2015全国高中数学联赛挑战极限【平面几何试题】

2015全国高中数学联赛挑战极限【平面几何试题】
2015全国高中数学联赛挑战极限【平面几何试题】

1

2012全国高中数学联赛挑战极限--------[平面几何试题](2012.09.23)

1. 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点, C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC .

证明:连结AB ,在△ADQ 与△ABC 中,∠ADQ =∠ABC ,∠DAQ =∠PBC =∠CAB

故△ADQ ∽△ABC ,而有AD

DQ

AB BC =

,即BC ·AD =AB ·DQ 10分

又由切割线关系知△PCA ∽△PAD 得 AD

AC

PA PC =

; 同理由△PCB ∽△PBD 得 BD

BC

PB PC =

20分 又因PA =PB ,故BD

BC

AD AC =

,得 AC ·BD =BC ·AD =AB ·DQ 30分

又由关于圆内接四边形ACBD 的托勒密定理知 AC ·BD +BC ·AD =AB ·CD

于是得:AB ·CD =2AB ·DQ ,故DQ =

2

1

CD ,即CQ =DQ 40分 在△CBQ 与△ABD 中,BC

CQ

BC DQ AB AD =

=,∠BCQ =∠BAD ,于是△CBQ ∽△ABD , 故∠CBQ =∠ABD ,即得∠DBQ =∠ABC ∠PAC .

2、如图,M ,N 分别为锐角三角形ABC ?(A B ∠<∠)的外接圆Γ上弧BC

⌒ 、AC ⌒的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ?的内心,连接PI 并延长交圆Γ于T . ⑴ 求证:MP MT NP NT ?=?;

⑵ 在弧AB ⌒(不含点C

)上任取一点Q (Q A ≠,T ,B ),记AQC ?,QCB △的内心分别为1I ,2I ,求证:Q ,1I ,2I ,T 四点共圆.

B

[解析]: ⑴ 连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆,故PCMN 是等腰梯形.

因此NP MC =,PM NC =.

A

B

C

M

N

P T

I

连AM ,CI ,则AM 与CI 交于I ,因为

MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理NC NI =. 于是NP MI =,PM NI =.

故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高).

又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=?,由三角形面积公式

1sin 2PMT S PM MT PMT =?∠△1

sin 2

PNT S PN NT PNT ==?∠△1sin 2PN NT PMT =?∠

于是PM MT PN NT ?=?.

⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠,

B

P

A

B

C D Q

2

所以1NC NI =,同理2MC MI =.由MP MT NP NT ?=?得NT MT

MP NP

=

. 由⑴所证MP NC =,NP MC =,故

12

NT MT

NI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ??∽. 故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠. 因此Q ,1I ,2I ,T 四点共圆. 3. 一圆O 切于两条平行线12,l l ,第二个圆

1O 切1l 于A ,

外切O 于C ,第三个圆2O 切2l 于B ,外切O 于D ,外切1O 于E ,AD 交BC 于Q ,求证Q 是CDE ?的外心。

(35届IMO 预选题)

证明:由1AO ∥2BO ,知12 AO E BO E ∠=∠,从而有12AEO BEO ∠=∠,即,,A E B 三点共线。同理由OF

∥2BO ,可得,,B D F 三点共线。又因为

2111

18018022EDB EO B AO E EAF ∠=?-∠=?-∠=∠,所以,,,A E D F 四点共圆,

BE BA BD BF =,即点B 在1O 与O 的根轴上。又因为C 在1O 与O 的根轴上,所以

BC 是

1O 与

O 的根轴。同理AD 是

2O 与

O 的根轴,因此Q 为根心,且有

QC QD QE ==,即Q 是CDE ?的外心。

3

5. 如图,给定凸四边形ABCD ,180B D ∠+∠<,P 是平面上的动点, 令()f P PA BC PD CA PC AB =?+?+?.

