亿光直插光耦EL3061

亿光直插光耦EL3061
亿光直插光耦EL3061

6PIN DIP ZERO-CROSS TRIAC DRIVER PHOTOCOUPLER EL303X, EL304X, EL306X, EL308X Series

Features:

? Peak breakdown voltage -250V: EL303X -400V: EL304X -600V: EL306X -800V: EL308X

? High isolation voltage between input and output (Viso=5000 V rms )?Zero voltage crossing

? Pb free and RoHS compliant.

?UL and cUL approved(No. E214129)? VDE approved (No.132249)? SEMKO approved ? NEMKO approved ? DEMKO approved ?FIMKO approved

Description

The EL303X, EL304X, EL306X and EL308X series of devices each consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon zero voltage crossing photo triac.

They are designed for use with a discrete power triac in the interface of logic systems to equipment powered from 110 to 380 VAC lines,such as solid-state relays, industrial controls, motors, solenoids and consumer appliances.

Applications

●Solenoid/valve controls ●Light controls

●Static power switch ●AC motor drivers ●E.M. contactors

●Temperature controls ●

AC Motor starters

亿光一级代理商超毅电子

DATASHEET

6 PIN DIP ZERO-CROSS TRIAC DRIVER PHOTOCOUPLER EL303X, EL304X, EL306X, EL308X Series

Absolute Maximum Ratings (Ta=25 )

Parameter

Symbol Rating Unit Input

Forward current I F 60mA Reverse voltage V R 6V Power dissipation

Derating factor (above T a = 85 C)

P D

100mW 3.8mW /°C

Output

Off-state Output Terminal Voltage

EL303X V DRM

250

V

EL304X 400EL306X 600EL308X

800

Peak Repetitive Surge Current (pw=1ms,120pps)I TSM 1A On-State RMS Current I T(RMS)100mA Power dissipation

Derating factor (above T a = 85 C)

P C 300mW 7.6mW/ Total power dissipation P TOT 330mW Isolation voltage

*1

V ISO 5000Vrms Operating temperature T OPR -55 to 100 Storage temperature T STG

-55 to 125 Soldering Temperature*

2

T SOL

260

Notes:

*1AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2&3are shorted together, and pins 4, 5 & 6are shorted together.*2 For 10 seconds

亿光一级代理商超毅电子

Electro-Optical Characteristics (Ta=25 unless specified otherwise)

Input

Parameter Symbol Min.Typ.*Max.Unit Condition Forward Voltage V F-- 1.5V I F=30mA Reverse Leakage current I R--10μA V R=6V Output

Parameter Symbo

l

Min.Typ.*Max.Unit Condition

Peak Blocking Current EL303X

EL304X

I DRM1--

100

nA

V DRM = Rated V DRM

I F=0mA

EL306X

EL308X

500

Peak On-state Voltage V TM--3V I TM=100mA peak, I F=Rated I FT

Critical Rate of Rise off-state Voltage EL303X

EL304X

EL306X dv/dt

1000--

V/μs

V PEAK=Rated V DRM, I F=0

(Fig. 10)

EL308X600--

Inhibit Voltage (MT1-MT2

voltage above which device

will not trigger)

V INH--20V I F= Rated I FT

Leakage in lnhibited State I DRM2--500μA I F= Rated I FT,

V DRM=Rated V DRM, off state

Transfer Characteristics

Parameter Symbol Min.Typ.*Max.Unit Condition

LED Trigger Current EL3031

EL3041

EL3061

EL3081

I FT

--15

mA Main terminal Voltage=3V EL3032

EL3042

EL3062

EL3082

--10

EL3033

EL3043

EL3063

EL3083

--5

Holding Current I H-280-μA * Typical values at T a= 25°C

Typical Electro-Optical Characteristics Curves

Figure 10. Static dv/dt Test Circuit & Waveform

Measurement Method

The high voltage pulse is set to the required V PEAK value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform V T is monitored using a x100 scope probe. By varying R TEST , the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, τRC is recorded and the dv/dt calculated.

For example, V PEAK = 600V for EL306X series. The dv/dt value is calculated as follows:

V PEAK

Applied V T Waveform

τRC

0.632 x V PEAK

0.63 x 600

τRC

dv/dt = = 378

τRC

0.632 x V PEAK τRC

dv/dt =

50 ?

10 k ?

D.U.T.

R TEST

High Voltage Pulse Source

C TEST

V T

A K

T1

T2

Zero Crossing Circuit

Order Information

Part Number

EL303XY(Z)-V

or EL304XY(Z)-V

or EL306XY(Z)-V

or EL308XY(Z)-V

Note

X = Part No. (1, 2 or 3)

Y = Lead form option (S, S1, M or none)

Z = Tape and reel option (TA, TB or none).

