哈氏片转缸过程

哈氏片转缸过程
哈氏片转缸过程

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。 F/N v/mm s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

电镀工厂哈氏槽试验

电镀工厂哈氏槽试验 哈氏槽试验做为电镀工厂管理、电镀实验极有价值。 其主要目的可分, (1)测知以理论调配之镀液的电镀实用范围。 (2)分析镀液组成,添加剂、杂质的变化或影响。电镀液的管理是为了得到良好的电镀液及良好的镀层所做的一切有关镀液性能的试验,镀液成份的分析及镀液组成的控制。主要的可分下列 (4) 阴极弯区试验。 (5) 镀液化学成份定性级定量分析。 (8) 表面张力测定。 (9) 镀液导电度测定。 (10)电流效率测定。 1 哈氏槽试验 哈氏槽试验做为研究开发,电镀工厂管理、电镀实验极有价值。其主要目的可分, (1) 测知以理论调配之镀液之电镀实用范围。 (2) 分析镀液组成,添加剂、杂质的变化或影响。 哈氏槽可用于下列之管理: (1) 用化学分析求不出的成份。 (2) 用化学分析太费时间的成份。 (3) 非常微量就会影响电镀的成份。 (4) 固障的分析及预测。 从哈氏槽试片可观查分析出: (1) 不同电流密度之镀层变化。 (2) 镀液温度之影响。 (3) 镀液性能的变化。 (4) 镀液成份变化的影响。 (5) 镀液中杂质的影响。 (6) 镀液中添加剂的影响。 (7) 镀液的覆盖力。 (8) 镀液的均一电着性。 2 管子试验 管子试验是用适当大小的空心管子在镀液中以适当电流电镀,测试镀液的电着均一性,其公式如下: 均一电着性(%)=(被镀上部份的面积/管内全部的面积)*100% 3 阴极弯曲试验 阴极弯曲试验是将阴极试片弯曲成45度,于一定电流进行适当时间电镀,测定出电着均一性。 4 镀液化学成份定性及定量分析 详细内容请参阅有关金属表面技术资料的分析规范,其主要内容包括有: (1) 分析的基本知识。(7) 铜材浸蚀液分析。 (2) 分析的基本操作。(8) 各种镀金液分析。 (3) 碱性洗净液分析。(9) 化成处理液分析。

哈氏合金管成分密度

哈氏合金管成分密度 哈氏合金管是镍基合金管的一种,目前主要分为B、C、G三个系列,它主要用于铁基Cr-Ni或Cr-Ni-Mo不锈钢、非金属材料等无法使用的强腐蚀性介质场合,在国外已广泛应用于石油、化工、环保等诸多领域。 哈氏合金管(Hastelloy alloy) 一.目前主要分为B、C、G三个系列,它主要用于铁基Cr-Ni 或Cr-Ni-Mo不锈钢、非金属材料等无法使用的强腐蚀性介质场合。 哈氏合金管牌号 为改善哈氏合金管的耐蚀性能和冷、热加工性能,哈氏合金管先后进行了三次重大改进,其发展过程如下: B系列:B→B-2(00Ni70Mo28)→B-3 C系列:C→C-276(00Cr16Mo16W4)→C-4(00Cr16Mo16)→C-22(00Cr22Mo13W3)→C-2000(00Cr20Mo16) G系列:G→G-3(00Cr22Ni48Mo7Cu)→G-30(00Cr30Ni48Mo7Cu) 目前使用最广泛的是第二代材料N10665(B-2)、N10276(C-276)、N06022(C-22)、N06455(C-4)和N06985(G-3)。 二、 典型哈氏合金管化学成分 材料的化学成分 Ni Cr Mo Fe C Si Co Mn P S W V Cu Nb+Ta

N10665(B-2)基≤1.026.0~30≤2.0≤0.02≤0.10≤1.0≤1.0≤0.04≤0.03 N10276(C-276)基14.5~16.515.0~17.04.0~7.0≤0.01≤0.08≤2.5≤1.0≤0.04≤0.033.0~4.5≤0.035 N06007(G-3)基21.0~23.56.0~8.018.0~21≤0.015≤1.0≤5.0≤1.0≤0.04≤0.03≤1.51.5~2.5≤0.50 三、 哈氏合金管力学性能 哈氏合金管的力学性能非常突出,它具有高强度、高韧性的特点,所以在机加工方面有一定的难度,而且其应变硬化倾向极强,当变形率达到15%时,约为18-8不锈钢的两倍。哈氏合金管还存在中温敏化区,其敏化倾向随变形率的增加而增大。当温度较高时,哈氏合金管易吸收有害元素使它的力学性能和耐腐蚀性能下降

