随机过程基础讲义第一讲

随机过程习题及复习资料

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

应用随机过程教学大纲

遵义师范学院课程教学大纲 应用随机过程教学大纲 (试行) 课程编号:280020 适用专业:统计学 学时数:48 学分数:____________ 2.5_______ 执笔人:黄建文审核人:_____________________ 系别:数学教研室:统计学教研室

编印日期:二?一五年七月 课程名称:应用随机过程 课程编码: 学分:2.5 总学时:48 课堂教学学时:32 实践学时:16 适用专业:统计学先修课程:高等数学、线性代数、概率论、测度论或者实变函数(自学) 一、课程的性质与目标: (一)该课程的性质 《应用随机过程》课程是普通高等学校统计学专业必修课程。它是在学生掌握了数学分析、线性代数和概率论等一定的数学专业理论知识的基础上开设的,要求学生掌握随机过程的基本理论和及其研究方法。 (二)该课程的教学目标 (1)从生活中的需要出发,结合研究随机现象客观规律性的特点,并根据随机过程的内容和知识结构,着重从随机过程的基本理论和基本方法出发,就实际应用中的典型随机过程做应用研究,并在理论、观点和方法上予以总结、提高及应用。 (2)对各个章节的教学,随机过程侧重于基本思想和基本方法的探讨,介绍随机过程的基本概念,建立以分布函数等研究相关问题概率的实际应用思路,寻求解决统计和随机过程问题的方法。着重基本思想及方法的培养和应用。 (3)结合学生实际,利用生活中的实例进行分析,培养学生的辩证唯物主义观点。 二、教学进程安排

三、教学内容与要求 第一章预备知识 【教学目标】 通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。 【教学内容和要求】 随机过程以概率论为其主要的基础知识,为此,本章主要对概率空间;随机 变量与分布函数;随机变量的数字特征、矩母函数与特征函数;独立性和条件期望;随机变量序列的收敛性与极限定理等常用到的概率论基本知识作简要的回顾和扩展。其中概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等既是本章的重点,又是本章的难点。 【课外阅读资料】 《应用随机过程》,林元烈编,清华大学出版社。 【作业】 0, x W0 1. 已知连续型随机变量X的分布函数为F(x) = *Aarcsinx, 0

最新第1章 随机过程的基本概念习题答案

第一章 随机过程的基本概念 1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。试求X (t )的一维概率分布 解:∵ 当0cos 0=t ω 即 πω)2 1 (0+ =k t 即 πω)21(10+=k t 时 {}10)(==t x p 若 0cos 0≠t ω 即 πω)2 1 (1 0+≠ k t 时 {}{}x t X P x x X P t x F ≤=≤=0cos )(),(ω 当 0cos 0>t ω时 ξπ ωωξd e t x X P t x F t x ? - = ??? ? ??≤=02 cos 0 2 021cos ),( 此时 ()t e x t x F t x f t x 0cos 2cos 1 21,),(022ωπ ω? =??=- 若 0cos 0

?? ?= ,2 ,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。试确定)(t X 的一维分布函数)2 1 ,(x F 和)1,(x F ,以及二维分布函数)1,2 1;,(21x x F 解:(1)先求)21,(x F 显然???=?? ???-=??? ??出现反面出现正面 出现反面出现正面10,212,2cos 21π X 随机变量?? ? ??21X 的可能取值只有0,1两种可能,于是 21 021= ??????=?? ? ??X P 2 1121=??????=??? ??X P 所以 ?????≥<≤<=??? ?? 11102 1 0021,x x x x F 再求F (x ,1) 显然? ??-=???=出现反面出现正面出现反面出现正面 2 1 2 cos (1)πX {}{}2 1 2)1(-1 (1)====X p X p 所以 ???? ???≥<≤<=2 121- 2 1-1 0,1)(x x x x F (2) 计算)1,2 1 ;,(21x x F ???-=???=出现反面出现正面出现反面出现正面 2 1)1(, 1 0)2 1 ( X X 于是

