的仿真系统,主要用于城市和郊区交通的模拟仿真中。它采用的是一个离散的、随机的、以0.1s为时间步长的微观模型。车辆的纵向运动采用了基于规则的算法。不同驾驶员行为的模拟分为保守型和冒险型。VISSIM提供了图形化的界面,用2D和3D动画向用户直观显示车辆运动,运用动态交通分配进行路径选择。VISSIM可以模拟轨道和道路公共交通、自行车交通和行人交通,由仿真获得的交通特征数据可以评估不同的选择方案。它能够模拟许多城市内和非城市内的交通状况,特别适合模拟各种城市交通控制系统,主要应用有:(1)由车辆激发的信号控制的设计、检验、评价;(2)公交优先方案的通行能力分析和检验;(3)收费设施的分析; (4)匝道控制运营分析;(5)路径诱导和可变信息标志的影响分析;(6)路段、交叉口及整个交通网的通行能力和交通流分析;(7)评估不同的设计规划方案和交通组织方案;(8)评估环形交通;(9)评估收费系统和其他交通服务设施;(10)评估智能交通系统的效果(如路径选择系统);(11)大型公交车站的功能分析:(12)复杂交通设施各种运行方式的优化设计(如信号灯控制的路口和无信号灯控制的路口的组合和协

调);(13)信号灯控制程序的设计和优化:(14)设计公交优先系统;(15)2D和3D模拟结果的动态演示等。 在VISSIM模型中,信号灯控制程序可以在定时控制或者感应式信号程序方式下进行模拟。在信号控制程序的模拟时,西门子、飞利浦、PTV、BASEL等公司的产品都可以与之兼容。VISSIM仿真系统中,对于交通流和信号控制之间有一个接口,通过这个接口可以在检测器数据和信号灯控制参数之间进行数据交换。仿真结果可以是视窗动态交通流演示,或者是最后输出多种重要交通参数的数据表格。VISSIM的交通流模型既可以模拟一条车道上的车队行驶,也可以模拟车流在车道组中的变换情况。利用这些交通特征数据可以按照交通服务水平标准确定交通运行状况,进行多种措施预期实施效果的比较。PARAMICS仿真系统 英国的Quadstone公司开发的Paramics是表现最为出色的商业 化交通仿真产品之一。Paramics从1992年开始开发至今,融合了欧美众多交通及计算机领域科研机构及专家的努力和智慧,具有细致的路网建模、灵活的信号及车辆控制、完善的路径诱导、丰富的编程接口、详尽的数据分析等特色。由于采用了并行计算技术,仿真的路网规模可达上百万个节点,4百多万个路段,3万多个小区。在ITS的研究中,Paramics有突出的表现,能仿真交通信号、匝道控制、检测器、可变信息板、车内信息显示装置,车内信息顾问,路径诱导等。而且用户可以通过API函数定义特殊的控制策略。它还能够从SATURN、NESA、

动态交通流分配

动态交通流分配浅析 摘要:实现交通分配理论的交通分配模型可分为两大类:静态交通分配模型和动态交通分配模型,它们都有各自的优缺点。静态交通分配模型假设交通需求和路段行程时间为常数或仅依赖于本路段上的交通流量,这对于交通量比较平稳、路段行驶时间受交通负荷影响较小的城市间长距离非拥挤的城市交通特性分析和路网规划是比较可行的。而对于存在拥挤现象的城市交通网络,交通需求在一天之中变化甚大。使得网络交通流的时空分布规律具有时变特性,从而导致路段行驶时间大大依赖于交通负荷的变化。因此,在城市交通控制与管理中更需要考察路网中,交通流状态随空间与时间的演化过程,针对可能出现的拥挤和阻塞及时采取有效措施.确保城市交通系统平稳、高效地运行。动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。 关键词:动态交通流分配定义现状意义存在问题 The shallow analysis of Dynamic Traffic Assignment Abstract: the traffic assignment model of Traffic assignment theory can be divided into two categories: static and dynamic traffic assignment model for traffic assignment models, both of which have their own advantages and disadvantages. Static traffic assignment models assuming that traffic demand and link travel time is constant or only dependent on the traffic flow on this road, which is relatively stable for the traffic, roads and the traffic load less affected by the time the inter-city long distance non-urban traffic congestion characterization and network planning is more feasible. However, for there is congestion in the urban transport network., changes in traffic demand in the day are great, which makes the network traffic flow varies with time-varying spatial and temporal distribution of properties, resulting in roads and the time relied heavily on the traffic load changes. Thus, in urban traffic control and management of road, it is more significant to examine how traffic flow varies with space and tempo while studying the road network, and thus timely and effective measures can be taking for the congestion and obstruction., and that ensure that urban transport system operate smoothly and effectively. Dynamic traffic assignment included traffic demand changes over time and travel costs with the changing nature of traffic load, moreover, it can give an instant flow of traffic distribution. Key words: dynamic traffic assignment, definition, status quo, meaning, problems ·0引言 动态交通分配的这种功能使其在城市交通流诱导系统及智能运输系统的研究中具有举足轻重的作用。因而,研究动态交通分配理论.并将其应用于交通控制与管理是十分必要的。同时,动态交通分配为交通流管理与控制动态路径诱导等提供了依据,也是智能交通系统的重要理论基础。