(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E 是ABC ?外接圆O 的AB 上一点,满足

AE AB =

,1BC EC =,1

2

ECB ECA ∠=

∠,又,DA DC 是O

的切线,AC ()f P 的最小值. [解法一] (Ⅰ)如图1,由托勒密不等式,对平面上的

任意点P ,有

PA BC PC AB PB AC ?+?≥?. 因此 ()f P PA BC PC AB PD CA =?+?+? P B C A P D C A ≥?+?()PB PD CA =+?.

因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号, 因此当且仅当P 在ABC ?的外接圆且在AC 上时, ()()f P PB PD CA =+?. …10分

又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅 当P 为ABC ?的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =?. 故当()f P 达最小值时,,,,P A B C 四点共圆. …20分

(Ⅱ)记E C B α∠=,则2E C A α∠=,

由正弦定理有sin 2sin 3AE AB αα=,

2sin 2αα=,

34sin )4sin cos αααα-=,所以

2cos )4cos 0αα--=,

整理得24cos 0αα-, …30分

解得cos α=

cos α=30α=,60ACE ∠=.

由已知

1BC

EC ==

()

0sin 30sin EAC EAC ∠-∠,有sin(30)(1)sin EAC EAC ∠-=

∠,

1cos 1)sin 2EAC EAC EAC ∠-

∠=∠,整理得

1

cos 2

EAC EAC

∠=∠,

故tan 2EAC ∠==,可得75EAC ∠=,………40分

从而45E ∠=,45DAC DCA E ∠=∠

=∠=,ADC ?为等腰直角三角形.因AC 1

CD =.

又ABC ?

也是等腰直角三角形,故BC 212215BD

=+-?=

,BD =

故min ()f P BD AC =?= …50分

[解法二] (Ⅰ)如答一图2,连接BD 交ABC ?的外接圆O 于0P 点(因为D 在圆O 外,故0P 在BD 上).

过,,A C D 分别作000,,P A PC P D 的垂线,两两相交得111A B C ?,易知0P 在ACD ?内,从而在111A B C ?内,记ABC ?之三内角分别为x y z ,,,则0180APC y z x ∠=?-=+,又因110BC P A ⊥,110B A PC ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=, 所以111A B C ?∽ABC ?. …10分

设11B C BC λ=,11C A CA λ=,11A B AB λ=, 则对平面上任意点M ,有 0000()()f P P A BC P D CA PC AB λλ=?+?+? 011011011P A B C P D C A PC A B =?+?+? 1112A B C S ?=

111111MA BC MD C A MC A B ≤?+?+? ()MA BC MD CA MC AB λ=?+?+?

()f M λ=, 从而 0()()

f P f M ≤. 由M 点的任意性,知0P 点是使()f P 达最小值的点.

由点0P 在O 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值

111

02

()A B C f P S λ

?=2ABC S λ?=,

记ECB α∠=,则2E C A

α∠=,由正弦定理有sin 2sin 3

AE AB αα==

2sin 2αα=,34sin )4sin cos α

ααα-=

,所以

2cos )4cos 0αα

--=,

整理得24cos 0αα-,

…30分

解得cos α=或cos α=

故30α=,60ACE ∠=.

由已知

1BC

EC ==

()

0sin 30sin EAC EAC

∠-∠,有sin(30)(1)sin EAC EAC ∠-=

∠,

即1

cos 1)sin 2

EAC EAC EAC ∠-∠=

∠, 整理得1i n c o s 2EAC EAC

∠=∠

,故t a n 3EAC ∠==,可得

75EAC ∠=,…40分

所以45E

∠=?,ABC ?为等腰直角三角形,AC =,1ABC S ?=,因为1

45AB C

∠=?,1B 点

答一图2

图1

4

在⊙O 上,190AB B ∠=?,所以11B BDC 为矩形,

11B C BD =

λ,所以

min ()21f P == …50分 6. 在直角三角形ABC 中,90ACB ∠=?,△ABC 的内切圆O 分别与边BC ,CA , AB 相切于点D ,E ,F ,连接AD ,与内切圆O 相交于点P ,连接BP ,CP ,若90BPC ∠=?,

求证:AE AP PD +

=.