哈氏合金球阀技术说明

哈氏合金球阀技术说明 沃泰工业阀门(中国)有限公司 一、适用范围 本技术方案介绍适用于: 针对主体材料选用哈氏合金的金属硬密封球阀的技术方案。 (要加上为什么选用球阀的原因,从结构流道优势和流体力学及冲刷腐蚀入手说明) 二、产品特点 我公司大量引进国外先进技术,并结合多年的研制与生产经验,对管线球阀已拥有了丰富的设计与制造经验,是管线球阀 的专业制造厂商。管线球阀是我公司的主导产品之一,可靠的 产品质量,满意的售后服务,使我公司先后成为了中石油、中 石化的合格供应商。在长输管线,石油、天然气工业等领域得 到了广泛的运用。 我公司设计制造的管线球阀一般分为:分体式软密封管线球阀、分体式金属硬密封管线球阀和全焊接管线球阀。分体式管 线球阀通过高强度螺栓连接侧体与阀体。全焊接管线球阀通过 焊接方式将侧体与阀体连接。球体都采用固定式结构,阀座采 用浮动式设计。 分体式管线球阀通过螺栓连接侧体与阀体,便于安装于维修。设计标准符合API 6D标准,主体材料的温度与压力选择以 及最小壁厚的设计符合ASTM B 16.34标准规范。为了保证产品 的质量与设计的合理性,产品设计利用SOLIDWORKS建立模型,用ANSYS有限元分析,并不断优化设计。确保了产品的可靠性、经济性以及安全性。 为更好实现产品的高性能,对产品材料的化学成分严格控制,零部件制造采用数控加工,并精确的尺寸检测与严格的工 艺要求。 本阀门具有双向密封功能,任何一侧都可以承受全压差,截断介质,并体现较佳密封性能。实现管路的连接与切断功能。 分体式管线球阀在阀杆与填料箱密封处设计了注脂阀,以及在阀座与侧体处设计了注脂阀,起到了二次紧急密封作用, 延长了阀门的使用寿命。

哈氏合金元素及性能

哈氏合金(Hastelloy alloy) 一、引言 哈氏合金是镍基合金的一种,目前主要分为B、C、G三个系列,它主要用于铁基Cr-Ni或Cr-Ni-Mo不锈钢、非金属材料等无法使用的强腐蚀性介质场合,在国外已广泛应用于石油、化工、环保等诸多领域。其牌号和典型使用场合如下表所示。 哈氏合金牌号 为改善哈氏合金的耐蚀性能和冷、热加工性能,哈氏合金先后进行了三次重大改进, 其发展过程如下: B系列:B →B-2(00Ni70Mo28) →B-3 C系列:C →C-276(00Cr16Mo16W4) →C-4(00Cr16Mo16) → C-22 (00Cr22Mo13W3) →C-2000(00Cr20Mo16) G系列:G →G-3(00Cr22Ni48Mo7Cu)→ G-30(00Cr30Ni48Mo7Cu) 目前使用最广泛的是第二代材料N10665(B-2)、N10276(C-276)、N06022(C-22)、N06455(C-4)和N06985(G-3)。第三代材料N10675(B-3)、N10629(B-4)、N06059(C-59)处于推广阶段。由于冶金技术的进步,近年来出现了多个牌号的含~6%Mo的所谓―超级不锈钢‖,替代了G系列合金,使得G系列合金的生产和使用迅速下降。 二、典型哈氏合金化学成分 材料的化学成分 Ni Cr Mo Fe C Si Co Mn P S W V Cu Nb+T a N10665 (B-2) 基≤1.0 26.0~30 ≤2.0≤0.02≤0.10≤1.0≤1.0≤0.04 ≤0.03 N10276 (C-276) 基 14.5~16.5 15.0~ 17.0 4.0~7.0 ≤0.01≤0.08≤2.5≤1.0≤0.04≤0.03 3.0~ 4.5 ≤0.035 N06007 (G-3) 基 21.0~23.5 6.0~ 8.0 18.0~21 ≤0.015≤1.0≤5.0≤1.0≤0.04≤0.03≤1.5 1 .5~2.5 ≤0.50 三、力学性能 哈氏合金的力学性能非常突出,它具有高强度、高韧性的特点,所以在机加工方面有一定的难度,而且其应变硬化倾向极强,当变形率达到15%时,约为18-8不锈钢的两倍。哈氏合金还存在中温敏化区,其敏化倾向随变形率的增加而增大。当温度较高时,哈氏合金易吸收有害元素使它的力学性能和耐腐蚀性能下降。 材料的力学性能 四、常用哈氏合金 1:Hastelloy B-2 alloy(哈氏B-2合金)