动态交通系统

请问,建立一个动态系统,首先是采集全城路网的交通流数据,这个交通流应该是平衡的,如果,新建一条路,那么平衡就打破了,其他受影响的道路的交通流就变化了,这样一个动态系统能够反映这种变化。我就想问问,国内是否有这种类似的系统,关键是要比较直观的。 如果是有这样的系统,请问是用什么软件或者模型构建的。 这类系统有的是是城市交通管理系统的一部分,也有某些城市的交研部门自己建立的,算法是关键,软件仅仅是一个评估和人机接口,例如某些交管平台是有交通在线或离线仿真需求的,新增道路对现有路网状况的影响也是其建设目的之一,但仅仅只是之一而已。 就个人所知,一般都是用商业软件进行二次开发,但效果并不理想。 我先说下这个事情的来龙去脉吧,希望论坛里的各路大侠能够给些建议。 我所在单位是一个以市政道路设计为主的设计院,希望能建立这样一个交通流预测系统,就是说,主要就是为了给具体道路,桥梁建设工程的可行性提供依据。比如说,所在城市的一条主干道已经非常饱和了,到底是增加一条道路分流好,还是拓宽好,两种方案分别会对其他道路上的交通流产生怎样的影响,是否会引起其他路段的堵塞。目前,道路工程项目的前期研究非常薄弱,就算是用了交通流预测分析,但是,这条路对其他道路的交通影响并没有包含在工程可研中,所以,我们想建立这样一个系统,解决以上问题。 很好的想法!这样做市政道路设计算是跟国际接轨了。个人观点,以后的道路设计肯定会和动态的路网交通分析结合起来做,这种趋势在美国已越来越明显;国内慢一些,但也会很快跟进,先掌握这种分析技巧的单位将会更有竞争实力。 2007年,Minneapolis的一座桥塌了,每天路过这座桥的大约10万辆车需要改道。联邦公路局(FHWA)的官员很快打电话给亚利桑那大学的Yi-Chang Chiu教授,请他用软件工具DynusT(基于仿真的动态交通分配软件) 定量分析塌桥对交通出行选择模式和路网交通流的影响,以便在塌桥修复之前,更有效地疏导交通。因为从塌桥之前的均衡的路网交通状态过渡到塌桥后的另外一种均衡状态需要数天甚至几个星期的调整,驾驶员才能将自己的出行时间和出行路线大致固定下来。分析这种行为其实很复杂的,计算量也很巨大。对于大路网的仿真分析,为了接近路网均衡状态,仿真迭代24小时的路网交通,计算时间甚至需要几天。

vissim操作手册

VISSIM操作手册交通运输工程学院

1. VISSIM简介 (1) 2定义路网属性 (4) 2.1物理路网 (4) 2.1.1准备底图的创建流程 (4) 2.1.2添加路段(Links) (7) 2.1.3连接器 (9) 2.2定义交通属性 (10) 2.2.1定义分布 (10) 2.2.2目标车速变化 (12) 2.2.3 交通构成 (14) 2.2.4 交通流量的输入 (15) 2.3路线选择与转向 (15) 2.4 信号控制交叉口设置 (17) 2.4.1信号参数设置 (17) 2.4.2信号灯安放及设置 (20) 2.4.3优先权设置 (21) 3仿真 (24) 3.1 参数设置 (24) 3.2 仿真 (25) 4评价 (26) 4.1 行程时间 (26) 4.2 延误 (28) 4.3 数据采集点 (30) 4.4 排队计数器 (32)

1. VISSIM简介 VISSIM为德国PTV公司开发的微观交通流仿真软件系统,用于交通系统的各种运行分析。该软件系统能分析在车道类型、交通组成、交通信号控制、停让控制等众多条件下的交通运行情况,具有分析、评价、优化交通网络、设计方案比较等功能,是分析许多交通问题的有效工具。 VISSIM采用的核心模型是Wiedemann于1974年建立的生理-心理驾驶行为模型。该模型的基本思路是:一旦后车驾驶员认为他与前车之间的距离小于其心理(安全)距离时,后车驾驶员开始减速。由于后车驾驶员无法准确判断前车车速,后车车速会在一段时间内低于前车车速,直到前后车间的距离达到另一个心理(安全)距离时,后车驾驶员开始缓慢地加速,由此周而复始,形成一个加速、减速的迭代过程。 图1.1 VISSIM中的跟车模型(Wiedemann 1974) VISSIM的主要应用包括: 除了内建的定时信号控制模块外,还能够应用VAP、TEAPAC、VS-PLUS等感应信号控制模块。 在同时应用协调信号控制和感应信号控制的路网中,评价和优化(通过与