V=VDE safety approved option

Option Description Packing quantity None Standard DIP-665units per tube M Wide lead bend(0.4 inch spacing)65units per tube S(TA)Surface mount lead form+ TA tape & reel option1000units per reel S(TB)Surface mount lead form+ TB tape & reel option1000units per reel S1(TA)Surface mount lead form (low profile) + TA tape & reel option1000 units per reel S1(TB)Surface mount lead form (low profile) + TB tape & reel option1000 units per reel

Package Dimension(Dimensions in mm) Standard DIP Type

Option M Type

Option S Type

Option S1 Type

Recommended pad layout for surface mount leadform

Device Marking

Notes

EL denotes Everlight

3083denotes Device Number

Y denotes 1 digit Year code

WW denotes 2 digit Week code

V

denotes VDE option

EL

3083

YWWV

Tape dimensions

Dimension No.A B Do D1E F Dimension (mm)

10.4±0.1

7.5±0.1

1.5±0.1

1.5+0.1/-0

1.75±0.1

7.5±0.1

Dimension No.Po P1P2t W K Dimension (mm)

4.0±0.15

12±0.1

2.0±0.1

0.35±0.03

16.0±0.2

4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note: Reference: IPC/JEDEC J-STD-020D

Preheat

Temperature min (T smin) 150 °C

Temperature max (T smax)200°C

Time (T smin to T smax) (t s)60-120 seconds

Average ramp-up rate (T smax to T p) 3 °C/second max

Other

Liquidus Temperature (T L)217 °C

Time above Liquidus Temperature (t L)60-100 sec

Peak Temperature (T P) 260°C

Time within 5 °C of Actual Peak Temperature: T P-5°C 30 s

Ramp-Down Rate from Peak Temperature 6°C /second max.

Time 25°C to peak temperature8 minutes max.

Reflow times 3 times

.

DISCLAIMER

1.Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above

specification.

2.When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these

specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.

3.These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don’t

reproduce or cause anyone to reproduce them without EVERLIGHT’s consent.

编码器使用教程与测速原理

编码器使用教程与测速原理 我们将通过这篇教程与大家一起学习编码器的原理,并介绍一些实用的技术。 1.编码器概述 编码器是一种将角位移或者角速度转换成一连串电数字脉冲的旋转式传感器,我们可以通过编码器测量到底位移或者速度信息。编码器从输出数据类型上分,可以分为增量式编码器和绝对式编码器。 从编码器检测原理上来分,还可以分为光学式、磁式、感应式、电容式。常见的是光电编码器(光学式)和霍尔编码器(磁式)。 2.编码器原理 光电编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。光电编码器是由光码盘和光电检测装置组成。光码盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,检测装置检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。 霍尔编码器是一种通过磁电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。霍尔编码器是由霍尔码盘和霍尔元件组成。霍尔码盘是在一定直径的圆板上等分地布置有不同的磁极。霍尔码盘与电动机同轴,电动机旋转时,霍尔元件检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。

可以看到两种原理的编码器目的都是获取AB相输出的方波信号,其使用方法也是一样,下面是一个简单的示意图。 3.编码器接线说明 具体到我们的编码器电机,我们可以看看电机编码器的实物。 这是一款增量式输出的霍尔编码器。编码器有AB相输出,所以不仅可以测速,还可以辨别转向。根据上图的接线说明可以看到,我们只需给编码器电源5V供电,在电机转动的时候即可通过AB相输出方波信号。编码器自带了上拉电阻,所以无需外部上拉,可以直接连接到单片机IO读取。

亿光光耦EL3023

6PIN DIP RANDOM-PHASE TRIAC DRIVER PHOTOCOUPLER EL301X, EL302X, EL305X Series Features: ? Peak breakdown voltage -250V: EL301X -400V: EL302X -600V: EL305X ? High isolation voltage between input and output (Viso=5000 V rms )? Compact dual-in-line package ? Pb free and RoHS compliant. ?UL and cUL approved(No. E214129)? VDE approved (No.132249)? SEMKO approved ? NEMKO approved ? DEMKO approved ?FIMKO approved Description The EL301X, EL302X and EL305X series of devices each consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon random phase photo Triac. They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 to 240 VAC operations. Applications ●Solenoid/valve controls ●Lamp ballasts ●Static AC power switch ●Interfacing microprocessors to 115 to 240Vac peripherals ●Incandescent lamp dimmers ●Temperature controls ● Motor controls Schematic 12654 3 Pin Configuration 1. Anode 2. Cathode 3. No Connection 4. Terminal 5. Substrate (do not connect)6. Terminal 亿光一级代理商超毅电子

