一种基于ARM+FPGA的无人机测地面测控系统设计与实现

一种基于ARM+FPGA的无人机测地面测控系统设计与实现
一种基于ARM+FPGA的无人机测地面测控系统设计与实现

一种基于ARM+FPGA的无人机地面

测控系统设计与实现

摘要:本文基于ARM+FPGA的嵌入式架构,实现单测控站对多目标无人机的可靠控制。其中,ARM 微处理器主要负责各无人机GPS/北斗数据的解算,通过解算得到的方位角、俯仰角、天线阵列单元编号信息,完成对无人机的跟踪;FPGA作为协同处理器,一方面提供RS232/RS422/SPI数据接口和时序控制,另一方面完成无人机遥测、遥控数据的高速处理。整个系统采用TDMA(时分多址)的方式,通过对每个通信时隙的精确控制,实现单站远距离多目标无人机的可靠测控。本设计能够实现一站最多9架无人机的同时测控。

关键词:ARM;FPGA;无人机;TDMA

引言

测控系统作为无人机系统的重要组成部分,主要完成对无人机的遥控、遥测、跟踪定

位,实现对机载任务载荷的远距离操纵以及侦

察信息的实时传输、监视、记录及分发。在多

无人机协同作战技术快速发展的今天,测控系

统的工作方式也由一站一机,发展到一站多

机。

1设计原理

本文主要对一站多机的无人机测控地面测控系统实现进行介绍。该系统采用电扫描技

术,对无人机具有TDMA(时分多址)+频分+空分

的精确控制功能(如图1所示)。通过划分时

隙,在每个通信时隙内,完成多组数据的交互。

再通过ARM控制解算,完成对个无人机的精确

跟踪,实现远距离多目标无人机的可靠测控。

地面测控系统采用ARM+FPGA的嵌入式架构。其中,ARM微处理器采用STM32 Cortex-M3

芯片,FPGA采用Xilinx Spartan6系列芯片。

可以根据不同型号的无人机,来配置各路串口

数据的波特率,也可以在线对遥控、遥测通道

进行配置切换。

此外,此地面控制部分具有GPS数据导引跟踪及自动搜索功能,能够通过场强信息快速

找到目标无人机。具有故障诊断识别功能和自

动重捕功能。本次设计能够实现一站最多9架

无人机的同时测控。

2系统设计2.1ARM功能介绍

控制解算模块是地面测控系统的核心。由ARM微处理器(STM32 Cortex-M3芯片)及其

外围电路组成。实现功能需要的片内资源包括

时钟模块、SPI接口模块、GPIO模块、外部中

断、定时/计数器等。其主要实现的功能包括

正北标定,与FPGA数据处理模块进行数据交

互、多无人机的实时跟踪控制,与显示按键模

块的输入输出响应等。

图 1 时分通信机制

2.2FPGA功能介绍

FPGA选取Xilinx Spartan6芯片(低功耗、低成本,同时具有多大150000个逻辑单元等,

可以很好的满足设计所需资源量及系统的工

作性能),通过SPI总线接口与ARM互联,配

备有源晶振,同时选取12个引脚与12个串口

互联,控制端口中,预留1各接口,以便升级,

1

功能框图如图2所示。

主要实现多路串口数据的收发及与ARM间的数据交互。FPGA内部定时器负责计时,当一个时隙到来,通知ARM进行高速天线开关的切换,ARM发出开关切换指令,同时把消息反馈

给FPGA。FPGA延时几十纳秒后,收遥测指令

并解析,再通过SPI总线输出给ARM,通过串

口输出给指控设备;同步状态下收遥控指令,解析后经射频组件和天线发送。

2.3硬件设计

2.3.1正北标定

在无人机起飞前,利用瞄准镜/GPS组合方式进行正北标定。首先根据选择好的场地,确定测控地面站的站址点,用GPS/北斗定位,并记录其经纬度,作好标记。站址点确定后,不能任意移动,否则需重新进行标定过程。选取参照点,参照点与站址点应大于800m,设立长

杆标志,移动长杆,确保其与瞄准镜的中垂线重合,用GPS/北斗定位,记录其经纬度。ARM 微处理器根据两点的GPS坐标值,算出参照点到站址点的方位角,作为GPS/北斗跟踪时无人机处在哪个天线单元覆盖范围内的重要依据。

图 2 FPGA功能框图

2.3.2多无人机的实时跟踪控制

无人机起飞后初捕模式下。近场阶段,根据无人机的高度、距离切换到一低仰角的全向天线进行通信;远场阶段,自动在定向天线单元间依次切换进行搜索,确定每架无人机处于哪个定向天线单元覆盖范围之内,记录下对应天线单元编号,之后转入自动跟踪模式。如有无人机未能确定所在方位,将此无人机所对应天线编号统一设为某一定向天线单元,留待自动跟踪模式下,再进行搜索。