液压油缸设计

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。— 液压缸工作腔的压力(Pa ) 错误!未找到引用源。— 液压缸回油腔的压力(Pa ) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D —液压缸内径 d —活塞杆直径 F — 液压缸推力 (N ) v —液压缸活塞运动速度 液压缸内径D 的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D 。液压缸内径D 和活塞杆直径d 可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: ()212 1212 4F d p D p p p p π=---有杆腔进油并不考虑机械效率时: ()221 1212 4F d p D p p p p π=+--

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = ==,按照GB/T2348-2001对液压缸内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

电镀药液分析手册-哈氏槽

Hull Cell 哈氏槽 一.目的 为使让操作者能准确、熟练、规范的操作,以确保操作之准确性。 二.适用范围 制造部电镀课分析室 三.定义 略 四.权责 1.本办法由制造部电镀课负责制定与修订。 2.制造部电镀课负责执行。 五.分析项目 1.硫酸铜 2.半光镍 3.全光镍 4.微孔镍 5.铬 6.微孔数 7.高硫镍 六.使用仪器 1.搅拌式哈氏槽(1套) 2.温度计 3.整流器 4.烧杯 5.加热石英 6. 加热 拌器 七.使用药液 1. 8﹪脱脂剂 2. 4.5﹪酸活化剂 3 铜片 4. 6﹪-重铬酸钾 5. 50﹪-HNO3 6. 20﹪-H2SO4 7. 5﹪-H2SO4 八.分析方法 1.铜片处理 1).配置1L 8﹪脱脂剂加热至沸腾后放入铜片浸置15min (注) 取出铜片以水洗净表面浸入4.5﹪酸活化剂内并均匀摆动1~2sec 取出铜片以水洗净表面进行哈氏槽电解试验 2.硫酸铜 1).以水洗净搅拌式哈氏槽清除残留水倒入硫酸铜液至标线(约267ml) 2).铜片连接+极(红电极夹)铜片于槽斜边位置与-极(黑电极夹)连接 3). 电流2A 时间10min电解结束后洗净铜片浸6﹪-重铬酸钾1~3sec 4).以水洗净铜片吹干进行试片光泽检视 3.半光镍全光镍微孔镍高硫镍 1).以水洗净搅拌式哈氏槽清除残留水倒入镀镍液至标线(约267 ml) 2).以石英加热管加热至温度55~60℃ 3).镍片连接+极(红电极夹)铜片于槽斜边位置与-极(黑电极夹)连接 4).电流2A时间10min电解 5). 以水洗净铜片吹干进行试片光泽检视 4.铬 1).加热搅拌铬液至45~50℃备用 2).以水洗净铬哈氏槽清除残留水倒入铬液至标线(约267ml)