应用随机过程复习资料

1 [()()][()()]()E X t X s D X t X s t s λ-=-=- 由于(0)0X =故 ()[()][()(0)]X m t E X t E X t X t λ==-= 2()[()][()(0)]X t D X t D X t X t σλ==-= 2 2 22(,)[()()]{()[()()()]}[()(0)][()()][()][()(0)][()()][()]{[()]}()()(1) X R s t E X s X t E X s X t X s X s E X s X X t X s E X s E X s X E X t X s D X s E X s s t s s s st s s t λλλλλλλλ==-+=--+=--++=-++=+=+ (,)(,)()()X X X X B s t R s t m s m t s λ=-= ()()[]exp{(1)}iuX t iu X g u E e t e λ==- 2 定理3.2 设{(),0}X t t ≥是具有参数λ的泊松分布, {,1}n T n ≥是对应的时间间隔序列,则随机变量n T 是独立同 分布的均值为1λ的指数分布 Proof:注意到1{}T t >发生当且仅当泊松过程在区间[0,]t 内没有事件发生,因而1{}{()0}t P T t P X t e λ->=== 即111(){}1{}1t T F t P T t P T t e λ-=≤=->=- 所以1T 是服从均值为1λ的指数分布.利用泊松过程的独立、 平稳增量性质,有 21{|}{()()0}{()(0)0}t P T t T s P X t s X s P X t X e λ->==+-==-== 即222(){}1{}1t T F t P T t P T t e λ-=≤=->=- 对任意的1n ≥和121,,,...,0n t s s s -≥有 21111{|,...,}{()(0)0}t n n P T t T s T s P X t X e λ--->===-== 即(){}1n t T n F t P T t e λ-=≤=- 所以对任一n T 其分布是均值为1 λ的指数分布. 所以1,0 (){}0,0n t T n e t F t P T t t λ-?-≥=≤=?

几种常用的随机过程

第十讲 几种常用的随机过程 10.1 马尔可夫过程 10.1.1马尔可夫序列 马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。 一个随机变量序列x n (n=1,2,…),若对于任意的n 有 )|(),...,,|(112 1 x x F x x x x F n n X n n n X ---= (10.1) 或 )|(),...,,|(112 1 x x f x x x x f n n X n n n X ---= (10.2) 则称x n 为马尔可夫序列。x n 的联合概率密度为 ) ()|( ) |()|(),...,,(1 1 2 2 11 2 1 x f x x f x x f x x f x x x f X X n n X n n X n X ??---= (10.3) 马尔可夫序列有如下性质: (1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。 (2) ) |(),...,,|(1 21x x f x x x x f n n X k n n n n X -+++= (10.4) (3) )|(),...,|(111x X x x X n n n n E E --= (10.5) (4) 在一个马尔可夫序列中,若已知现在, 则未来与过去相互独立。即 ) |() |()|,(1 x x f x x f x x x f r s X n n X r s n X -= ,n>r>s (10.6) (5) 若条件概率密度)|(1 x x f n n X -与n 无关, 则称马尔可夫序列是齐次的。 (6) 若一个马尔可夫序列是齐次的,且所 有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。 (7) 马尔可夫序列的转移概率满足切普曼 —柯尔莫哥洛夫方程,即 ) |()| ()|(x x f x x f x x f s r X r n X s n X ? ∞ ∞ -= , n>r>s (10.7) 10.1.2马尔可夫链 马尔可夫链是指时间参数,状态方程皆

随机过程MA335.doc-致远学院-上海交通大学

上海交通大学致远学院2014年秋季学期 《随机过程》课程教学说明 一.课程基本信息 1.开课学院(系):致远学院 2.课程名称:《随机过程》(Stochastic Processes) 3.学时/学分:64学时/4学分 4.先修课程:概率论 5.上课时间:周二、四,3-4节课 6.上课地点:中院207 7.任课教师:韩东(donghan@https://www.360docs.net/doc/f41591699.html,) 8.办公室及电话:数学楼1206,54743148-1206 9.助教:张登(zhangdeng@https://www.360docs.net/doc/f41591699.html,) 10.Office hour:周四下午3-5点,数学楼1206 二.课程主要内容(中英文) 随机过程是定量研究随机现象(事件)统计规律的一门数学分支学科。学习《随机过程》的主要目的是:了解、认识随机现象的统计性质;知道如何构造随机模型并且能计算和分析随机事件随时间发生变化的的概率及其相关性质。《随机过程》主要包括:Poisson过程、Markov过程、鞅过程、Bronian 运动、随机分析基础(Ito积分与随机微分方程)、平稳过程等。 Stochastic Processes are ways of quantifying the dynamic relations of sequences of random events. It is a branch of mathematics. The main content of this course includes: General theory of stochastic processes; Poisson process and renewal theorems; Martingales; Discrete-time Markov Chains; Continuous-time Markov Chains; Brownian motion; Introduction to stochastic analysis; Stationary processes and ARMA models. 第一章概率论精要 主要内容:概率公理化,全概率公式和Bayes 公式,随机变量及其数字特征、条件期望、极限定理。重点与难点:条件期望和极限定理。 第二章随机过程的基本概念 主要内容:随机过程的定义、随机过程的存在性、随机过程的数字特征。 重点与难点:随机过程的存在性。 第三章Poisson 过程 主要内容:Poisson过程的定义及性质,首达时间与其间隔的分布,Poisson过程的极限定理。 重点与难点:首达时间间隔与Poisson过程的关系。 第四章Markov过程