3结论3.1仿真结果

ARM通过SPI接口配置1号无人机,波特率为19200(代号:01),ModelSim仿真结果

如下图4所示。

目前,通过串口调试工具,设立9台飞控计算机与机载设备,同时与测控站互通,通信

情况良好,误码率约6

10 ,且无丢包现象。

通过实际搭载飞行,实测情况下3架无人机同时在线时,通信情况良好。(由于条件所

限,实际最大测试无人机数为3架。)

3.2结论

通过理论模拟试验与实际飞行测试,证实本文提出的一站多机的数据处理方法是可行

的。并且在数据通信可靠性方面,也满足通用

测控站的要求。

图 3仿真结果图

图 4仿真结果图

作者简介:辛海洋(1989—),男,陕西省,汉族,本科,职称,工程师,主要研究方向为中频数字信号处理;彭飞(1988—),女,江苏省,汉族,本科,工程师,主要研究方向为系统电磁兼容测试设计。

参考文献:

[1] 田耘,徐文波,张延伟.无线通信FPGA设计[M].北京:电子工业出版社,2008.02。

[2] 杜春雷.ARM体系结构与编程[M].北京:清华大学出版

2

社,2003.02。

[3] 田耘,徐文波,杨放..Xilinx FPGA开发使用教程[M].

北京:清华大学出版社,2008.11。

[4] 黄智伟. FPGA系统设计与实践[M].北京:电子工业出

版社,2005.01。

[5]江晓林,杨明极.通信原理[M].哈尔滨:哈尔滨工业大

学出版社 ,2010.03

[6]于斌,谢龙汉.ModelSim电子系统分析及仿真[M].电子

工业出版社,2014.02

3

无人机设计手册及主要技术

无人机设计手册及主要技术 内容简介 独家《无人机设计手册》分上、下两册共十二章。 上册包括无人机系统总体设计,气动、强度、结构设计,动力装置,发射与回收系统,飞行控制与管理系统。 下册包括机载电气系统,指挥控制与任务规划,测控与信息传输,有人机改装无人机,综合保障设计,可靠性、维修性、安全性和环境适应性以及无人机飞行试验等。有关无人机任务设备、卫星中继通信的设计以及正在发展的无人机技术等内容,有待手册再版时编入,使无人机设计手册不断成熟和丰富。 适用人群 本手册是国内第一部较全面系统阐述无人机设计技术的工具书,不仅可作为无人机的设计参考,也可以作为院校无人机教学、无人机行业的工程技术人员和管理人员的参考书,并可供无人机部队试验人员使用。希望本手册的出版能对我国无人机研制工作的技术支持有所裨益。 作者简介 祝小平,现任西北工业大学无人机所总工程师,主要从事无人机总体设计、飞行控制与制导系统设计等研究工作。主持了工程型号、国防预研等国家重点项目多项,获国家和部级科学技术奖9项,其中国家科技进步一等奖1项,国防科技进步一等奖4项,获技术发明专利10项,荣立“国防科技工业武器装备型号研制”个人一等功,发表论著150多篇。先后入选国家级“新世纪百千万人

才工程”、国防科技工业“511人才工程”和教育部“新世纪优秀人才支持计划”,获得“ 国防科技工业百名优秀博士、硕士”、“国防科技工业有突出贡献的中青年专家”、“陕西省有突出贡献专家”和“科学中国人(2009)年度人物”等荣誉称号。 无人机相关GJB标准-融融网 gjb 8265-2014 无人机机载电子测量设备通用规范 gjb 4108-2000 军用小型无人机系统部队试验规程 gjb 5190-2004 无人机载有源雷达假目标通用规范 gjb 7201-2011 舰载无人机雷达对抗载荷自动测试设备通用规范 gjb 5433-2005 无人机系统通用要求 gjb 2347-1995 无人机通用规范 gjb 6724-2009 通信干扰无人机通用规范 gjb 6703-2009 无人机测控系统通用要求 gjb 2018-1994 无人机发射系统通用要求 无人机主要技术 一、动力技术 续航能力是目前制约无人机发展的重大障碍,业内人士也普遍认为消费级多旋翼续航时间基本维持在20min左右,很是鸡肋。逼得用户外出飞行不得不携带多块电池备用,造成使用操作的诸多不便,为此有诸多企业在2016年里做出了新的尝试。