证明 :设AE = AF = x ,BD =BF =y ,CD =CE =z ,AP =m ,PD =n .

因为90ACP PCB PBC PCB ∠+∠=?=∠+∠,所以ACP PBC ∠=∠.

E C

B

延长AD 至Q ,使得AQC ACP PBC ∠=∠=∠,连接BQ ,CQ ,则P ,B ,Q ,C 四点共圆,令DQ =l ,则由相交弦定理和切割线定理可得

yz nl =, ①

2()x m m n =+. ②

因为ACP ?∽AQC ?,所以

AC AP

AQ AC

=,故 2()()x z m m n l +=++. ③

在Rt △ACD 和Rt △ACB 中,由勾股定理得

222()()x z z m n ++=+, ④ 222()()()y z z x x y +++=+. ⑤

③-②,得 2

2z zx ml +=, ⑥

①÷⑥,得

22yz n

z zx m

=+,

所以 212yz m n

z zx m

++=+, ⑦

②×⑦,结合④,得 22

2222

()()2x yz

x m n x z z z zx

+=+=+++, 整理得

22()2x y

z x z z x

=++. ⑧ 又⑤式可写为 2xy

x z y z

+=

+, ⑨ 由⑧,⑨得

42x z

z x y z

=++. ⑩

又⑤式还可写为 2xz

y z x z

+=-, ○11 把上式代入⑩,消去y z

+,得

223220x xz z --=,

解得

x z =

, 代入○11得,

5)y z =, 将上面的x ,y 代入④,得

m n z +=

5

结合②,得

21

6x m z m n ==+,

从而

1

2

n z =,

所以,x m n +=,即 AE AP PD +=.

6. 给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .

(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?;

(2)若 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论.

解(1)设Q ,R 分别是OB ,OC 的中点,连接

EQ ,MQ ,FR ,MR ,则

11

,22

EQ OB RM MQ OC RF ====,

又OQMR 是平行四边形,所以

OQM ORM ∠=∠,

由题设A ,B ,C ,D 四点共圆,所以

ABD ACD ∠=∠,

于是 图1 22EQO ABD ACD FRO ∠=∠=∠=∠,

所以 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 所以 EM =FM , 同理可得 EN =FN ,

所以 EM FN EN FM ?=?.

(2)答案是否定的.

当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有

EM FN EN FM ?=?,证明如下:

如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则

11

,22

NS OD EQ OB ==,

所以

NS OD EQ OB

=. ① 又11

,22

ES OA MQ OC =

=,所以 ES OA

MQ OC

=. ② 而AD ∥BC ,所以

OA OD

OC OB

=, ③ 由①,②,③得

NS ES

EQ MQ

=. 因为 2NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠,

()(1802)EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠

(180)2AOE EOB AOD AOE =∠+?-∠=∠+∠,

即 NSE EQM ∠=∠, 所以 NSE ?~EQM ?,

故 EN SE OA

EM QM OC

==(由②). 同理可得, FN OA

FM OC

=,

C

B

C

B

所以EN FN EM FM

=,

从而EM FN EN FM

?=?.

6

7

4. 如图,已知△ABC 内切圆I 分别与边AB 、BC 相于点F 、D ,直线AD 、CF 分别交圆I 于另一点H 、K .

求证:3FD HK FH DK

?=?.

设AF =x ,BF =y ,CD =z ,则可以将 各线段长用x ,y ,z 表示如下: 由Stewart 定理得:

222222()()4BD CD

AD AC AB BD DC BC BC y x z z x y yz

y z xyz x y z =

?+?-?+++=-+=+

+

由切割线定理得:

22

AF x AH AD AD ==

, 所以

224()AD x xyz

HD AD AH AD AD y z -=-==

+,

同理有

4()xyz

KF CF x y =

+.

由△CDK ∽ △CFD 得

DF CD DF

DK z CF CF ?=

=,

由△AFH ∽ △ADF 得

DF AF DF FH x

AD AD ?==.