随机过程及其应用-清华大学

4.1(等待时间的和)设诚恳按照参数λ的Poisson 过程来到公交站,公交车于时刻t 发出,那么在],0[t 时间段内到达的乘客等待时间总和的期望应该如何计算那? 对于某一个乘客而言,假设其到达时间为k t ,那么他等待时间就是 k t t -所以乘客总的等待时间为∑=-=) (0)()(t N k k t t t S 使用条件期望来处理平均等待))(|)(())((n t N t E E t S E == 对于某已成了而言,其到达时刻k t 随机],0[t 内均匀分布的随机变量。但在车站上,乘客是先后到达次序排队,所以在n t N =)(的条件下, n t t t ,...,,21形成了独立均匀分布的顺序统计量。不过就他们的和n t t ++...1而言,可以那他们看着顺序统计量,也可以把他们看着不排顺序的n 各独立的],0[t 内均匀分布的随机变量,所以 2))((2)2)(())((2 2)())(|)((2 0t t N E t t t N E t E E nt nt nt t E nt n t N t E E n k k λ= ===- =-==∑=从而有 4.2(数值记录)设},{N n X n ∈是一独立同分布的非负期望随机变量序列。定义风险率)(t λ如下) (1) ()(t F t f t -= λ 这里)()(t F t f 和分别是k X 的概率密度分布和分布函数。定义随机过程 )(t N 如下}),,..,max(:{#)(01t X X X X n t N n n n ≤>=- 这里A #表示集合A 中的元素个数。如果把)(t N 中的时间t 看做时间,那么)(t N 是一个非齐次Poisson 过程。事实上,由于k X 彼此独立,所以)(t N 具有独立增量性。很明显0)0(=N ,于是只需要检查一个时间微元内)(t N 的状态。

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

数理统计与随机过程讲义

第四章 假设检验 假设检验是一种重要应用价值的统计推断形式,是数理统计的分支。从发展历史上有重要的节点为 1 :Pearson 的拟合优度的2χ检验 1900 2:Fisher 的显著性检验 1920 3:Neyman-Pearson 一致最优检验 1928 4:Wald 的判决理论 1950 5:Bayes 方法 (二战之后发展的学派) §4.1 基本术语 关于随机变量的分布、数字特征等,每一种论断都称为统计假设,分为参数假设和非参数假设,例如),(~2σu N X ,假设1,1:==σu H 就称为参数假设;给定一组样本值,假设:H ~X 正态分布,对于分布进行论断,为非参数假设。 无论上面那种假设,都是给出一个对立的假设,比如),(~2σu N X ,那么假设1,1:0==σu H 的对立假设就是1,1:1≠≠σu H ,我们就把0H 称为基本假设,或者原假设,而1H 就称为对立(备选)假设。 为了分别那个假设是对的,需要判断假设真伪,就是对假设做出“否”还是“是”的程序就是检验,这个检验常用否定域形式给出,按照一定规则把样本值集合分成两个部分V V ?,当样本值落入子集V 认为0H 不真,那么V 是0H 的否定域,V 为0H 的接受域。 那么这样就产生了两种错误: 第一类错误α :本来0H 是真,但是却否定了,弃真; 第二类错误β :本来0H 不真,但是却接受为真,叫取伪。 选定一种检验方法,我们希望上述两种错误概率都小。但是给定样本容量,使得两种错误任意小是不可能的,我们主要研究两大类检验方法:

1:样本容量给定,控制第一类错误,使得错误概率有一个上界α,叫做检验的显著性水平,根据这种原则建立的检验就是α水平显著性检验; 2:样本容量给定,控制第一类错误α水平固定,还使得第二类错误最小,就是接受不真实假设的概率最小,否定不真实假设的概率就称为检验功效1-β,使得功效最大,,根据这种原则建立的检验就是α水平最大功效检验,或者最佳检验。 §4.2参数假设检验 设X 符合分布),(θx F ,未知参数θΘ∈参数空间,空间分成两部分0Θ和 Θ-0Θ,二者交集为空。 主要对于正态分布参数的统计假设的显著性检验方法。 1)针对不同问题,提出基本假设与备选假设 0H :θ0Θ∈ 1H :θ0Θ-Θ∈ 如果参数空间仅仅是由0θθ=和1θθ=两个点组成的,那么我们称简单假设,否则是复合假设。 2)给定检验的显著性水平α,其大小依据不同问题不同,比如火箭、飞机等可靠性问题,α要越小越好,对于一般生产问题,太小了则意味着生产时间和成本的增加; 3)建立对于基本假设的统计量和否定域; 4)取样,计算统计量值,落入否定域则判读0H 为假,否则为真。 例子:某种药片制剂中国家规定成分A 的含量X 必须为10%,现在抽取5个片剂试样,测得A 的含量为 10.9% 9.45% 10.38% 9.61% 9.92% 假设)%,10(~20σ=u N X ,按照显著性水平α=0.05进行检验是否与规定10%相符? 解:建立基本假设0H :0u u =,这里显著性水平α=0.05,样本容量为5,样本值如上。 如何确定统计量呢?样本均值X 可以求出,但是这里方差未知,用无偏估 计量* 2n S 来代替2σ,那么统计量 = t )1(~/* 20--n t n S u X n

应用随机过程学习汇总

应用随机过程学习汇总

————————————————————————————————作者:————————————————————————————————日期:

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

第2章 随机过程习题及答案上课讲义

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

随机过程简史

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:随机过程简史 院系:电气工程学院 班级: 11S0104 设计者:孙延博 学号: 11S001070 指导教师:田波平 设计时间: 2011-10-23 随机过程简史 摘要 本文简要地介绍了随机过程从20世纪初创立至今,100年的发展历程考察了导致随机过程产生的历史契机,以及早期数学家在这方面作出的杰出工作。并简要介绍了随机过程的概念,研究方法

和研究内容,在现代工程技术领域的应用。 关键词:随机过程平稳随机过程平稳随机序列 1.随机过程的概念研究方法及研究内容 随机过程是现代概率论研究的一个重要分支。数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。数学上的随机过程可以简单的定义为一组随机变量,即指定一参数集,对于其中每一参数点t指定一个随机变量x(t)。如果回忆起随机变量自身就是一个函数,以ω表示随机变量x(t)的定义域中的一点,并以x(t,ω)表示随机变量在ω的值,则随机过程就由刚才定义的点偶(t,ω)的函数以及概率的分配完全确定。如果固定t,这个二元函数就定义一个ω的函数,即以x(t)表示的随机变量。如果固定ω,这个二元函数就定义一个t的函数,这是过程的样本函数。由于物理学生物学,通讯和控制管理科学等学科的需要随机过程逐步发展起来的。马尔柯夫最早研究了随机过程。研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度轮、微分方程、半群理论、函数堆和希尔伯特空间等。实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。中国学者在平稳过程、马尔科夫过程、鞅论、极限定理、随机微分方程等方面做出了较好的工作。 2.随机过程的历史 1900年,Bachelier在分析股票市场波动时.发现了随机过程的一个重过程——独立增量过程的特恻。1905年,物理学家Einstein在研究Brown运动时,也遇到了相同的过程.1923年,Wiener 给出了Brown运动的数学描述- wiener过程。 Lunbderg在1903年研究一个保险公司所承担索赔累计数的变化规律时.导出了另一类型的随机过程——Lundberg过程。而众所周知、应用甚广的Poisson过程是当所有得付出的索赔总数中每一笔数目都相同时的Lundberg过程。 1909年,Erlang在研究电话业务时引入了Poisson过程,并被物理学家Rutherford和Geiger用于分析放射性蜕变。这些早期对随机过程的研究都是同实际问题紧密联系在一起的。虽然在数学上用了不太严密的方法,却表现出了直观处理这些概念和方法的绝妙能力。