无人机地面站

无人机地面站 地面站作为整个无人机系统的作战指挥中心,其控制内容包括 :飞行器的飞行过程,飞 行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。 中文名:无人机地面站 外文名: UAV ground station 目录 概述 地面站的配置和功能概述 ?地面站的典型配置 ?地面站的典型功能 关键技术及典型解决方案 ?友好的人机界面 ?操作员的培训 ?一站多机的控制 ?开放性、互用性与公共性 ?地面站对总线的需求 ?可靠的数据链 无人机地面站发展的趋势 概述 近20 年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全 自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面 控制站 (GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理 能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开 放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的 功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素 的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。

无人机控制系统核心硬件

2.1 ARM-Cortex M4架构 ARM-Cortex M4 架构: 无人机控制系统可以采用基于ARM系统架构的嵌入式处理器来实现,本次 重点基于ARM-Cortex M4架构的无人机飞控系统。 ARM是32位嵌入式微处理器的行业领先提供商,到目前为止,已推出各 种各样基于通用体系结构的处理器,这些处理器具有高性能和行业领先的功效,而且系统成本也有所降低。 基于ARMv7架构以上的Cortex系列主要分为A(应用处理器)、R(实时 处理器)、M(微控制器)三大应用系列。其中Cortex-M系列处理器主要是针 对微控制器领域开发的,在该领域中,既需进行快速且具有高确定性的中断管理,又需将逻辑门数和功耗控制在最低。Cortex-M处理器是一系列可向上兼容 的高能效、易于使用的处理器,这些处理器旨在帮助开发人员满足将来的嵌入 式应用的需要。这些需要包括以更低的成本提供更多功能、不断增加连接、改 善代码重用和提高能效 ARM-Cortex 的特点: 更低的功耗:以更低的 MHz 或更短的活动时段运行,基于架构的睡眠模式支持,比 8/16 位设备的工作方式更智能、睡眠时间更长 更小的代码(更低的硅成本):高密度指令集,比 8/16 位设备每字节完 成更多操作,更小的 RAM、ROM 或闪存要求 易于使用:多个供应商之间的全球标准,代码兼容性,统一的工具和操作 系统支持 更有竞争力的产品:Powerful Cortex-M processor,每MHz 提供更高的

?Cortex-M4是一个32位处理器内核 ?内部的数据路径是32位的,寄存器是32位的,存储器接口也是32 位的 ?采用哈佛架构 ?小端模式和大端模式都是支持的 ?Thumb指令集与32位性能相结合的高密度代码 ?针对成本敏感的设备Cortex-M4处理器实现紧耦合的系统组件,降低处理器的面积,减少开发成本 ?ROM系统更新的代码重载的能力 ?该处理器可提供卓越的电源效率 ?饱和算法进行信号处理 ?硬件除法和快速数字信号处理为导向的乘法累加 ?集成超低功耗的睡眠模式和一个可选的深度睡眠模式 ?快速执行代码会使用较慢的处理器时钟,或者增加睡眠模式的时间?为平台的安全性和稳固性,集成了MPU(存储器保护单元) ?Cortex-M4内部还附赠了好多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等 ?有独立的指令总线和数据总线,可以让取指与数据访问并行不悖 2.1.3 基于ARM Cortex-M4 内核的微控制器 ARM Cortex-M4内核是微控制器的中央处理单元(CPU),配合外围设备模块和组件,形成完整的基于Cortex-M4的微控制器。在芯片制造商得到Cortex-M4处理器内核的使用授权后,它们可以将Cortex-M4内核用在自己的硅片设计中,添加存储器,外设,I/O以及其它功能块。不同厂家设计出的单片机会有不同的配置,包括存储器容量、类型、外设等都各具特色。由于基于统一的内核架构,事实上本书后面所介绍的飞控软件和算法虽然已ST的 STM32F407为基础,它们是很容易移植到其他公司的同内核平台芯片上的,很多与外设无关的代码部分不需要任何改变即可移到其他平台上,仅需要关注外围设备相关部分的驱动代码。 ?飞思卡尔(现并入恩智浦)基于ARM Cortex M4内核的Kinetis K60微控制器系列。Kinetis微控制器组合产品由多个基于ARM@CortexTM_M4内核且引脚、外设和软件均兼容的微控制器系列产品组成。 ?ST基于ARM Cortex-M4内核的STM32 F4微控制器系列,具有高达 168MHz的主频,以及在此主频工作下的基准测试功耗为38.6mA

无人机系统建设方案设计(初稿子)--李仁伟--2018.09.21

实用标准文案 监管场所无人机系统 建设方案 北京创羿兴晟科技发展有限公司 2018.9

目录 目录 目录 (1) 一、概述 (2) 1.1、背景 (2) 1.2、应用 (2) 1.3、方案依据标准规范 (3) 二、系统介绍 (5) 2.1、系统功能 (5) 2.2、功能及产品介绍 (5) 2.2.1、六旋翼无人机主机 (5) 2.2.2、航拍摄像 (12) 2.2.3、空中抛投 (25) 2.2.4、通信中继..................................... 错误!未定义书签。 2.3、无人机综合管控指挥平台 (29) 2.3.1、平台内容 (30) 2.3.2、软件架构 (31) 2.3.3、通信架构 (31) 2.3.4、客户端界面 (32)