由余弦定理得

2222222

22cos ()()()212()()4()()DF BD BF BD BF B

y z x y x z y x y y z xy z x y y z =+-???

+++-+=- ?

++??

=

++

于是22

4416()()4()()xyz xyz

KF HD xy z

CF x y AD y z DF DF FH DK DF x y y z x z AD CF ?

?++===?++?,

对圆内接四边形DKHF 由Ptolemy 定理得

KF HD DF HK FH DK ?=?+?,

结合 4K F H D F H D K ?=?, 便得 3

FD HK

FH DK ?=?.

【证明2】

先验证一个引理: <引理>

如图, AB, AC 切圆于点B, C, 割线AP 交圆于点P, Q 且点P 在A, Q 之间. 则有

22PQ BC BP QC BQ PC ?=?=?.

<证明>

由托勒密定理知

PQ BC BP QC BQ PC ?=?+?.

因AB 为圆的切线, 故知

ABP AQB ∠=∠.

再因

BAP QAB ∠=∠, 故可得 ~ABP AQB ??, 即可得知 BP AP AB

BQ AB AQ ==

D

A

8

故 2

B P A P

A B

A P

B Q A B

A Q

A Q

??=?= ??

?. 同理, 2

CP AP CQ AQ

??= ???. 故知 2

2

CP BP CQ BQ ????= ? ?

?

???, 所以可知

BP QC BQ PC ?=?,

22PQ BC BP QC BQ PC ?=?=?

回到原题, 设圆I 与AC 切于Q 点并连接HQ, QK, QD 与FQ.

由托勒密定理知

KF HD DF HK FH DK ?=?+?

所以

34

FD HK KF HD

FH DK FH DK ??=?=??.

因CQ, CD 皆为圆O 的切线, 故由引理知

22KF DQ DK FQ

HD FQ FH DQ ?=??=?

将以上

两式相乘, 即得

4K F H D D Q F Q

D K F H D Q F Q ???=???, 即

4

KF HD

FH DK ?=?.

如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB 的切点.若OD 与EF 相交于K ,求证:AK 平分BC .

证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、 OE 、OF .

由OD ⊥BC ,可知OK ⊥PQ .

由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有 ∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有 ∠EOP =∠EKP . 显然,∠FKQ =∠EKP ,可知 ∠FOQ =∠EOP .

由OF =OE ,可知 Rt △OFQ ≌Rt △OEP . 则OQ =OP . 于是,OK 为PQ 的中垂线,故 QK =KP . 所以,AK 平分BC .

D

O 图10

2015年高考理科数学试题及答案-全国卷2

绝密★启用前 2015年普通高等学校招生全国统一考试(全国卷2) 理 科 数 学 注意事项: 1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。 2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=( ) (A ){--1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2} (2)若a 为实数且(2+ai )(a-2i )=-4i,则a=( ) (A )-1 (B )0 (C )1 (D )2 (3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是( ) (A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现 (C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关 (4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( ) (A )21 (B )42 (C )63 (D )84

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高一数学立体几何练习题及部分标准答案汇编

立体几何试题 一.选择题(每题4分,共40分) 1.已知AB//PQ,BC//QR,则∠PQP等于() A 030 B 030 C 0 150 D 以上结论都不对 2.在空间,下列命题正确的个数为() (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是() A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m//平面α,直线n在α内,则m与n的关系为() A 平行 B 相交 C 平行或异面 D 相交或异面 5.经过平面α外一点,作与α平行的平面,则这样的平面可作() A 1个或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有()

8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块 14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________ 三、解答题 15(10分)如图,已知E,F 分别是正方形ABCD A B C D -的棱AA 和棱CC 上的点,且