哈氏合金知识

哈氏合金知识 哈氏C-276合金属于镍-钼-铬-铁-钨系镍基合金。它是现代金属材料中最耐蚀的一种。主要耐湿氯、各种氧化性氯化物、氯化盐溶液、硫酸与氧化性盐,在低温与中温盐酸中均有很好的耐蚀性能。因此,近三十年以来、在苛刻的腐蚀环境中,如化工、石油化工、烟气脱硫、纸浆和造纸、环保等工业领域有着相当广泛的应用。主要成分:Ni:余量 Mo:16 %Cr:15 %Fe:5 %W:4% 哈氏合金(Hastelloy alloy)一.目前主要分为B、C、G三个系列,它主要用于铁基Cr-Ni或Cr-Ni-Mo不锈钢、非金属材料等无法使用的强腐蚀性介质场合。哈氏合金牌号为改善哈氏合金的耐蚀性能和冷、热加工性能,哈氏合金先后进行了三次重大改进,其发展过程如下: B系列:B → B-2(00Ni70Mo28) → B-3 C系列:C → C-276(00Cr16Mo16W4) → C-4(00Cr16Mo16) → C-22 (00Cr22Mo13W3) → C-2000(00Cr20Mo16) G系列:G → G-3(00Cr22Ni48Mo7Cu)→ G-30(00Cr30Ni48Mo7Cu)目前使用最广泛的是第二代材料N10665(B-2)、N10276(C-276)、N06022(C-22)、N06455(C-4)和N06985(G-3)。二、典型哈氏合金化学成分材料的化学成 分Ni Cr Mo Fe C Si Co Mn P S W V Cu Nb+Ta N10665 (B-2) 基≤1.026.0~30 ≤2.0≤0.02≤0.10≤1.0≤1.0≤0.04 ≤0.03 N10276 (C-276) 基14.5~16.5 15.0~ 17.0 4.0~7.0 ≤0.01≤0.08≤2.5≤1.0≤0.04≤0.03 3.0~ 4.5 ≤0.035 N06007 (G-3) 基21.0~23.5 6.0~ 8.0 18.0~21 ≤0.015≤1.0≤5.0≤1.0≤0.04≤0.03≤1.5 1.5~2.5 ≤0.50 三、力学性能 哈氏合金的力学性能非常突出,它具有高强度、高韧性的特点,所以在机加工方面有一定的难度,而且其应变硬化倾向极强,当变形率达到15%时,约为18-8不锈钢的两倍。哈氏合金还存在中温敏化区,其敏化倾向随变形率的增加而增大。当温度较高时,哈氏合金易吸收有害元素使它的力学性能和耐腐蚀性能下降。材料的力学性能四、常用哈氏合金 1:Hastelloy B-2 alloy(哈氏B-2合金)一、耐蚀性能哈氏B-2合金是一种有极低含碳量和含硅量的Ni-Mo 合金,它减少了在焊缝及热影响区碳化物和其他相的析出,从而确保即使在焊接状态下也有良好的耐蚀性能。众所周知,哈氏B-2合金在各种还原性介质中具有优良的耐腐蚀性能,能耐常压下任何温度,任何浓度盐酸的腐蚀。在不充气的中等浓度的非氧化性硫酸、各种浓度磷酸、高温醋酸、甲酸等有机酸、溴酸以及氯化氢气体中均有优良的耐蚀性能,同时,它也耐卤族催化剂的腐蚀。因此,哈氏B-2合金通常应用于多种苛刻的石油、化工过程,如盐酸的蒸馏,浓缩;乙苯的烷基化和低压羰基合成醋酸等生产工艺过程中。但在哈氏B-2合金多年的工业应用中发现:(1)哈氏B-2合金存在对抗晶间腐蚀性能有相当大影响的两个敏化区:1200~1300℃的高温区和550~900℃的中温区;(2)哈氏B-2合金的焊缝金属及热影响区由于枝晶偏析,金属间相和碳化物沿晶界析出,使其对晶间腐蚀敏感性较大;(3)哈氏B-2合金的中温热稳定性较差。当哈氏B-2合金中

哈氏合金C-276各种元素介绍及对性能的影响

哈氏合金C-276各种元素介绍及对性能的影响 C-276哈氏合金元素中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对哈氏合金C-276的性能均有一定的影响。哈氏C-276合金属于镍-钼-铬-铁-钨系镍基合金。它是现代金属材料中最耐蚀的一种 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。 冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢:P<0.025%;优质钢:P<0.04%;普通钢: P<0.085%。

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为20000N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的部压力损失,以减少功率损失。主要表现在改进元件部流道的

压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下:[1]

哈氏槽(赫尔槽)原理及相关试验说明(技术相关)

哈氏槽(赫尔槽)原理及相关试验说明 现代电镀网讯: 一、哈氏槽试验 哈氏槽也叫霍尔槽或梯形槽,是由美国的R.O.Hull于1939年发明的,用来进行电镀液性能测试的实验小槽,其基本的形状如下图所示: 由于哈氏槽试片两端距阳极的距离有很大差别,加上在角部的屏蔽效应,使同一试片上从近阳极湍和远阳极端的电流密度有很大的差异,并且电流密度的分布呈现由大(近阳极)到小(远阳极)的线性分布。根据通过哈氏槽总电流大小的不同,其远近两端电流密度的大小差值达50倍。这样,从一个试片上可以观测到很宽电流密度范围的镀层状况,从而为分析和处理镀液故障提供了很多有用的信息。 通过哈氏槽实验可以控制镀层质量,确定最佳镀液配比和合适的温度、电流密度和各种添加剂的用量和补充规律。还可以分析镀液中杂质和各种成分变化对镀层的影响和排查镀液故障。因此,哈氏槽实验是电镀生产和管理以及科研都不可少的重要实验工具。 二、加长型哈氏槽 加长型哈氏槽是将哈氏槽的阴极区的长度加长为标准哈氏槽的2倍的改良型哈氏槽(如下图所示)。这是为了测试高水平宽光亮区电镀添加剂的一种创新设备。加长后的阴极试片的长度达到203mm,这样做是因为用标准试片发现不了新型光泽剂的低区和高区极限电流区域,通过加长试片的长度,可以在更宽的电流密度范围内考查镀液和添加剂的水平。多用于光亮性电镀的验证试验,特别是在光亮镀镍新型光泽剂的开发方面,这种加长型哈氏槽可以发挥很好的作用。