编码器测速

飞思卡尔智能车舵机和测速的控制设计与实现 时间:2010-04-1411:53:10来源:电子设计工程作者:雷贞勇谢光骥五邑大学 2.1舵机工作原理 舵机在6V电压下正常工作,而大赛组委会统一提供的标准电源输出电压为7.2V,则需一个外围电压转换电路将电源电压转换为舵机的工作电压6V。图2为舵机供电电路。 舵机由舵盘、位置反馈电位计、减速齿轮组、直流动电机和控制电路组成,内部位置反馈减速齿轮组由直流电动机驱动,其输出轴带动一个具有线性比例特性的位置反馈电位器作为位置检测。当电位器转角线性地转换为电压并反馈给控制电路时,控制电路将反馈信号与输入的控制脉冲信号相比较,产生纠正脉冲,控制并驱动直流电机正向或反向转动,使减速齿轮组输出的位置与期望值相符。从而达到舵机精确控制转向角度的目的。舵机工作原理框图如图3所示。 2.2舵机的安装与调节 舵机的控制脉宽与转角在-45°~+45°范围内线性变化。对于对速度有一定要求的智能车,舵机的响应速度和舵机的转向传动比直接影响车模能否以最佳速度顺利通过弯道。车模在赛道上高速行驶,特别是对于前瞻性不够远的红外光电检测智能车,舵机的响应速度及其转向传动比将直接影响车模行驶的稳定性,因此必须细心调试,逐一解决。由于舵机从执行转动指令到响应输出需占用一定的时间,因而产生舵机实时控制的滞后。虽然车模在进入弯道时能够检测到黑色路线的偏转方向,但由于舵机的滞后性,使得车模在转弯过程中时常偏离跑道,且速度越快,偏离越远,极大限制车模在连续弯道上行驶的最大时速,使得车模全程赛道速度很难进一步提高。为了减小舵机响应时间,在遵守比赛规则不允许改造舵机结构的前提下,利用杠杆原理,采用加长舵机力臂的方案来弥补这一缺陷,加长舵机力臂示意图如图4所示。

飞思卡尔光电编码器测速程序

#include /* common defines and macros */ #include /* derivative information */ #pragma LINK_INFO DERIV ATIVE "mc9s12xs128" volatile uint speed_back=0,temp=0; void delay_ms(uint ms) { volatile uint x=0; while(ms--) { for(x=2800;x>0;x--) { _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); } } } //注意外接16M晶体。 //飞思卡尔推荐配置,主频道50MHZ,速度更快! void Init_PLL(void) { CLKSEL = 0X00; //disengage PLL to system PLLCTL_PLLON = 1; //turn on PLL SYNR = (0xc0|0x18); //SYDIV=0X18=24 REFDV = (0x40|0x07); //REFDIV=0X07=7 POSTDIV = 0x00; //pllclock=2*osc*(1+SYDIV)/(1+REFDIV)=100MHz; _asm(nop); //BUS CLOCK=50M _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop);

测速发电机、测厚仪表和光电编码器

测速发电机、测厚仪表和光电编码器: 01 测速发电机原理介绍 测速发电机是一种专门用来测量转速的微型电机,其本质是一种微型发电机。测速发电机有直流和交流两种,直流测速发电机输出电压和转速有较好的线性关系,并且直流的极性可以反映出转动的方向,应用方便。由于直流测速发电机有电刷、换向器等接触装置,使它的可靠性变差,精度也受到影响。交流发电机的输出频率与转速严格对应,输出的信号可经放大整形变换电路转换成标准的电压或电流信号。它不需要电刷和换向器,结构简单,不产生干扰火花,但是输出特性随负载性质(电阻、电感、电容)变化而变化。 02 测厚仪表介绍 测厚仪表属于长度测量范畴,但它是一种特殊的长度测量。目前常用的厚度检测一般属于运动物体厚度的连续测量,而对于非连续测量则多用于一般简单机械式测量仪。 从20世纪40年代开始,测厚仪已用在生产工艺流程上进行材料厚度(包括涂、镀层厚度)的自动检测,也用于各种金属和非金属板材的扎制过程。按检测方式的不同,测厚仪分为接触式和非接触式两大类;按其变换原理分为射线式、电涡流式、微波式、激光式、电容式、电感式等。 处于交变磁场中的金属,由于电磁感应的作用,在金属内部会产生感应电动势并形成许多闭合回路电流,即涡流。涡流测厚仪正是利用涡流来测量厚度的。涡流测厚仪分为高频发射式和低频反射式两种。 射线式测厚仪按照射线源的种类可分为X射线测厚仪和核辐射线测厚仪两类;按射线与被测板材的作用方式可分为透射式和反透射式两类。X射线测厚仪是基于射线被板材吸收的原理制成的。 03 光电编码器的概述 作为一种传感器,光电编码器具有精度高、耗能低、非接触无磨损、稳定可靠等优点。尤其是它以数字量输出,具有与计算机容易联机的优点。根据所测量的物理量的性质不同,光电编码器可对运动机械的直线位移、角位移、速度、相位等进行检测,也可间接地对能变换成这些量的,例如温度、压力、流量等物理量进行测量,并给出相应的电学量输出。在自动化系统中,它可作为敏感检测元件组成自动检测系统,也可作为检测反馈元件组成闭环或半闭环的自动控制系统。 04 光电编码器的分类