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

2015年高考理科数学全国1卷-含答案

2015年高考理科数学试卷全国1卷 1.设复数z 满足 11z z +-=i ,则|z|=( ) (A )1 (B (C (D )2 2.o o o o sin 20cos10cos160sin10- =( ) (A )2- (B )2 (C )12- (D )12 3.设命题p :2 ,2n n N n ?∈>,则p ?为( ) (A )2 ,2n n N n ?∈> (B )2,2n n N n ?∈≤ (C )2,2n n N n ?∈≤ (D )2,=2n n N n ?∈ 4.投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 5.已知M (00,x y )是双曲线C :2 212 x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ?<,则0y 的取值范围是( ) (A )( (B )( (C )(3- ,3) (D )(3-,3 ) 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部 的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 7.设D 为ABC ?所在平面内一点3BC CD =,则( ) (A )1433AD AB AC =- + (B )1433 AD AB AC =- (C )4133AD AB AC = + (D )4133 AD AB AC =-

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

2015年全国高中数学联赛河南省高一预赛试题含答案

2015年全国高中数学联赛河南省高一预赛试题 (5月10日8:30至11:00) 一.填空题(本大题共8小题,每小题8分,共64分) 1.若集合{}*54,A a a x x ==+∈N ,{}*76,B b b y y ==+∈N ,将A B 中的元素从 小到大排列,则排在第20个的那个元素是 . 2.已知实数x ,y 满足:33(3)2015(3)(23)2015(23)0x x y y -+-+-+-=,则()22min 44x y x ++= . 3.设线段BC α?,AB α⊥,CD BC ⊥,且CD 与平面 α成30?角,且 2A B B C C D c m ===,则线段AD 的长度为 . 4.若直线l 与直线3100x y -+=,280x y +-=分别交于点M ,N ,若MN 的中点为(0,1)P ,则直线l 的方程是 . 5.设k ,m ,n 都是整数,过圆222(31)x y k +=+外一点33 (,)P m m n n --向该圆引两 条切线,切点分别为A ,B ,则直线AB 上满足横坐标与纵坐标均为整数的点有 个. 6.若函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则a b += . 7.(请同学们任选一题作答,若两题都做,则按上面一题正误判分) (必修3)执行如图所示的算法,则输出的结果是 .

(必修4)已知函数sin ()x f x x =在区间π(0,)2上是减函数,若01x <≤,2sin ()x a x =,sin x b x =,2 2 sin x c x =,则a ,b ,c 的大小关系是 . 8.如果实数a ,b 使得21x x --是201520152 1211ax bx ++++的因式,则a 的个位数字 为 . 二(本题满足16分) 求2232x y -=的整数解. 三(本题满足20分) 如图所示,已知AB 为圆O 的直径,点C 在圆O 上且满足AC BC <,在线段BC 上取一点D ,使BD AC =,在AD 上取一点E 使45BED ∠=?,延长BE 交CA 于F ,求证:CD AF =.

高中数学立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA⊥矩形ABCD 所在平面,M、N 分别为AB、PC 的中点; (1)求证:MN// 平面PAD (2)若∠ PDA=45 °,求证:MN ⊥平面PCD 2(本小题满分12 分) 如图,在三棱锥P ABC中,E,F 分别为AC,BC 的中点. 1)求证:EF // 平面PAB ; 2)若平面PAC 平面ABC,且PA PC ,求 证:平面PEF 平面PBC . ABC 90 , A P C F B

(1)证明:连结EF , Q E、F 分别为AC 、BC的中点, EF // AB. ???????? 2 分又EF 平面PAB ,AB 平面PAB ,EF∥平面PAB. ????????5 分 (2)Q PA PC,E为AC的中点, PE AC ???????? 6 分 又Q 平面PAC 平面ABC PE 面ABC ????????8 分 PE BC ????????9 分 又因为F 为BC 的中点, EF // AB Q ABC 900, BC EF ????????10 分 Q EF I PE E BC 面PEF ????????11 分 又Q BC 面PBC 面PBC 面PEF ????????12 分 3. 如图,在直三棱柱ABC—A1B1C1中,AC=BC,点D是AB的中点。 1)求证:BC1// 平面CA1D; 2)求证:平面CA1D⊥平面AA1B1B。 4.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F 分 别是AB、PC的中点. (1) 求证:EF∥平面PAD; (2) 求证:EF⊥ CD; (3) 若∠ PDA=45°,求EF与平面ABCD 所成的角的大小.