随着电镀技术的不断进步,有些镀种在传统哈氏槽试片的电流密度区内都可以获得全光亮的镀层,用传统哈氏槽已经无法进行低电流区性能的比较。而采用这种加长型哈氏槽由很容易看得出差距。 三、用哈氏槽做光泽剂的试验 光泽剂是光亮电镀中必不可少的添加剂,是光亮镀种管理的关键成分,因此采用哈氏槽对光泽剂进行试验是常用的管理手段。采用哈氏槽可以对光泽剂的光亮效果、光亮区的电流密度范围、光泽剂的消耗量和外加规律等做出明确的判断。 当采用哈氏槽进行光泽剂性能等相关试验时,首先要采用标准的镀液配方和严格的电镀工艺规范,以排除其他非添加剂因素对试验的干扰。常用的方法是每个批次的试验采用一次配成的基础镀液,镀液的量要大于试验次数要用到的量的总和,基础镀液采用化学纯或与生产工艺相同级别的化工原料进行配制,并且记住不能往基础液中添加任何光泽剂,以保证试验结果的准确性和可靠性。 在准备好镀液和哈氏片之后,可以取试验基础液注入哈氏槽,然后再按试验项目的要求将镀液的工艺参数调整到规定的范围,先不加入光泽剂做出一个空白的试片,留做对比之用。再加入规定量的待测光泽剂,通电试验。对于光亮镀种,常用的总电流是2A,时间为5Min,镀好取出后,要迅速清洗干净,最后一次的清洗要用纯净水,然后用热电吹风吹干后,观测表面状况并做好相关的记录,再将试片进行干燥器中保存。为了方便以后对比,每做一个试片都要有标识贴在试片上,记录编号、试验条件、试验参数。 做完空白试验后的试验液一般只能再做2个试片,同一个工艺参数和含量的试片通常也要求做2次,以排除偶然性。在每一次换新镀液时,都要做空白试验。为了提高效率,可以一次配置够用多次试验的基础液,这样只做一次空白试片就可以代表这批试液的状况。 第一次添加光泽剂的量可按供应商所提供的说明书的标准量加入,以判断光泽剂的基本水平;然后再按过量加入,看超量的影响是怎么样的,再做1/3量和1/2量的试片,以了解不足量的影响,最后还要做光泽剂的量。 有些试验者取了一次基础试验后,就一直往里加入光泽剂来做试验。

液压缸的设计_毕业论文设计-液压缸的设计

(此文档为word格式,下载后您可任意编辑修改!) 毕 业 设 计 液压缸的设计 姓名:_______________ 学号:_______________ 专业:_______________ 班级:_______________ 指导老师:_______________

2013 年11 月28 日

摘要 将液压缸提供的液压能重新转换成机械能的装置称为执行元件。执行元件是直接做功者,从能量转换的观点看,它与液压泵的作用是相反的。根据能量转换的形式,执行元件可分为两类三种:液压马达、液压缸、和摆动液压马达,后者也可称摆动液压缸。液压马达是作连续旋转运动并输出转矩的液压执行元件;而液压缸是作往复直线运动并输出力的液压执行元件。此说明书是针对液压缸的工作环境和工作要求来确定液压缸的工作压力和承载能力,来确定其缸筒内径、壁厚和活塞杆的直径。再根据液压缸的零部件的工作要求确定零件的工艺,根据零件的精度要求确定零件的加工方法,并生成工艺卡片,完成零件的加工。 关键字:液压缸、机械能、转矩、执行元件 Abstract Hydraulic cylinder will be able to provide the device called actuators. Work is a direct implementation of components, from the point of view of energy conversion; it is the role of the in the form of implementation of the three components can be divided into two categories: and the output of the of components