亿光光耦ELM600

5 PIN SOP HIGH SPEED 10MBit/s LOGIC GATE PHOTOCOUPLER ELM6XX series Features ?Compliance Halogen Free . (Br <900 ppm ,Cl <900 ppm , Br+Cl < 1500 ppm)? High speed 10Mbit/s ? Guaranteed performance from -40 to 85 ? Logic gate output ? High isolation voltage between input and output (Viso=3750 V rms )?Compliance with EU REACH ? Pb free and RoHS compliant. ?UL and cUL approved(No. E214129)? VDE approved (No. 40028116)? SEMKO approved ? NEMKO approved ? DEMKO approved ? FIMKO approved Description The ELM600, ELM601 and ELM611 are consists of an infrared emitting diode optically coupled to a high speed integrated photo detector logic gate with a strobable output. The devices are packaged in a 5-pin small outline package which conforms to the standard footprint. Applications Truth Table ? Ground loop elimination ? LSTTL to TTL, LSTTL or 5 volt CMOS ?Line receiver, data transmission ? Data multiplexing ? Switching power supplies ?Pulse transformer replacement ?Computer peripheral interface Input Output H L L H Schematic Pin Configuration 1, Anode 3, Cathode 4, Gnd 5, Vout 6, V CC

51单片机PID调增量式光电编码器测速.

编码器输出的A向脉冲接到单片机的外部中断INT0,B向脉冲接到I/O端口P1.0。当系统工作时,首先要把INT0设置成下降沿触发,并开相应中断。当有有效脉冲触发中断时,进行中断处理程序,判别B脉冲是高电平还是低电平,若是高电平则编码器正转,加1计数;若是低电平则编码器反转,减1计数。 基于51单片机的直流电机PID闭环调速系统原理详解与程序 (2013-08-04 01:18:15) 转载▼ 标签: 分类:单片机 51单片 机 直流电 机 pid pcf8591 基于51单片机的直流电机PID闭环调速系统 1.电机转速反馈: 原理:利用光电编码器作为转速的反馈元件,设电机转一周光电编码器发送N个PWM波形,利用测周法测量电机转速。 具体实现:将定时器0设置在计数模式,用来统计一定的时间T内接受到的脉冲个数M个,而定时器0置在计时模式,用来计时T时间。则如果T时间接受到M个PWM波形,而电机转一圈发出N个PWM波形,则根据测周法原理,电机的实际的转速为:real_speed=M/(N*T),单位转/秒。若将定时器1置在计数模式,则PWM波形应该由P3^3脚输入。 代码实现:

//定时器0初始化,用来定时10ms void Init_Timer0(void) { TMOD |= 0x01; //使用模式1,16位定时器,且工作在计时模式 TH0=(65536-10000)/256; //定时10ms TL0=(65536-10000)%6; EA=1; //总中断打开 ET0=1; //定时器中断打开 TR0=1; //定时器开关打开 } // 计数器1初始化,用来统计定时器1计时250ms内PWM波形个数 void Init_Timer1(void) { TMOD |= 0x50; //使用计数模式1,16位计数器模式 TH1=0x00; //给定初值,由0往上计数 TL1=0x00; EA=1; //总中断打开 ET1=1; //定时器中断打开 TR1=1; //定时器开关打开 } //定时器0的中断服务子函数,主要完成脉冲个数的读取,实际转速的计算和PID 控制以及控制结 //果输出等工作 void Timer0_isr(void) interrupt 1 { unsigned char count; TH0=(65536-10000)/256; //重新赋值 10ms TL0=(65536-10000)%6;

详解光耦EL817的重要参数

详解光耦EL817的重要参数 详解光耦EL817的重要参数——CTR值 CTR:发光管的电流和光敏三极管的电流比的最小值。隔离电压:发光管和光敏三极管的隔离电压的最小值。 光耦的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。 集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小信号时,其交流电流传输比(ΔCTR=ΔIC/ΔIF)很接近于直流电流传输比CTR值。因此,它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。这是其重要特性。 电流传输比是光耦合器的重要参数,通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。采用一只光敏三极管的光耦合器,CTR的范围大多为20%,300%(如4N35),而pc817则为80%,160%,台湾亿光(如EL817)可达50%,600%。这表明欲获得同样的输出电流,后者只需较小的输入电流。因此,CTR参数与晶体管的hFE有某种相似之处。 使用光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时,必须遵循下列所选用的光电耦合器件必须符合国内和国际的有关隔离击穿电压的标准;由台湾亿光生成生产的EL817系列(如EL817B-F、EL817C-F)光耦合器,目前在国内应用地十分普遍。鉴于此类光耦合器呈现开关特性,其线性度差,适宜传

基于51单片机的光电编码器测速报告

课程设计报告 课程名称:微机原理课程设计 题目:基于51单片机的光电编码器测速

光电编码器是高精度位置控制系统常用的一种位移检测传感器。在位置控制系统中,由于电机既可能正转,也可能反转,所以要对与其相连的编码器输出的脉冲进行计数,要求相应的计数器既能实现加计数,又能实现减计数,即进行可逆计数。其计数的方法有多种,包括纯粹的软件计数和硬件计数。文中分别对这两种常用的计数方法进行了分析,对其优缺点进行了对比,最后提出了一种新的计数方法,利用80C51单片机内部的计数器实现对光电编码器输出脉冲的加减可逆计数,既节省了硬件资源,又能得到较高的计数频率。本设计就是由单片机STC89C52RC芯片,光电编码器和1602液晶为核心,辅以必要的电路,构成了一个基于51单片机的光电编码器测速器。该系统有两个控制按键,分别用于控制每秒的转速和每分钟的转速,并将速度用1602液晶显示出来。该测速器测速精准,具有实时检测的功能,操作简单。 关键词:光电编码器,51单片机,C语言,1602液晶