(1)设备采购清单讲解学习

(1)设备采购清单 1、PTV Vissim10交通仿真软件技术参数 1) 版本大小:100x100公里,可以模拟50个信号控制机。 2) 软件中路网是基于路段与连接器的形式。模型中的车辆路径可以精确到每个车道。驾驶行为能够更加得细节化。 3) 除了车辆模型,行人仿真基于社会力行人模型。其中将面域作为行人的行走介质。并且车辆和行人可以交互的在同一个模型中进行仿真。 4) 建立自己的3D车辆模型或是建筑模型导入微观仿真软件,从而使得3D模拟的效果更加逼真。此外,运用该模块,用户还可以把在3dmax中建立的3D模型转换成软件可以读取的文件。 5) 可以建立高细节化的公交模型,用户可以自定义公交模型的车辆和线路。甚至可以细节到线路上个车站的停车时间、上下客流,以及公交车辆的车门数量。 6) 包含所有信号灯配时的模拟,公交专用道的模拟,以及行人、自行车的模拟,可以模拟机非混行的交通情况。此外软件可以模拟具有各种交通控制形式的交叉口,其中包含具有让行标志、停行标志、信号灯控制以及上述三种形式结合使用的交叉口。 7) 可以仿真路边停车模型,并包括有停车空间选择模型。 8) 能够在模拟后输出一系列的计算指标参数结果,便于工程师对设计的方案进行比较和评价。可以提供具体每一辆车辆在运行时的速度,加速度等指标。可以记录到文件中。 9) 可以提供路段的集合评价,通过不同的颜色来表达路段的饱和度,速度等分布,可以在软件中反映宏观的指标。

10) 提供四维的动画。“四维”指的是把三维的路网和车辆与时间再结合起来。这个功能使得用户可以生成符合实际情况的录像片段,因而为项目的交流演示提供了一个非常出色的工具。软件还可以把航拍图片和CAD文件作为仿真的背景文件。 11) 能够导入ANM文件,节点的几何信息就可以自动完成。 12) 显示三维信号灯。 2、TransCAD V8.0交通规划软件 功能要求: 用来储存、显示、管理和分析交通数据。以交通规划四阶段法为基础,提供完善的交通规划模型算法。包括需求预测模型、拱角模型、OD矩阵换算、路径模型、路网分析模型、物流模型、基于出行链模型、离散选择模型、货运模型和组合模型等。把GIS和交通模型的功能组合成一个单独的平台。包括五个主要的组成部分:地理信息系统GIS;扩展数据模型;交通分析和模型、数据;程序开发。 地理信息系统GIS模块提供多种工具,用户可以创建和编辑数字地图和地理信息数据、制作专题地图和其他图标输出及进行各种空间和地理信息分析;通过扩展数据模型用户可以直接使用以各种地理信息格式和列表文件格式存储的数据,无需导入,方便了传统数据和企业数据的使用,包括一套核心的交通网络分析和运筹学模型、用于特殊应用的高级分析模型和一套统计及计量经济分析的支持工具。可以单独使用或联合使用来解决用户工作中遇到的问题;包括GIS开发者工具包和Caliper Script编程语言。GISDK允许用户启动其他软件,并与自己或第三方编写的成语相互通讯。通过各种应用程序或不同模块之间的组合可以寻找路径、交通需求预测、公共交通、物流、选址以及销售区域管理、阵分析、络分析,路径优选、区位分析、交通规划与出行分析、可以根据路段观测流量对高速公路和公交线路的OD 出行矩阵进行反推估计。 可处理交通小区数量≥9999; 可处理路段数量≥9999; 可处理OD矩阵大小≥9999×9999; 河南省交通矢量地图数据:矢量交通地图数据包含以下图层:省界、市界、县界、高速公路、国道、省道、市区主干道、其它道路、铁路、地铁、河流、湖泊、水库。 3、Transmodeler V5.0交通仿真软件 功能要求: (1) 软件具备用于交通扩展的 GIS-T 引擎功能;路网规模、小区数量、路口和矩阵没有任何人为规模数量限制。 (2) 能建立交通基础路网模型:软件能把GIS数据、交通规划网络和航拍照片等导入作为背景数据,经过简单加工后可生成基础路网模型。所有基础数据分不同图层,以GIS 地图和仿真数据库的形式进行管理。