哈氏合金成分特性介绍

1) 美国哈氏合金国际公司(Haynes International,Inc.) 公司前身的Haynes Stellite Work (哈茨钴铬钨工厂)于1921 年创立于美国印地安那州Kokomo,距今已有91年历史,在九十余 年经历的生产和研究中不断创新与发明,从而在高合金领域稳居世 界首位。 Haynes 国际公司注重产品的生产和开发。主要从事高质量 的耐腐蚀和耐高温镍-钴合金的开发和生产。同时,公司的专家技术 人员在全球范围内提供进一步的客户服务和技术支持。Haynes公司 的服务中心及分支机构能为客户及时提供板材、棒材、管材、管材、 锻件、法兰和连接件等。 (2) 哈氏合金(Hastelloy alloy) 哈氏合金是镍基合金的一种,目前主要分为B、C、G三个系列,它主要用于铁基Cr-Ni或Cr-Ni-Mo不锈钢、非金属材料等无法使用的强腐蚀性介质场合,在国外已广泛应用于石油、化工、环保等诸多领域。 哈氏合金(Hastelloy alloy) 一.目前主要分为B、C、G三个系列,它主要用于铁基Cr-Ni或Cr-Ni-Mo不锈钢、非金属材料等无法使用的强腐蚀性介质场合。 哈氏合金牌号 为改善哈氏合金的耐蚀性能和冷、热加工性能,哈氏合金先后进行了三次重大改进,其发展过程如下: B系列:B → B-2(00Ni70Mo28) → B-3 C系列:C → C-276(00Cr16Mo16W4) → C-4(00Cr16Mo16) → C-22 (00Cr22Mo13W3) → C-2000(00Cr20Mo16) G系列:G → G-3(00Cr22Ni48Mo7Cu)→ G-30(00Cr30Ni48Mo7Cu) 目前使用最广泛的是第二代材料N10665(B-2)、N10276(C-276)、 N06022(C-22)、N06455(C-4)和N06985(G-3)。 二、典型哈氏合金化学成分 材料的化学成分 Ni Cr Mo Fe C Si Co Mn P S W V Cu Nb+Ta N10665 (B-2) 基≤1.0 26.0~30 ≤2.0 ≤0.02 ≤0.10 ≤1.0 ≤1.0 ≤0.04 ≤0.03 N10276 (C-276) 基14.5~16.5 15.0~ 17.0 4.0~7.0 ≤0.01 ≤0.08 ≤2.5 ≤1.0 ≤0.04 ≤0.03 3.0~ 4.5 ≤0.035

液压油缸的一般设计步骤手册(精选.)

液压油缸的一般设计步骤 液压油缸的一般设计步骤 1)掌握原始资料和设计依据,主要包括:主机的用途和工作条件;工作机构的结构特点、负载状况、行程大小和动作要求;液压系统所选定的工作压力和流量;材料、配件和加工工艺的现实状况;有关的国家标准和技术规范等。 2)根据主机的动作要求选择液压缸的类型和结构形式。 3)根据液压缸所承受的外部载荷作用力,如重力、外部机构运动磨擦力、惯性力和工作载荷,确定液压缸在行程各阶段上负载的变化规律以及必须提供的动力数值。 4)根据液压缸的工作负载和选定的油液工作压力,确定活塞和活塞杆的直径。 5)根据液压缸的运动速度、活塞和活塞杆的直径,确定液压泵的流量。 6)选择缸筒材料,计算外径。

7)选择缸盖的结构形式,计算缸盖与缸筒的连接强度。 8)根据工作行程要求,确定液压缸的最大工作长度L,通常L>=D,D为活塞杆直径。由于活塞杆细长,应进行纵向弯曲强度校核和液压缸的稳定性计算。 9)必要时设计缓冲、排气和防尘等装置。 10)绘制液压缸装配图和零件图。 11)整理设计计算书,审定图样及其它技术文件。 液压缸工作时出现爬行现象的原因及排除方法 1)缸内有空气侵入,应增设排气装置或使液压缸以最大行程快速运动,强迫排除空气。 2)液压缸的端盖处密封圈压得太紧或太松,应调整密封圈使之有适当的松紧度,保证活塞杆能用手来回平稳地拉动而无泄漏。 3)活塞与活塞杆同轴度不好,应校正、调整。 4)液压缸安装后与导轨不平行,应进行调整或重新安装。 5)活塞杆弯曲,应校直活塞杆。 6)活塞杆刚性差,加大活塞杆直径。 7)液压缸运动零件之间间隙过大,应减小配合间隙。 8)液压缸的安装位置偏移,应检查液压缸与导轨的平行度,并校正。