《数理统计与随机过程讲义》

《数理统计与随机过程讲义》 段法兵 复杂性科学研究所 第一章 概率论回顾 下面是数理统计部分需要的掌握的,许多推导的基础知识。 §1.1 几种分布的由来 指数分布:服务台电话呼叫时间,公交车到达一个车站时间,这些时间分布的符合指数分布。设)(t q 为区间t 上没有事件发生的概率,x 为第一次事件发生等待的时间,那么)()(t x P t q >=,假设不同时间区间1t ,2t 相互不重叠且独立,那么 )()()(2121t t x P t x P t x P +>=>> ?)()()(2121t t q t q t q += ?t e t q λ-=)(为非平凡(非零)有界解,这里λ为状态转移概率 那么我们有分布函数 t e t q t x P t x P t F λ--=-=>-=≤=1)(1)(1)()( 因此得到指数分布 ???≥==-other t e dt t dF t f t 0 0)()(λλ 两个指数分布之和的分布? y x z += 在x-y 的空间内,满足z y x ≤+的区域如上,那么z 的累计分布 Y

{}? ?-=≤+=y z xy z dx y x f dy z y x P z F 0 ),()( 那么 ?-== z y x z dx x z f x f dz z dF z f 0)()() ()( 例如x 与y 为相互独立的指数分布,x x e x f λλ-=)(和y y e y f λλ-=)(分别为其概率分布函数,那么x z =+y 的分布为 z z x z x y x z e z dx e e y f x f z f λλλλλ---===?20)(*)()( z z x z x e z dx e e λλλλλ----==?20)(2, 0>z Gamma 分布:N 个指数分布的随机变量之和的分布为Gamma 分布。 例如x 与y 为相互独立的指数分布,x x e x f λλ-=)(和y y e y f λλ-=)(分别为其概率分布函数,那么x z =+y 的分布为 z z x z x y x z e z dx e e y f x f z f λλλλλ---===?20)(*)()( 如此卷积下去,N 个相互独立的指数分布相加的概率分布为Gamma 分布,其概率密度函数 ?? ???≥Γ=--other x e x x f x 00)()(/1β α αβα 这里参数0,>βα。Gamma 函数 ?∞ --=Γ01)(dx e x x αα。 性质1:利用分部积分法得到递推公式 )()1(αααΓ=+Γ, 当α为整数n 时,利用分部积分法得到 !)()1(n n n n =Γ=+Γ, 而非整数2/1=α,利用变量代换2/2y x =,得到 π=Γ)2/1(, 所以有

《应用随机过程》课程教学大纲 - 南京财经大学教务处

《随机过程》课程教学大纲 适用专业:数学与应用数学 执笔人:肖丽华 审定人:王宏勇 系负责人:张从军 南京财经大学应用数学系

《随机过程》课程教学大纲 课程代码:300069 英文名:Stochastic Processes 课程类别:专业选修课 适用专业:数学与应用数学 前置课:数学分析、线性代数、概率论、数理统计 后置课: 学分:2学分 课时:54课时 主讲教师:孙春燕等 选定教材:刘次华,随机过程(第二版)[M],武汉:华中科技大学出版社,2001. 课程概述: 随机过程是数学与应用数学专业继数学分析、线性代数、概率论、数理统计后的一门专业课程。随机过程是研究客观世界中随机演变过程的规律性,是以概率论为基础且是概率论的深入与发展的一门学科。它在控制、经济、金融和管理等方面应用极为广泛。 教学目的: 通过随机过程理论知识的学习,达到培养学生解决实际问题,特别是解决具体随机规律现象的问题能力,学生学习这门课程应该达到三个目标。(1)建立随机过程的思维方法。(2)掌握随机问题的统计特性及数学模型。(3)通过经济、金融及管理等专业相关例题的讨论,初步掌握应用随机过程理论来分析问题和解决问题的能力。 教学方法: 本课程采用“引出问题,建立模型,理论分析,课堂讨论,实际应用,总结提高”的教学方式,使学生在掌握随机过程基本理论、思想和方法的基础上,力求活跃思考,理论结合实际地进行学习、

分析、归纳、提炼和解决问题,提高他们的数学素质和数学修养,提升他们开展科技活动和社会实践的能力以及开展科研工作的能力。 各章教学要求及教学要点 第一章预备知识 学时分配:6学时 教学要求: 补充和加强概率论知识。理解母函数的概念,掌握母函数的方法;掌握特征函数的定义及性质,了解特征函数与分布函数一一对应的关系。 教学内容: 第一节概率空间 一、随机试验。 二、样本空间。 三、事件及概率空间的定义。 第二节随机变量及其分布 一、分布函数。 二、联合分布函数及其性质。 第三节随机变量的数字特征 一、随机变量的数学期望及其性质。 二、随机变量的方差及其性质。 第四节特征函数、母函数和拉氏变换 一、特征函数的定义及其性质。 二、母函数的定义及其性质。 第五节n维正态分布