基于有限理性的方式划分和交通分配组合模型

基于有限理性的方式划分和交通分配组合模型出行者作为城市交通系统的主体,其出行行为影响整个网络的运行效果。传统的出行行为研究通常假定出行者是绝对理性的,其决策行为遵循效用理论,以 出行阻抗最小或者效用最大作为决策依据,很少考虑出行者的有限理性特点。 本文以出行者的出行行为为研究对象,结合问卷调查标定前景理论的参数体系,在有限理性的框架下讨论方式选择和路径选择行为,并建立方式划分和交通 分配组合模型,最后通过算例分析组合模型的特点、出行者参考点依赖效应以及模型参数的敏感性。本文首先明确了有限理性的概念,详细介绍了前景理论和TODIM方法的基本观点以及相关研究和应用。 随后对比了前景理论中不同函数形式的差异,分析了前景理论各个参数的内涵,将出行者或者出行情景按照风险水平高低划分为3类,并通过问卷调查得到 了前景理论在出行路径选择问题中的参数体系,同时验证了该参数体系的有效性。紧接着结合离散选择模型和TODIM方法提出了有限理性条件下的方式划分模型,结合离散选择模型和前景理论提出了有限理性条件下的随机交通分配模型,最终在有限理性的基础之上提出了改进的方式划分和交通分配组合模型。 最后,利用Nguyen & Dupuis网络作为算例,验证组合模型的有效性研究结果表明,组合模型能够体现总出行需求对私家车出行选择概率的影响,两者呈负相 关的关系;私家车的实际出行需求、出行者对不同路径的感知具有明显的参考点依赖效应,而出行者路径选择行为的参考点依赖效应不显著;私家车的实际出行需求随着参数θ的增大而减小,各条路径之间的差异随着参数κ的增大而增大, 参数θ可在(0,6)中取值,参数K可在(0,1)之间取值。

(完整版)DTA动态交通分配

(2005) 西安交通大学对具有排队的多模式动态交通分配问题及其相关应用进行研究。本文对动态交通分配模型发展进行了介绍和总结,并详细讨论了模型中的路段动态函数、流量传播约束、FIFO等相关特性。 将单一交通模式的点排队路段动态模型扩展到多模式动态路段模型,并且证明了各种模式的路段行程时间函数合乎模式内的FIFO特性,以及在拥挤情况下各模式车辆的速度收敛特性。 将多模式随机动态同时的路径与出发时间选择平衡条件描述为变分不等式问题,提出了两个不同的算法用于求解变分不等式问题: 算法一是基于路段的算法,这个算法给出了基于logit的同时的路径与出发时间选择的随机动态网络配载方法,并证明了这个方法的正确性; 算法二是基于路径的启发式算法。仿真试验验证了模型以及两个算法的有效性。提出了多模式多用户动态交通分配模型,用于评估ATIS对不同模式出行者和交通系统的影响。将每一模式的出行者分为两类:一类是装配ATIS的出行者,另一类是未装配ATIS的出行者。由于所能获得的交通信息质量的差异,他们将遵循不同的动态用户平衡条件。同时,每一种模式出行者在选择路径和出发时间时,不但考虑出行费用和进度延误费用的影响,而且还考虑油耗费用的影响。将多模式多用户动态用户平衡条件描述为统一的变分不等式问题,利用对角化算法计算相应的平衡流量状态,并通过仿真试验验证了模型与算法的有效性。使用nested-logit模型模拟ATIS的市场渗透率与服从率,模型的上层模拟了驾驶小汽车出行者的购买行为(市场渗透率),底层主要描述了装配ATIS设备的小汽车出行者的服从行为(服从率)。设计了固定点算法计算ATIS的平衡市场渗透率与服从率。并在简单的路网上进行了仿真研究,结果证明算法与模型是正确和有效的。提出了组合模式动态交通分配模型,模型中假设有两类出行者:一类是纯模式出行者,他们自己驾驶小汽车完成一次出行。另一类是组合模式出行者,在其一次出行的第一部分是自己驾驶小汽车完成的,剩余部分是乘公交车完成的。使用nested-logit模型模拟出行者的复杂出行选择行为。将各种不同的选择行为描述为一个变分不等式问题。并给出了启发式算法求解相应的变分不等式问题。最后,利用仿真研究验证了模型与算法的有效性。 交通分配: (2005)所谓交通分配是指按照一定的原则,将各OD (Origin-Destination)对间的出行量分配到具体的交通网络上去,从而得到各路段的交通量,以判断各路段的负荷水平。近半个世纪以来,国内外学者对交通分配问题进行了大量的研究,提出了不少交通流分配模型与软件。总体来看,这些模型可以分为两大类: 平衡分配模型:遵循War drop用户最优(UO, User Optimum)准则或系统最优(SO, System Optimum)准则。它们或者使得个别交通参与者的出行费用最低,或者使得交通网络上所有出行者的总出行费用最低。 非平衡分配模型:运用启发式解法或其他近似解法的分配模型则统称为非平衡分配模型,如全有全无分配模型、容量受限分配模型、多路径概率分配模型、随机分配模型和嫡分配模型等。 静态模型不能反映交通流的时变特性,相反,动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。 DTA(Dynamic Traffic Assignment) 所谓动态交通分配, 就是将时变的交通出行合理分配到不同的路径上, 以降低个人的出行费用或系统总费用。动态交通分配是在交通供给状况以及交通需求状况均为已知的条件下, 分析其最优的交通流量分布模式, 从而为交通流管理、动态路径诱导等提供依据。 交通供给状况:网络拓扑结构、网段特性、既定控制策略等。