2015年全国高中数学联赛试卷解析

2015 年全国高中数学联合竞赛(A 卷) 参考答案及评分标准 一试 说明: 1.评阅试卷时,请依据本评分标冶填空题只设。分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次. 2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次. 一、填空题:本大题共8小题,每小题8分,满分64分. 1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22 a b a +=-,即20a b +=,所以(2)424f a b =++=. 2.若实数α满足ααtan cos =,则αα 4cos sin 1 +的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 2 2=+αα, 得 )cos 1)(sin 1(sin sin sin cos cos sin 122224 αααααααα-+=++=+ 2cos sin 22=-+=αα. 3.已知复数数列{}n z 满足),2,1(1,111???=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示 n z 的共轭复数,则=2015z . 答案:2015 + 1007i .解:由己知得,对一切正整数n ,有 211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+?+=+. 4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q 满足条件BQ DP =,则PQ PA ?的最小值为 . 答案 34 . 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则 由||||DP BQ = 得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=--- ,因此, 22133()(2)(1)(1)1()244 PA PQ t t t t t t ?=-?-+-?--=-+=-+≥ . 当12t =时,min 3 ()4 PA PQ ?= . 5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案: 2 55 .解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法

2015年全国高中数学联赛试题

2015年全国高中数学联合竞赛一试试题(A 卷) 一、填空题:本大题共8小题,每小题8分,满分64分 1.设,a b 为不相等的实数,若二次函数2()f x x ax b =++满足()()f a f b =,则(2)f 的值为 2.若实数α满足cos tan αα=,则41cos sin αα +的值为 3.已知复数数列{}n z 满足111,1(1,2,3,)n n z z z ni n +==++=,其中i 为虚数单位,n z 表示n z 的共轭复数,则2015z 的值为 4.在矩形ABCD 中,2,1AB AD ==,边DC (包含点,D C )上的动点P 与CB 延长线上(包含点B )的动点Q 满足DP BQ =,则向量PA 与向量PQ 的数量积PA PQ ?的最小值为 5.在正方体中随机取3条棱,它们两两异面的概率为 6.在平面直角坐标系xOy 中,点集{}(,)(36)(36)0K x y x y x y =+-+-≤所对应的平面区域的面积为 7.设ω为正实数,若存在,(2)a b a b ππ≤<≤,使得sin sin 2a b ωω+=,则ω的取值范围是 8.对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若 ,,a b b c c d <><,则称abcd 为Q 类数,用(),()N P N Q 分别表示P 类数与Q 类数的个数,则 ()()N P N Q -的值为 二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤 9.(本题满分16分)若实数,,a b c 满足242,424a b c a b c +=+=,求c 的最小值. 10.(本题满分20分)设1234,,,a a a a 是4个有理数,使得 {}311424,2,,,1,328i j a a i j ??≤<≤=----???? ,求1234a a a a +++的值. 11.(本题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2 212 x y +=的左、右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点,A B ,焦点2F 到直线l 的距离为d ,如果直线11,,AF l BF 的斜率依次成等差数列,求d 的取值范围.

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

高中数学立体几何习题

1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 A E D 1 C B 1 D A A H G F E D C B A E D B C

4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面; (2)''BD ACB ⊥平面. S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点, 3AN NB = (1)求证:MN AB ⊥; (2)当90APB ∠=o ,24AB BC ==时,求MN 的长。 A A B 1 C 1 C D G E F

高一数学立体几何解答题汇总

如图,直三棱柱111ABC A B C -中,112 A C B C A A ==, D 是棱1A A 的中点,1D C BD ⊥。 (Ⅰ)证明:1D C BC ⊥ (Ⅱ)证明:A C ⊥BC. 12全国文19)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1, D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。 A 1 B 1 C B A D C 1 A 1