随机过程的基本概念

随机过程的基本概念 马尔可夫性质: 马尔可夫性质,或称作无记忆性,或称作无后效性。 马尔可夫过程和马尔可夫链,分别表示具有马尔可夫性质的随机过程和随机序列。马尔可夫性质是说过程的历史对将来的影响,都是通过当前状态对将来的影响来表示,即当前的状态概括了过去历史对将来的影响。这样一来,任意维数的马尔可夫过程和马尔可夫链的概率分布,都可以用它们的初始分布和条件转移概率分布来表示。 定义1,马尔可夫过程(使用条件概率密度函数,或条件概率分布函数来表示) 设有一个随机过程{}T t t ∈),(ξ,T t t t t m m ∈<<<<+121 ,若在这些时刻观察到随机过程的值是121,,,+m m x x x x ,若它的条件概率密度和条件分布函数满足条件, )/(),,/(1/211,/1211m m t t m m t t t t x x f x x x x f m m m m ++++= 或 )/(),,/(1/211,/1211m m t t m m t t t t x x F x x x x F m m m m ++++= 则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。 性质,马尔可夫过程的有限维概率密度 ) ()/()/()/() ,,,(112/1/1/121,,11211121x f x x f x x f x x f x x x x f t t t m m t t m m t t m m t t t t m m m m m m ???=-++-++ 定义2,马尔可夫链(使用转移概率、条件概率) 设有一个随机过程{} 2,1,0),(=n n ξ是离散状态的随机过程,且)(n ξ满足条件, {}{} n n i n j n P i n i i j n P ==+=====+)(/)1()(,)1(,)0(/)1(10ξξξξξξ 则称这类随机过程是马尔可夫链。 性质,马尔可夫链的有限维概率密度 {} {}{}{}{} 001110)0()0(/)1()(/)()(/)1()1(,)(,)1(,)0(i P i i P i n i n P i n j n P j n i n i i P n n n n =?====?==+==+===-ξξξξξξξξξξξ 二阶矩过程: 定义1,二阶矩过程

《随机过程》课程大纲

《随机过程》课程大纲 一、课程简介 随机过程是定量研究随机现象(事件)动态变化的统计规律的一门数学分支学科。学习《随机过程》的主要目的是:了解和认识随机现象(事件)随时间变化的统计性质;知道如何构造随机过程和随机微分方程,并能应用随机分析的方法计算和分析随机过程的统计性质。《随机过程》主要包括随机过程基础,Poisson 过程,Markov 过程,Brownian 运动,鞅,平稳过程,随机微分方程。 二、教学内容 第一章***随机过程基础 主要内容:随机过程的定义及性质,随机过程的分类,随机过程的构造。 重点与难点:随机过程的构造 第二章***Poisson 过程 主要内容:Poisson过程的定义,时间间隔的分布,复合Poisson 过程,更新过程。 重点与难点:时间间隔的分布,更新极限定理。 第三章***Markov过程 主要内容:离散时间的Markov 链(常返与非常返,遍历性,转移概率极限,平稳分布,可逆Markov 链,强Markov链);连续时间Markov链(转移速率矩阵,向前与向后微分方程,转移概率极限与平稳分布),一般状态的Markov过程,Markov随机场。 重点与难点:转移概率极限与平稳分布。 第四章***Brownian 运动 主要内容:Brownian运动的定义,随机游动与Brownian运动,Brownian运动的性质,Brownian 运动的函数(几种变型)。, 重点与难点:Brownian运动的性质 第五章***鞅 主要内容:离散鞅(上、下鞅),鞅收敛定理,鞅中心极限定理;连续时间鞅 重点与难点:鞅收敛定理。 第六章***平稳过程 主要内容:平稳过程的定义,相关函数的谱表示,平稳过程的遍历性。 重点与难点:平稳过程的遍历性。 第七章***随机微分方程 主要内容:均方微积分,均方意义下的随机微分方程;Ito积分与Ito公式,随机微分方程,鞅表示定理,Girsanov Teory定理与,Feynman-Kac 公式 重点与难点:Ito积分与Ito公式。 三、教学进度安排 第一章***随机过程基础,需1周时间(两节课) 第二章***Poisson 过程,需2周时间 第三章***Markov过程,需4周时间

相关文档
最新文档