交通分配及其算法

V 为网络节点集,即:道路交叉点;A 为路段集,即:道路 交通量—人的个数—OD 矩阵 ,a C a A ∈:路段a 的通行能力 ()a a t x :路段a 的阻抗,a x 为流量,通常以时间记,假设仅与路段a 有关 系统最优是系统规划者所期望得到的一种平衡状态,其前提是所有网络用户必须互相协作,遵从网络管理者的统一调度,所以是计划指向型分配准则。 出行者的出行决策过程是相互独立的,路网上的交通流的状态是出行者独立选择的结果。出行者必然转向费用较小的路径.其结果,路网上的交通量分布最终必然趋于用户平衡状态。所以,用户平衡状态最接近实际的交通状态。 Wardrop 准则的提出标志着网络流平衡分配概念从描述转为严格刻画,不但假设司机都力图选择阻抗最小的路径,而且还假设司机随时掌握整个网络的状态,精确计算每条路径的阻抗,还假设了司机的计算能力与水平是相同的。 在这些假设条件下进行的配流被称为确定性配流,得到的用户平衡条件被称为确定性平衡条件,简称UE 条件。User Equilibrium System Optimal rs k rs a f q ∑=且0rs k f ≥(rs k f —O-D 对r-s 之间路径k 上的流量)rs q 等于连接rs 之间 各路径上的路段的交通量的总和。 ,rs rs a k a k r s k x f σ=∑∑∑(,rs a k σ—如果弧a 在连接O-D 对r-s 的路径k 上,其值为1,否则为0)路段a 上的流量等于通过a 的路径上分配到a 上的交通量的总和。 1. 目标函数本身并没有什么直观的经济含义或行为含义。 2. 没必要直接求解用户平衡条件方程组,平衡状态可以由求解等价都极小值问题得到。 3. 模型的解关于路段流量唯一,关于路径流不唯一 4. 等价性与唯一性证明略

VISSIM ARAMICS TSIS仿真软件对比分析

三大着名的仿真软件(VISSIM/PARAMICS/TSIS)对比分析 VISSIM仿真系统 VISSIM是德国PTV公司开发的微观仿真软件,是一种微观的、以时间为参照、以交通行为模型为基础的仿真系统,主要用于城市和郊区交通的模拟仿真中。它采用的是一个离散的、随机的、以0.1s为时间步长的微观模型。车辆的纵向运动采用了基于规则的算法。不同驾驶员行为的模拟分为保守型和冒险型。VISSIM提供了图形化的界面,用2D和3D动画向用户直观显示车辆运动,运用动态交通分配进行路径选择。VISSIM可以模拟轨道和道路公共交通、自行车交通和行人交通,由仿真获得的交通特征数据可以评估不同的选择方案。它能够模拟许多城市内和非城市内的交通状况,特别适合模拟各种城市交通控制系统,主要应用有:(1)由车辆激发的信号控制的设计、检验、评价;(2)公交优先方案的通行能力分析和检验;(3)收费设施的分析;(4)匝道控制运营分析;(5)路径诱导和可变信息标志的影响分析;(6)路段、交叉口及整个交通网的通行能力和交通流分析;(7)评估不同的设计规划方案和交通组织方案;(8)评估环形交通;(9)评估收费系统和其他交通服务设施;(10)评估智能交通系统的效果(如路径选择系统);(11)大型公交车站的功能分析:(12)复杂交通设施各种运行方式的优化设计(如信号灯控制的路口和无信号灯控制的路口的组合和协调);(13)信号灯控制程序的设计和优化:(14)设计公交优先系统;(15)2D和3D模拟结果的动态演示等。 在VISSIM模型中,信号灯控制程序可以在定时控制或者感应式信号程序方式下进行模拟。在信号控制程序的模拟时,西门子、飞利浦、PTV、BASEL

(仅供参考)第六篇--vissim动态交通分配

第六篇 动态交通分配 6.1 动态交通分配介绍 在前面的章节里,仿真车辆在路网中行驶的路径都是人为设置的,仿真中的“驾驶员”并没有机会自己选择从起点到终点的道路。在非实时仿真、简单路网中这种模拟道路交通的方法是合适的。但是,如果仿真的路网较大,路网中的车辆从起点到终点有多种不同的路径选择,同时要将车辆分布在这些路径上的话,前面使用的方法将不可能完成这种网络上的路径设置。对一个给定了起迄点的出行需求矩阵,计算该矩阵在路网上的交通量分布的问题称之为交通分配,它是交通规划过程的一个基本步骤。 交通分配是所有驾驶员或交通使用者根据道路网情况,对出行路径进行选择的一种计算模型。该模型必须帮助出行者首先找出一组可供选择的路径,然后根据计算方法对可选择的路径进行评价,最后描述出驾驶员如何根据这些评价进行路径选择。 交通规划中的交通量分配往往是静态分配。“静态”是指出行需求(有多少车辆需要在路网中出行)和道路网络本身不随时间变化。然而实际上的出行需求在一天中变化很大,并且道路网络的交通状况也随时间而变化,例如信号控制在一天不同时段发生变化。考虑到这些随时间而变化的因素,VISSIM给出了动态交通分配的方法。 在VISSIM仿真模型中提出动态路径选择主要考虑以下两个方面: z即便在不考虑可替代路径的情况下,越来越大的路网也使得人工设置或建立所有起迄点间的路径变得不可能; z在评估各种交通控制方法和路网变化对出行路径选择的影响时,模拟真实的路径选择行为非常有意义。 6.2 动态交通分配的原则 在VISSIM中动态交通分配是基于迭代仿真的思想。即一个模拟路网不只是仿真一次,而是不断地重复仿真。驾驶员根据前面仿真获得的出行时间(或出行费用)来进行本次仿真中的路径选择。模拟这种“用户自学习过程”,必须完成下列任务: z必须找到起迄点间的路径。VISSIM假定并非所有人都使用最佳路径,而是有一小部分人会使用那些次优路径; z驾驶员必须有某种对路径进行评价的方法,以便于进行路径选择。VISSIM中是根据计算得出的总出行费用进行评价的。总出行费用由路径长度、行程时间和其它 成本(例如道路或桥梁的通行费等)加权求和得到; z从一系列路径中选择某条路径的概率是用修正的LOGIT模型计算后得到。 6.3 动态分配前期准备工作 6.3.1需要注意的几个问题 (1)对象:不是只有几个节点,而是整个大的路网;