一、设计任务与要求 (4) 1.1 设计任务 (4) 1.2 设计要求 (4) 二、方案总体设计 (5) 2.1 方案一 (5) 2.2 方案二 (5) 2.3 系统采用方案 (5) 三、硬件设计 (7) 3.1 单片机最小系统 (7) 3.2 液晶显示模块 (7) 3.3 系统电源 (8) 3.4光电编码器电路 (8) 3.5 整体电路 (9) 四、软件设计 (10) 4.1 keil软件介绍 (10) 4.2 系统程序流程 (10) 五、仿真与实现 (12) 5.1 proteus软件介绍 (12) 5.2 仿真过程 (12) 5.3 实物制作与调试 (13) 5.4 使用说明 (14) 六、总结 (15) 6.1 设计总结 (15) 6.2 经验总结 (15) 七、参考文献 (16)

亿光光藕EL817规格书

Photocoupler-RoHS Compliant EL817 Series Features: ? Current transfer ratio (CTR:MIN.50% at IF =5mA ,VCE =5V) ? High isolation voltage between input and output (Viso=5000 V rms ) ? Compact dual-in-line package EL817*:1-channel type ? Pb free ? UL approved (No. E214129) ? VDE approved (No. 132249) ? SEMKO approved (No. 608400) ? NEMKO approved (No. PO6206474/A1) ? DEMKO approved (No. 313924-01) ? FIMKO approved (No. FI 22807) ? CSA approved (No. 1143601) ? BSI approved (No. 8592, 8593) ? Options available: - Leads with 0.4”(10.16mm) spacing (M Type) - Leads bends for surface mounting (S and S1 Type) - Tape and Reel of Type for SMD(Add”TA” Suffix)Ⅰ - Tape and Reel of Type Ⅱfor SMD(Add”TB” Suffix) - The tape is 16mm and is wound on a 33cm reel ? The product itself will remain within RoHS compliant version. Description The EL817 series contains a infrared emitting diode optically coupled to a phototransistor. It is packaged in a 4-pin DIP package and available in wide-lead spacing and SMD option. Applications ? Computer terminals ? System appliances, measuring instruments ? Registers, copiers, automatic vending machines ? Signal transmission between circuits of different potentials and impedances Device Selection Guide Chip Material Part. No. IR PT EL817* GaAs Silicon EL817 EL817S EL817M

亿光光耦6N139

8 PIN DIP LOW INPUT CURRENT HIGH GAIN SPLIT DARLINGTON PHOTOCOUPLER 6N138 6N139 Features ? High current transfer ratio–2000% typical ? High isolation voltage between input and output (Viso=5000 Vrms ) ? Guaranteed performance from 0°C to 70°C ? Pb free and RoHS compliant. ? UL approved (No. 214129) ? VDE approved (No. 132249) ? SEMKO approved ? NEMKO approved ? DEMKO approved ? FIMKO approved ?CSA approved (No. 2037145) Description The 6N138 and 6N139 devices each consists of an infrared emitting diode, optically coupled to a high gain split Darlington photo detector. They provide extremely high current transfer ratio between input and output, with access to a base terminal to adjust the gain bandwidth.These devices are packaged in an 8-pin DIP package and available in wide-lead spacing and SMD options. Applications ? Digital logic ground isolation ? RS-232C line receiver ? Low input current line receiver ? Microprocessor bus isolation ? Current loop receiver

基于51单片机的光电编码器测速

摘要 光电编码器是高精度位置控制系统常用的一种位移检测传感器。在位置控制系统中,由于电机既可能正转,也可能反转,所以要对与其相连的编码器输出的脉冲进行计数,要求相应的计数器既能实现加计数,又能实现减计数,即进行可逆计数。其计数的方法有多种,包括纯粹的软件计数和硬件计数。文中分别对这两种常用的计数方法进行了分析,对其优缺点进行了对比,最后提出了一种新的计数方法,利用80C51单片机内部的计数器实现对光电编码器输出脉冲的加减可逆计数,既节省了硬件资源,又能得到较高的计数频率。本设计就是由单片机STC89C52RC芯片,光电编码器和1602液晶为核心,辅以必要的电路,构成了一个基于51单片机的光电编码器测速器。该系统有两个控制按键,分别用于控制每秒的转速和每分钟的转速,并将速度用1602液晶显示出来。该测速器测速精准,具有实时检测的功能,操作简单。 关键词:光电编码器,51单片机,C语言,1602液晶