哈氏合金介绍及常用材质

、什么是哈氏合金,主要用在那些方面啊 电脑里关于这个的太多,打包都要发好几个文件夹的,麻烦。选一点好了。 哈斯特洛依(HASTELLOY)镍基合金 哈斯特洛依合金是镍-钼,镍-铬-钼系合金。早期的(Ni60-Mo19-Fe20)哈斯特洛依A解决了耐蚀合金领域内耐盐酸腐蚀的问题。但它只能用于70℃以下的盐酸腐蚀。适当提高钼并降低铁而发展的哈斯特洛依B(0Ni65Mo28Fe5)和哈斯特洛依B2(00Ni70M028),则可用于沸腾温度下任意浓度的盐酸,甚至在硫酸、氢氟酸中也有良好的耐腐蚀性。 哈斯特洛依B2因超低碳量含量,其耐蚀性比哈斯特洛依B优良。哈斯特洛依B3是一个增加的牌号,热稳定性比B2好。同样具有卓越的抗盐酸、硫酸、醋酸和磷酸及其它非氧化性环境腐蚀的能力。 哈斯特洛依A、B、B2Ni-Mo合金在盐酸中有良好的耐蚀性,但在加有氧或氧化剂的介质中,则耐蚀性显著下降。为克服该合金在还原、氧化复合介质中的低耐蚀性,发展了哈斯特洛依C(Ni60Cr16Mo16W4)。 含Mo量在25%~30%的Ni-Mo合金有二个敏化区,1200~1300℃和600~900℃均有含钼较高的析出相沿晶界沉淀导致晶粒边缘微区钼贫化而产生晶间腐蚀,降低碳、硅和铁,添加钨、钒和铌可改善在盐酸和硫酸中抗晶间腐蚀性能。哈斯特洛依C经600~1150℃敏化处理后在盐酸、硫酸、铬酸中还是出现晶间腐蚀,晶粒边缘微区的贫钼与贫铬导致产生晶间腐蚀的原因。 在哈斯特洛依C中Si能显著加速σ相的形成,据此发展了第二代的低碳 (0.03%)、低硅(0.03%)哈斯特洛依C276(000Cr16Ni60Mo16W4)。它不但具有高的抗还原性介质和氧化性介质腐蚀的能力,而且还能抗点蚀和缝隙腐蚀。但该合金仍有金属间相和碳化物析出。不能抗高温浓硫酸的腐蚀。在通过Ar-O2炼钢和电渣重熔等提纯处理来降低二次碳化物析出的数量或加Ti。进一步发展了极低碳(≤0.015%)和低硅(0.08%)加Ti、不含W的第三代合金哈斯特洛依C-4(000Cr16Ni63Mo16Ti)。 哈斯特洛依N(0Cr7Ni75Mo16)严格控制微量B含量,并加入Ti控制形成MC 型碳化物该合金耐熔盐酸腐蚀好、焊接性好、650℃无辐射脆化。

有关哈氏合金

概述: 据了解,在耐高温材料中,比较突出的是由Cr20Ni80发展 对以下四种材料进行比较和分析。310S不锈钢,哈氏合金C276,inconel 600,inconel 800。 310S属于不锈钢类,因其耐高温和耐腐蚀性能好,价格低廉,得到广泛的应用,镍基合金耐高温性能卓越,其中有inconel 600,inconel 800和哈氏合金中的C276。 耐腐蚀:哈氏合金C276 Cr20Ni80 电阻电热合金,此类合金组织稳定,电气物理特性稳定、高温力学性能好,冷变形塑性好,焊接性好,长期使用不会产生脆性断裂。多用于制造家用电器和工作温度在1000℃以下的加热元件,使用寿命长。 化学成分是: C Max:0.08%; Mn Max:0.06%; P Max:0.02%; S Max:0.015%; Si:Max:0.75-1.60%; Cr:20.0-23.0%; Ni:余量。 Fe ≤ 1.0% 元件最高使用温度1200℃ 熔点1400℃ 电阻率 1.09±0.05 比热 0.44 延伸率≥20 导热系数kj/m.h℃ 60.3 线胀系数 18 磁性无 哈氏合金 哈氏合金中以C276应用最为广泛,C276的成分为 在镍基合金中,人们普遍分为五类(耐热合金,耐蚀合金,形状记忆合金,精密合金,耐磨合金)哈氏C276一般被归为耐腐蚀合金,而耐热合金里面有另一个应用不及C276普遍 的型号,叫inconel 600,熔点为1371——1421℃,哈氏C276熔点为1325——1369℃,据 说镍基合金都是由镍络电阻合金Cr20Ni80发展来的 现将这三种合金作一个比较: 哈氏C276