交通流分配模型综述

华中科技大学研究生课程考试答题本 考生姓名陈菀荣 考生学号M201673159 系、年级交通运输工程系、研一 类别科学硕士 考试科目交通流理论 考试日期2017 年 1 月10日

交通流分配模型综述 摘要:近些年,交通流分配模型已经广泛应用到了交通运输工程的各个领域,并且在交通规划中起到了很重要的作用。本文对交通流分配模型研究现状进行了综述,并分别对静态交通流分配模型、动态分配模型以及公交网络进行了阐述和讨论。同时对相关的交通仿真还有网络优化问题研究现状进行了探讨。最后结合自身学习经验做出了一些评价和总结。 关键词:交通流分配;模型;公交网络 0引言 随着经济和科技的发展,城市化进程日益加快,城市也因此被赋予更多的工程,慢慢聚集大量的人口。而人口数量的增加而直接带来的城市出行量增加,不管是机动车出行还是非机动车出行量都相较以前增加了很多,从而引发了一系列的交通问题。因为在城市整体规划中,交通规划已经成为了十分突出的问题。在整个交通规划过程中,交通分配在其中占有很重要的地位,为相关公交路线,具体道路宽度规划等都有很大作用。 1交通流分配及研究进程 1.1交通流分配简介 由于连接OD之间的道路有很多条,如何将OD交通量正确合理的分配到O 和D之间的各条路线上,是交通流分配模型要解决的首要问题。交通流分配是城市交通规划的一个重要组成部分也是OD量推算的基础。交通流分配模型分为均衡模型和非均衡模型。 1.2交通流模型研究进程 以往关于交通流分配模型的研究多是基于出行者路径偏好的,主要有以Wardrop第一和第二原则为分配依据建立的交通分配模型,Wardrop第一原则假定所有出行者独立做出令自己出行时间最小的决策,最终达到纳什均衡的状态,此时的流量为用户最优解,在这种状态下,同一个起始点时间所有有流路径的通行时间相等,并且大于无流路径的通行时间;Wardrop第二原则假定存在一个中央组织者协调所有出行者的路径选择行为,使得所有出行者的总出行时间最小,对应的状态称为系统最优,此时分布的流量称为系统最优流。 交通流分配模型最早要追述到Beckmann等[1]于1956年首先提出了满足

交通分配之用户均衡分配模型之三(matlab源码)

例 总流量为100,走行函数为: ??? ??+=40)(6.04)(111t x x c ?? ? ??+=40)(9.06)(222t x x c ?? ? ??+=60)(3.02)(333t x x c ??? ??+=40)(75.05)(444t x x c ?? ? ??+=40)(45.03)(555t x x c 模型求解的Matlab 源码: syms lambda ; numf = 3; %路径总数 numx = 5;%路段总数 Q=100;%总流量 fid=fopen('D:\Program Files\MATLAB\R2011b\bin\我的matlab\traffic\UECOM.txt','w'); %设置运行结果输出文件 T = [4 6 2 5 3 ]; %路段走行时间函数参数 cap = [(0.6/40) (0.9/40) (0.3/60) (0.75/40) (0.45/40) ]; %路段走行时间函数参数 Mxf = [1 0 0 1 0; 0 1 0 0 1 ; 1 0 1 0 1]; % 路段转路径矩阵 % Mfx = Mxf'; % 路径转路段矩阵 %========================================================== %以上为程序需要输入的变量 xx= zeros(1,numx); t = zeros(1,numx); t = T + cap .* xx ;%路段走行时间函数 ft = (Mxf * t')'; %三条路径的走行时间初值。 路径1为路段1,4 ,路径2为路段2,5 ,路径3为路段1,3,5 N= 15; %最大迭代次数,也可使用其他收敛条件 [Min,index] = min(ft) ;