目录 一、设计任务与要求 (3) 1.1 设计任务 (3) 1.2 设计要求 (3) 二、方案总体设计 (4) 2.1 方案一 (4) 2.2 方案二 (4) 2.3 系统采用方案 (4) 三、硬件设计 (6) 3.1 单片机最小系统 (6) 3.2 液晶显示模块 (6) 3.3 系统电源 (7) 3.4光电编码器电路 (7) 3.5 整体电路 (8) 四、软件设计 (9) 4.1 keil软件介绍 (9) 4.2 系统程序流程 (9) 五、仿真与实现 (11) 5.1 proteus软件介绍 (11) 5.2 仿真过程 (11) 5.3 实物制作与调试 (12) 5.4 使用说明 (13) 六、总结 (14) 6.1 设计总结 (14) 6.2 经验总结 (14) 七、参考文献 (15)

亿光EL817C光耦

Technical Data Sheet Photocoupler EL817 Series Features: ? Current transfer ratio (CTR:MIN.50% at IF =5mA ,VCE =5V) ? High isolation voltage between input and output (Viso=5000 V rms ) ? Compact dual-in-line package EL817*:1-channel type ? Pb free ? UL approved (No. E214129) ? VDE approved (No. 132249) ? SEMKO approved (No. 0143133/01-03) ? NEMKO approved (No. P0*******) ? DEMKO approved (No. 310352-04) ? FIMKO approved (No. FI 16763A2) ? CSA approved (No. 1143601) ? BSI approved (No. 8592 / 8593) ? Options available: - Leads with 0.4”(10.16mm) spacing (M Type) - Leads bends for surface mounting (S Type) - Tape and Reel of Type Ⅰ for SMD(Add”-TA” Suffix) - Tape and Reel of Type Ⅱ for SMD(Add”-TB” Suffix) - The tape is 16mm and is wound on a 33cm reel Description The EL817 series contains a infrared emitting diode optically coupled to a phototransistor. It is packaged in a 4-pin DIP package and available in wide-lead spacing and SMD option. Applications ? Computer terminals ? System appliances, measuring instruments ? Registers, copiers, automatic vending machines ? Cassette type recorder ? Electric home appliances, such as fan heaters, etc. ? Signal transmission between circuits of different potentials and impedances https://www.360docs.net/doc/f81203958.html,

基于STC89C52光电码盘测速 C程序

基于STC89C52光电码盘测速C程序#include #include #define uint unsignedint #define uchar unsigned char float f=0; uchar LED0_data,LED1_data,LED2_data,LED3_data; uchari=0; uchar code table[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void display(); void delay(uint v); voidinit(); /*定时器初始化*/ voidinit() { TMOD=0x51; //T1计数器,T0定时器,方式1 TH0=(65536-10000)/256; TL0=(65536-10000)%256; EA=1; //开总中断 TL1=0; TH1=0; ET0=1; //开定时器0中断 } /*延时子函数*/ void delay(unsigned int c) { unsignedinti,j; for(i=c;i>0;i--) for(j=110;j>0;j--); } /*将十进制数拆成送数码管的显示码*/ voiddectobit(intdec) { LED3_data=dec/1000; dec=dec % 1000; LED2_data=dec/100; dec=dec % 100;

LED1_data=dec/10; dec=dec % 10; LED0_data=dec; } /*显示程序*/ void display() { P0=table[LED3_data]; //个位 P2&=~0x01; delay(10); P2|=0x01; P0=table[LED2_data]; //十位 P2&=~0x02; delay(20); P2|=0x02; P0=table[LED1_data]; P2&=~0x04; delay(20); P2|=0x04; //百位P0=table[LED0_data]; //千位 P2&=~0x08; delay(20); P2|=0x08; } void main(void) { init(); TR0=1; //启动定时器0 TR1=1; while(1) { dectobit(f); display(); } }

光电编码器测速

实验三光电传感器转速测量实验 实验目的 1.通过本实验了解和掌握采用光电传感器测量的原理和方法。 2.通过本实验了解和掌握转速测量的基本方法。 实验原理 直接测量电机转速的方法很多,可以采用各种光电传感器,也可以采用霍尔元件。本实验采用光电传感器来测量电机的转速。 由于光电测量方法灵活多样,可测参数众多,一般情况下又具有非接触、高精度、高分辨率、高可靠性和相应快等优点,加之激光光源、光栅、光学码盘、CCD器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。光电传感器在工业上的应用可归纳为吸收式、遮光式、反射式、辐射式四种基本形式。图3.31说明了这四种形式的工作方式。 图3.31 光电传感器的工作方式 图3.32直射式光电转速传感器的结构图 直射式光电转速传感器的结构见图3.32。它由开孔圆盘、光源、光敏元件及缝隙板等组成。开孔圆盘的输入轴与被测轴相连接,光源发出的光,通过开孔圆盘和缝隙板照射到光敏元件上被光敏元件所接收,将光信号转为电信号输出。开孔圆盘上有许多小孔,开孔圆盘旋转一周,光敏元件输出的电脉冲个数等于圆盘的开孔数,因此,可通过测量光敏元件输出的脉冲频率,得知被测转速,即 n=f/N 式中:n - 转速f - 脉冲频率N - 圆盘开孔数。 反射式光电传感器的工作原理见图3.33,主要由被测旋转部件、反光片(或反光贴纸)、