如图1,在R t ABC △中,90C ∠=?,3B C =,6A C =.D , E 分别是A C ,AB 上的点,且D E BC ∥,2DE =,将A D E △沿D E 折起到1A DE △的位置,使1A C CD ⊥,如图2. (1)求证:1A C ⊥平面B C D E ; 12北京文 如图1,在R t A B C ?中,0=90C ∠,D,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将AD E ?沿DE 折起到1A D E ?的位置,使1A F C D ⊥,如图2. (Ⅰ)求证:DE ∥平面1A C B (Ⅱ)求证:1A F BE ⊥ A C D E A 1 M C B E D 图1 图2

上海理19.(6+6=12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面 ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 天津理(17)(本小题满分13分) 如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AC ⊥AD , AB ⊥BC ,∠BAC=45°,PA=AD=2,AC=1. (Ⅰ)证明PC ⊥AD ; (Ⅱ)求二面角A-PC-D 的正弦值;

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

》《高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱 , 这两个半平面叫 做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角 的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角 S —AM —B 中半平面ABM 上的一已知 点(B )向棱AM 作垂线,得垂足( F );在另一半平面 ASM 内过该垂足(F )作棱AM 的垂线(如GF ), 这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。例1如图,四棱锥 S ABCD 中,底面ABCD 为矩形,SD 底面ABCD , 2 AD 2DC SD ,点M 在侧棱SC 上, ABM =60° (I )证明:M 在侧棱SC 的中点(II )求二面角S AM B 的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM 交AM 于点F ,则点F 为 AM 的中点,过F 点在平面ASM 内作GF AM ,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点,∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点 G 是AS 的中点。 则 GFB 即为所求二面角.∵2SM ,则2 2GF , 又∵ 6AC SA ,∴2AM ,∵2AB AM , 60ABM ∴△ABM 是等边三角形,∴ 3BF 。在△GAB 中,2 6AG ,2AB , 90GAB ,∴2 114 2 3BG 3 66 23 2 22 211321 2cos 2 22 FB GF BG FB GF BFG ∴二面角S AM B 的大小为) 36arccos( F G F G

高中数学平面解析几何初步经典例题(供参考)

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

高中数学立体几何测试题及答案

高中数学必修2立体几何测试题及答案(一) 一,选择(共80分,每小题4分) 1,三个平面可将空间分成n 个部分,n 的取值为( ) A ,4; B ,4,6; C ,4,6,7 ; D ,4,6,7,8。 2,两条不相交的空间直线a 、b ,必存在平面α,使得( ) A ,a ?α、b ?α; B ,a ?α、b ∥α ; C ,a ⊥α、b ⊥α; D ,a ?α、b ⊥α。 3,若p 是两条异面直线a 、b 外的任意一点,则( ) A ,过点p 有且只有一条直线与a 、b 都平行; B ,过点p 有且只有一条直线与a 、b 都垂直; C ,过点p 有且只有一条直线与a 、b 都相交; D ,过点p 有且只有一条直线与a 、b 都异面。 4,与空间不共面四点距离相等的平面有( )个 A ,3 ; B ,5 ; C ,7; D ,4。 5,有空间四点共面但不共线,那么这四点中( ) A ,必有三点共线; B ,至少有三点共线; C ,必有三点不共线; D ,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有( )个 A ,0; B ,1; C ,无数 ; D ,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n 边形,则( ) A ,3≤n ≤6 ; B ,2≤n ≤5 ; C ,n=4; D ,上三种情况都不对。 8,a 、b 为异面直线,那么( ) A ,必然存在唯一的一个平面同时平行于a 、b ; B ,过直线b 存在唯一的一个平面与a 平行; C ,必然存在唯一的一个平面同时垂直于a 、b ; D ,过直线b 存在唯一的一个平面与a 垂直。 9,a 、b 为异面直线,p 为空间不在a 、b 上的一点,下列命题正确的个数是( ) ①过点p 总可以作一条直线与a 、b 都垂直;②过点p 总可以作一条直线与a 、b 都相交;③ 过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的面积 为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移动, 点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( )A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( )

相关文档
最新文档