基于VISSIM平台的复杂立交桥交通环境仿真报告

目录 一、立项背景 ........................................................................ - 1 - 二、Vissim简介 ................................................................... - 2 - 三具体工作 .......................................................................... - 3 - 3.1准备资料 .................................................................... - 3 - 3.2建模步骤 .................................................................... - 6 - 3.3.交通车辆属性定义.................................................. - 11 - 3.4交通构成 .................................................................. - 13 - 3.5路线选择与转向...................................................... - 15 - 3.6评价 .......................................................................... - 16 - 3.7、仿真 ....................................................................... - 30 - 四、评价结论 ...................................................................... - 31 -

基于VISSIM模拟交叉路口

石家庄铁道大学交通运输学院 创 新 实 践 报 告 专业交通工程 班级交 姓名 学号 指导教师陈队永刘博航 成绩 完成日期 2010 年 9 月 24 日

基于VISSIM模拟交叉路口 (石家庄铁道大学交通工程分院石家庄) 摘要:影响交叉路口交通特性的因素主要为交叉路口的长度、构型、交通流特征以及设计车速, 利用微观仿真工具vissim对交叉路口的这些影响因素进行了仿真分析。 关键词:交通仿真vissim 交叉路口 VISSIM simulation based on the intersection (Shi JiaZhuang Tiedao University Shi JiaZhuang China) Wei Da Abstract: The characteristics of the intersection traffic crossing the length of the main factors, configuration, traffic flow characteristics and the design speed, the use of microscopic simulation tools vissim on the intersection of these factors were simulated. Keywords:Traffic Simulation Vissim Intersection 一.引言 在2010的暑假小学期中,我们通过vissim软件来模拟交通的运行情况,主要是对“育才街与裕华路”和“运河桥”的情况进行了模拟运算。在本次的运算中,通过掌握Vissim 软件的常用功能,进行一般单交叉口的交通情况仿真,并得出了一些有用的结论。使我们在以后的学习中对于交通工程的感性认识有了进一步的提高。 二、仿真的定义与分类 交通仿真是20世纪60年代以来,随着计算机技术的进步而发展起来的,采用计算机数字模型反映复杂交通现象的交通分析方法,属于计算机数字仿真范畴,是计算机仿真技术在交通工程领域的一个重要应用。它利用计算机对所研究对象、交通系统的结构、功能、行为以及参与交通控制者一人的思维过程和行为特征进行较为真实的模仿,具有直观、准确和灵活的特点,是描述复杂道路交通现象的一种有效手段。交通仿真是复现交通流时间和空间变化的技术,仿真模型的建立以及仿真实验系统的开发是交通仿真研究的两个核心内容。根据交通仿真模型描述程度的不同,可分为: 1)微观交通仿真模型 微观交通仿真模型对交通流的描述以单个车辆为基本单元,车辆在道路上的跟车、超车及车道变换等微观行为都能得到较真实的反映。微观交通仿真模型对交通系统的要素及行为的细节描述程度最高。 2)中观交通仿真模型 中观交通仿真模型对交通流的描述往往以若干辆车构成的队列为单元,能够描述队列在路段

交通流分配模型综述

华中科技大学 研究生课程考试答题本 考生姓名陈菀荣 考生学号M201673159 系、年级交通运输工程系、研一 类别科学硕士 考试科目交通流理论 考试日期2017 年 1 月10 日 交通流分配模型综述 摘要:近些年,交通流分配模型已经广泛应用到了交通运输工程的各个领域,

并且在交通规划中起到了很重要的作用。本文对交通流分配模型研究现状进行了综述,并分别对静态交通流分配模型、动态分配模型以及公交网络进行了阐述和讨论。同时对相关的交通仿真还有网络优化问题研究现状进行了探讨。最后结合自身学习经验做出了一些评价和总结。 关键词:交通流分配;模型;公交网络 0引言 随着经济和科技的发展,城市化进程日益加快,城市也因此被赋予更多的工程,慢慢聚集大量的人口。而人口数量的增加而直接带来的城市出行量增加,不管是机动车出行还是非机动车出行量都相较以前增加了很多,从而引发了一系列的交通问题。因为在城市整体规划中,交通规划已经成为了十分突出的问题。在整个交通规划过程中,交通分配在其中占有很重要的地位,为相关公交路线,具体道路宽度规划等都有很大作用。 1交通流分配及研究进程 1.1交通流分配简介 由于连接OD之间的道路有很多条,如何将OD交通量正确合理的分配到O 和D之间的各条路线上,是交通流分配模型要解决的首要问题。交通流分配是城市交通规划的一个重要组成部分也是OD量推算的基础。交通流分配模型分为均衡模型和非均衡模型。 1.2交通流模型研究进程 以往关于交通流分配模型的研究多是基于出行者路径偏好的,主要有以Wardrop第一和第二原则为分配依据建立的交通分配模型,Wardrop第一原则假定所有出行者独立做出令自己出行时间最小的决策,最终达到纳什均衡的状