反射式光电传感器组成,在可以进行精确定位的情况下,在被测部件上对称安装多个反光片或反光贴纸会取得较好的测量效果。在本实验中,由于测试距离近且测试要求不高,仅在被测部件上只安装了一片反光贴纸,因此,当旋转部件上的反光贴纸通过光电传感器前时,光电传感器的输出就会跳变一次。通过测出这个跳变频率f,就可知道转速n。 n=f 如果在被测部件上对称安装多个反光片或反光贴纸,那么,n=f/N。N-反光片或反光贴纸的数量。 图3.33 反射式光电转速传感器的结构图 实验仪器和设备 1. 计算机 n台 2. DRVI快速可重组虚拟仪器平台 1套 3. 并口数据采集仪(DRDAQ-EPP2)1台 4. 开关电源(DRDY-A)1台 5. 光电转速传感器(DRHYF-12-A) 1套 6. 转子/振动实验台(DRZZS-A)/(DRZD-A) 1 台 实验步骤及内容 1.光电传感器转速测量实验结构示意图如图3.34所示,按图示结构连接实验设备, 其中光电转速传感器接入数据采集仪A/D输入通道。 图3.34 转速测量实验结构示意图 2.启动服务器,运行DRVI程序,点击DRVI快捷工具条上的“联机注册”图标,选择 其中的“DRVI采集仪主卡检测”进行服务器和数据采集仪之间的注册。联机注册成功后,从DRVI工具栏和快捷工具条中启动“内置的Web服务器”,开始监听8500端口。 3.打开客户端计算机,启动计算机上的DRVI程序,然后点击DRVI快捷工具条上的“联 机注册”图标,选择其中的“DRVI局域网服务器检测”,在弹出的对话框中输入服务器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端和服务器之间的认证,认证完毕即可正常运行客户端所有功能。 4.在收藏菜单栏中选中“实验指导书”菜单项打开WEB版实验指导书,在实验目录中

一种光电编码器抗振动测速的方法

一种光电编码器抗振动测速的方法 李汉 (广州航海高等专科学校轮机系,广东广州510725) 摘要:介绍了传动轴振动对编码器输出信号的影响,提出一种甄别光电编码器输出干扰脉冲的方法,并结合M/T 测速方法,形成基于光电编码器的抗振动测速和判向的方法,同时给出实验测试的结果。实验结果表明抗振动测速方法是有效的,与非抗振动测速方法相比,不仅扩大了测速范围,而且精度要高,具有较好的应用价值。 关键词:光电编码器;测速;振动 中图分类号:TP212 文献标识码:A Method of Vibration -proof Speed Measurement B ased on Optical E ncoder L I Han (Department of Marine Engineering ,Guangz hou Maritime College ,Guangz hou 510725,Guangdong ,China ) Abstract :The influence of vibration of transmission shaft on output signals of encoder was introduced and provided a way to distinguish the output interference impulses of optical encoder.Integrated with M/T speed testing method ,a new method of vibration -proof speed and direction testing was formed.In the meantime the result of the experiment indicate that compared with traditional speed testing ,this method of vibration -proof speed testing is effective in that it can enlarge the area of speed testing and is more accurate ,thus being practi 2cally valuable. K ey w ords :optical encoder ;speed measurement ;vibration 基金项目:广州航海高等专科学校科研项目(200812B06) 作者简介:李汉(1971-),男,硕士,副教授,Email :seascope @https://www.360docs.net/doc/f81203958.html, 1 引言 光电编码器在工业测速有较为广泛的应用,光电编码器的应用技术不断产生。文献[1]采用恒基准脉冲法提高光电编码器测速的精度,文献[2]采用锁相环技术提高低速响应速度,但这些方 法都以光电编码器输出正交无干扰信号为前提,当测速系统处于较大振动的情况下是无能为力的。在振动较大的情况下,文献[3,4]分析了振动对光电编码器测速的影响并设计了抗干扰防振动电子线路。本文将介绍一种基于ARM7嵌入式系统的光电编码器抗振动测速和判向的方法及其应用效果。 2 振动对编码器输出信号的影响 目前使用光电编码器测速的方法有M 法、T 法和M/T 法。M 法测量一定周期内的脉冲数,T 法测量脉冲的周期值,M/T 法测量一定周期内的 整数个输入脉冲的时间值。这3种方法中应用较为广泛的是M/T 法,因为M/T 法能在短时间内高精度检出所测之速,且分辨率与转速无关。但要求编码器输出的脉冲是无干扰的脉冲信号,一旦出现干扰,测量的精确度将大大降低。 在控制系统中,当转速较高时,电机运行比较平稳,振动小,采用光电编码器测速准确度较高。但电机转速较低时,振动对光电编码器的影响较为明显,如果不加处理,测速结果将失去实际使用的价值。为了弄清振动对光电编码器输出信号的影响,我们使用步进电机作为驱动进行实验,研究 振动对光电编码器测速的影响,原因是:1)步进电机的转速与驱动脉冲频率有关,与负载无关,有利于获得准确的给定转速;2)步进电机的调速范围较宽;3)当转速低于某一转速时,步进电机每走一步转子都会产生震荡,借此研究振动对光电编码器测速性能的影响。经过监测表明,传动轴转动平稳、无振动时,光电编码器输出波形为A ,B 两 8 7电气传动 2010年 第40卷 第6期EL ECTRIC DRIV E 2010 Vol.40 No.6