hastelloyB_hastelloyB-2哈氏合金化学成分

HastelloyB 哈斯特洛伊耐蚀镍基合金;哈氏合金;镍基合金;哈氏合金丝 hastelloyB-2合金在化学、石化、能源制造和污染控制领域中有着广泛的应用,尤其是在硫酸、盐酸、磷酸、醋酸等工业中 哈氏合金棒哈氏合金板材哈氏合金无缝管哈氏合金焊接管哈氏合金带材 哈氏合金锻件哈氏合金法兰 哈氏特种合金系列:HastelloyB/N10001 HastelloyB-2/N10665 HastelloyB-3 HastelloyC Hastelloyc-276/N10276 HastelloyC-4/N06455 HastelloyC-22/N06022 HastelloyX/N06002 镍基镍合金系列 GH高温合金: GH131 (GH1131) GH132 (GH1132) GH136 (GH1136) GH30 (GH3030) GH36 (GH3036) GH39 (GH3039) GH44 (GH3044) GH128 (GH3128) GH33 (GH4033) GH145 (GH4145) GH169 (GH4169) GH738 (GH4738) GH140 (GH1140) GH706 (GH2706) GH901 (GH2901) GH536 (GH3536) GH99 (GH4099) GH188 (GH5188) GH80A (GH4080A) GH922 (GH3922) GH141 (GH4141) GH625 (GH3625) GH751 (GH4751) GH230 GH26 (R26) Inconel : Inconel 230 (N06230), Inconel 600 (N06600), Inconel 601 (N06601), Inconel 617 (N06617), Inconel 625 (N06625), Inconel 690 (N06690), Inconel 706 (N0770 6) Inconel 718 (N07718), Inconel X-750 (N07750), Inconel 751 (NQ7751) Monel合金: Monel 400, Monel R-405 , Monel K-500 NS耐蚀合金:

液压油缸设计.(DOC)

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。—液压缸工作腔的压力(Pa) 错误!未找到引用源。—液压缸回油腔的压力(Pa) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D—液压缸内径 d—活塞杆直径 F —液压缸推力(N) v—液压缸活塞运动速度 液压缸内径D的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D。液压缸内径D 和活塞杆直径d可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: D= 有杆腔进油并不考虑机械效率时: D=

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = =,按照GB/T2348-2001对液压缸 内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

哈氏合金

哈氏合金(C-276、C-22) 哈氏合金(C-276、C-22) 产品简介? 产品名称:哈氏合金C-276、C-22 产品产地:中国、日本、美国、德国 主要成分:59Ni-15Cr-16Mo-4W-5Fe 产品描述: C-276合金是一种含钨的镍-铬-钼合金,含有极低的硅和碳。通常被认为是万能的抗腐蚀合金。该合金具有以下特性:①在氧化和还原两氛围状态中,对大多数腐蚀介质具有优异的耐腐蚀性能。②有出色的耐点蚀、缝隙腐蚀和应力开裂腐蚀性能。 C-276合金适用于各种含有氧化和还原性介质的化学工业。较高的钼、铬含量使合金能够耐氯离子腐蚀,钨元素进一步提高了耐蚀性。同时,C-276合金是仅有的几种耐潮湿氯气、次氯酸盐及二氧化氯溶液腐蚀的材料之一,对高浓度的氯化盐溶液如氯化铁和氯化铜有显著的耐蚀性。 此合金因减少了碳,硅,所以可以控制热影响部分的碳化物的流出,从而更好地提高其耐腐蚀性能。正是因为有此特性,所以广泛用于化学设备等苛刻环境下的材料使用。 应用领域:热交换器、波纹管补偿器、化工设备、烟气脱硫脱销、造纸工业、酸性环境下的设备和元件、乙酸和酸性产品的反应器、PGD系统中的洗涤塔、硫酸冷凝器等。 库存说明: 日本、德国产: 0.5×510/920/925×C0.6×510(610/810/920)×C 美国产 0.5×1000(1219)×C0.6×1000(1219)×C 2.0×1000×C 4.75×2000×60006×2000×60008×2000×6000 10×2000×6000 其他哈氏合金材料库存,欢迎来电咨询。 供货样式:公司备有现货库存,可定尺交货,量大可期货交易,品质确保,交货及时。公司并可按图纸加工制造各种法兰、管件、紧固件、精密零件﹑器具等。 执行标准:UNS N10276,ASTM B575,ASME SB575,NAS NW276,DIN/EN 2.4819 配套焊材:焊条(ENiCrMo-4),焊丝(ERNiCrMo-4)

相关文档
最新文档