VISSIM_PARAMICS_TSIS仿真软件对比分析报告

三大著名的仿真软件(VISSIM/PARAMICS/TSIS)对比分析VISSIM仿真系统 VISSIM是德国PTV公司开发的微观仿真软件,是一种微观的、以时间为参照、以交通行为模型为基础的仿真系统,主要用于城市和郊区交通的模拟仿真中。它采用的是一个离散的、随机的、以0.1s 为时间步长的微观模型。车辆的纵向运动采用了基于规则的算法。不同驾驶员行为的模拟分为保守型和冒险型。VISSIM提供了图形化的界面,用2D和3D动画向用户直观显示车辆运动,运用动态交通分配进行路径选择。VISSIM可以模拟轨道和道路公共交通、自行车交通和行人交通,由仿真获得的交通特征数据可以评估不同的选择方案。它能够模拟许多城市内和非城市内的交通状况,特别适合模拟各种城市交通控制系统,主要应用有:(1)由车辆激发的信号控制的设计、检验、评价;(2)公交优先方案的通行能力分析和检验;(3)收费设施的分析;(4)匝道控制运营分析;(5)路径诱导和可变信息标志的影响分析;(6)路段、交叉口及整个交通网的通行能力和交通流分析;(7)评估不同的设计规划方案和交通组织方案;(8)评估环形交通;(9)评估收费系统和其他交通服务设施;(10)评估智能交通系统的效果(如路径选择系统);(11)大型公交车站的功能分析:(12)复杂交通设施各种运行方式的优化设计(如信号灯控制的路口和无信号灯控制的路口的

组合和协调);(13)信号灯控制程序的设计和优化:(14)设计公交优先系统;(15)2D和3D模拟结果的动态演示等。 在VISSIM模型中,信号灯控制程序可以在定时控制或者感应式信号程序方式下进行模拟。在信号控制程序的模拟时,西门子、飞利浦、PTV、BASEL等公司的产品都可以与之兼容。VISSIM仿真系统中,对于交通流和信号控制之间有一个接口,通过这个接口可以在检测器数据和信号灯控制参数之间进行数据交换。仿真结果可以是视窗动态交通流演示,或者是最后输出多种重要交通参数的数据表格。VISSIM的交通流模型既可以模拟一条车道上的车队行驶,也可以模拟车流在车道组中的变换情况。利用这些交通特征数据可以按照交通服务水平标准确定交通运行状况,进行多种措施预期实施效果的比较。 PARAMICS仿真系统 英国的Quadstone公司开发的Paramics是表现最为出色的商业化交通仿真产品之一。Paramics从1992年开始开发至今,融合了欧美众多交通及计算机领域科研机构及专家的努力和智慧,具有细致的路网建模、灵活的信号及车辆控制、完善的路径诱导、丰富的编程接口、详尽的数据分析等特色。由于采用了并行计算技术,仿真的路网规模可达上百万个节点,4百多万个路段,3万多个小区。在ITS的研究中,Paramics有突出的表现,能仿真交通信号、匝道控制、检测器、可变信息板、车内信息显示装置,车内信息顾问,路径诱导等。

计算机仿真技术概述及其在交通仿真领域的应用

计算机仿真技术简介 计算机仿真技术是一门综合性信息技术,它通过专用软件,整合图像、声音、动画等,将三维的现实环境、物体模拟成多维表现形式的计算机仿真,再由数字媒介作为载体传播给人们。当人们通过该媒体浏览观赏时就如身临其境一般。并且可以选择任意角度,观看任意范围内的场景或选择观看物体的任意角度。正是由于对身临其境的真实感和对超越现实的虚拟性,以及建立个人能够沉浸其中、超越其上、进出自如、具有交互作用的多维信息系统的追求,推动了计算机仿真技术在各个领域中的应用与发展。并且,因其有效性、经济性、安全性、直观性等特点而受到广泛的应用。它是在计算机图形学基础上发展起来的一种仿真应用技术。 计算机仿真已成为系统仿真的一个重要分支,系统仿真很大程度上指的就是计算机仿真。计算机仿真技术的发展与控制工程、系统工程及计算机工程的发展有着密切的联系。一方面,控制工程、系统工程的发展,促进了仿真技术的广泛应用;另一方面,计算机的出现以及计算机技术的发展,又为仿真技术的发展提供了强大的支撑。工业方面,计算机仿真一直作为一种必不可少的工具,在减少损失、节约经费开支、缩短开发周期、提高产品质量等方面发挥着重要的作用。 综上所述,计算机仿真技术是以数学理论、相似原理、信息技术、系统技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一门综合性技术。它集成了计算机技术、网络技术、图形图象技术、面向对象技术、多媒体、软件工程、信息处理、自动控制等多个高新技术领域的知识。 计算机仿真技术原理 对于需要研究的对象,计算机一般是不能直接认知和处理的,这就要求为之建立一个既能反映所研究对象的实质,又易于被计算机处理的数学模型。关于研究对象、数学模型和计算机之间的关系,可以用图1来表示。

相关文档
最新文档