亿光光耦(光电耦合器)的性能特点

亿光光耦(光电耦合器)的性能特点 文章出处:广州市超毅电子有限公司 亿光光耦的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。由于光耦的输入阻抗与一般干扰源的阻抗相比较小,因此分压在电耦的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光;由于光电耦的外壳是密封的,它不受外部光的影响;电耦的隔离电阻很大(约1012Ω)、隔离电容很小(约几个pF)所以能阻止电路性耦合产生的电磁干扰。线性方式工作的电耦是在光耦的输入端加控制电压,在输出端会成比例地产生一个用于进一步控制下一级的电路的电压。 亿光电耦由发光二极管和光敏三极管组成,当发光二极管接通而发光,光敏三级管导通,电耦是电流驱动型,需要足够大的电流才能使发光二极管导通,如果输入信号太小,发光二极管不会导通,其输出信号将失真。在开关电源,尤其是数字开关电源中,利用线性光耦可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 亿光光耦的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR) CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。 电流传输比是光耦的重要参数,通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。其公式为:采用一只光敏三极管的光耦,CTR的范围大多为20%~300%(如4N35),而PC817则为80%~160%,达林顿型光耦如4N30)可达100%~5000%。这表明欲获得同样的输出电流,后者只需较小的输入电流。因此,CTR参数与晶体管的hFE有某种相似之处。线性光耦与普通光耦典型的CTR-IF特性曲线,分别如图1中的虚线和实线所示。 图1两种光耦的CTR-IF特性曲线

带霍尔信号的增量式光电编码器在控制器测速中的应用

带霍尔信号的增量式光电编码器在控制器测速中的应用 一、增量式光电编码器基础 ●增量式光电编码器示意图 ●在码盘上均匀地刻制一定数量的光栅,光栅一侧固定有光接收传感器,另一侧有固定光 源,使用时码盘随电机轴同步转动 ●码盘转动产生A、B和Z信号,A和B存在90度的相位差,用以产生正交脉冲信号,测 定位置增量,Z信号每转一圈触发一个窄脉冲,用来做基准校准 二、QEP信号解码 ●增量式旋转光电编码器输出A、B(占空比50%)和Z信号及其对应互补的差分信号,滤 波后经差动放大器分别输出QEP_A、QEP_B和QEP_INDEX三路信号,接入到DSP的QEI 模块这些波形的时序如下图 ●根据A、B信号相位超前或滞后可以判断转向,脉冲的上下沿捕捉可以产生4倍频信号 提高编码器的分辨率,脉冲累加计数用来计算转子相对于Z起始点的确切位置

三、带定位信号U、V和W信号的增量式光电编码器 ●U、V和W信号用来给转子做初始定位,这三个脉冲互差120o电角度方波信号类似于直 流无刷电机位置传感器HALL的输出信号,在一个电角度周期,三个信号的输出组成6个状态,每个状态60o电角度 ●要使U、V和W信号能判断转子的初始定位,需要将U相信号上升沿和电机反电势和由 负到正过零点位置对齐 四、增量式光电编码器初始位置 ●编码器U信号和Z信号的关系 ●上面提及U、V和W信号类似于直流无刷的HALL传感器的信号,通常使用HALL使用时 已经把1个HALL安装到A相电机绕组磁势轴线位置,另外两个依次按照120o电角度顺序安装好,这样U相信号上升沿和电机A相反电势和由负到正过零点位置对齐,该位置定义为初始位置,此时。绕组A相轴线和转子D轴对齐 ●编码器安装好后,U相信号上升沿位置也就确定,所以编码器的初次安装一般而言需要 将U相信号标定到A相电机绕组磁势轴线位置 ●Z信号触发信号通常而言和编码器U相信号上升沿对齐,如果有偏差,需要加上校正因 子,这样Z信号就能反应电机的U相反电势零点位置即初始位置的位置 ●编码器安装好后,编码器U相信号和Z触发信号的位置是固定的,和A相绕组轴线存在 着对应关系,但电机转子的位置是随机的,可能在0到360o电角度6个扇区之间的任何一个位置,每个扇区的轴线与转子的D轴是随机的,定义该值θz。θz的物理含义是:每个扇区的轴线与转子D轴位置的差值。该差值是物理存在的,在矢量控制之前必须要学到 五、转子相位初始化 ●对于采用带U,V,W磁极信号的编码器来说,采用这个编码器能够把一个电角度周期分成 6个区间。当系统上电时,检测U,V,W三相的状态能够知道当前在哪个区间(0~5),从而得到θe=θZ+n*60+30. ●由于U,V,W只能分辨60o电角度,以0区间为例,电角度表示范围在0~60o之间,取其 中间值30o代表当前位置 ●对于磁钢表贴式永磁电机,通常采用id=0的控制方式,定子磁链矢量超前转子D轴90

相关文档
最新文档