一、概述 1.1、背景 无人机产业发展至今,已经成长为了一个完整的体系,在这个体系之下,无人机从功能上细分到了各个领域,除了航拍、植保等功用之外,无人机也在勘察、安检等领域拥有不错的发挥,其中安全巡逻无人机已经成为无人机市场中的一匹迅速崛起的黑马,并且还在不断地快速成长。运用高科技手段对监狱工作提供技术支持已刻不容缓。作为高度戒备监狱,监狱押犯规模大、在押罪犯刑期长、犯群结构复杂,为积极整合资源、推动高新技术应用、完善综合保障机制、增强突发事件应对能力。 无人机可完成包括巡航、实时监控、取证拍摄等一体化飞行及监控任务,并能将高清视频或高像素照片实时传输到执法终端。今后,它不仅会用于监管设施及周边区域的隐患排查,维护监管安全,为监狱指挥中心作出实时部署提供第一手资料;它还对开展隐蔽督察、视频督察、掌握狱情灾情和处置突发事件发挥重要作用。

无人机地面站发展综述

无人机地面站发展综述 [摘要]主要介绍了无人机地面站的发展,包括无人机地面站典型的配置、功能及其关键技术。并展望了未来无人机地面站发展趋势。 1、概述 20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS: Ground Contrul Station) 将具有包括任务规划,数字地图,卫星数据链,图像处理能力在内的集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群:地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展;相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程,飞行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据,接收指令,在网络化的现代作战环境中发挥独特作用。 2典型地面站的配置和功能概述 2.1地面站的典型配置 目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。其相互间的关系如图1所示。

(1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。 (2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。 (3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。 (4)数据分发系统。用于分析和解释从无人机获得的图像。 (5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。 数据链应用于不同的UAV系统,实现以下主要功能: —用于给飞行器发送命令和有效载荷; —接收来自飞行器的状态信息及有效载荷数据。 (6)中央处理单元:包括一台或多台计算机,主要功能如下: —获得并处理从UAV来的实时数据: —显示处理; —确认任务规划并上传给UAV; 一一电子地图处理; —数据分发: —飞行前分析; —系统诊断。 2.2地面站的典型功能 GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能: (1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。 (2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面控制站根据任务要求实现对有效载荷的控制,并通过对有效载荷状态的显示来实现对任务执行情况的监管。 (3)任务规划、飞行器位置监控、及航线的地图显示。任务规划主要包括处理战术信息、研究任务区域地图、标定飞行路线及向操作员提供规划数据等。飞行器位置监控及航线的地图显示部分主要便于操作人员实时地监控飞行器和航迹的状态。 (4)导航和目标定位。无人机在执行任务过程中通过无线数据链路与地面控制站之间保持着联系。在遇到特殊情况时,需要地面控制站对其实现导航控制,使飞机按照安全的路线飞行。随着空间技术的发展,传统的惯性导航结合先进的GPS导航技术成为了无人机系统导航的主流导航技术。目标定位是指飞行器发送给地面的方位角,高度及距离数据需要附加时间标注,以便这些量可与正确的飞行器瞬时位置数据相结合来实现目标位置的最精确计算。为了精确确定目标的位置,必须通过导航技术掌握飞行器的

无人机飞行路线控制系统设计

无人机飞行路线控制系统设计 由于无人机是通过无线遥控的方式完成自动飞行和执行各种任务,具有安全零伤亡、低能耗、重复利用率高、控制方便等优点,因此得到了各个国家、各行各业的高度重视和广泛应用。尤其以美国为代表,无论是在军事、民用、环境保护还是科学研究中,都将无人机的使用发挥到淋漓尽致,其拥有全球最先进的“捕食者”和“全球鹰”战斗无人机、监测鸟类的“大乌鸦”无人机、民用用途的“伊哈纳”无人机等等。我国在无人机研制方面也取得了一定的成就,拥有技术卓越的“翔龙”和“暗箭”高空高速无人侦查机、多用途的“黔中”无人机、探测海洋的“天骄”无人机、中继通讯的“蜜蜂”无人机等等。在未来,随着现代化工业技术、信息技术、自动化技术、航天技术等高新技术的迅速发展,无人机技术将日趋成熟,性能日益完善,为此将拥有更为广阔的应用前景。为确保无人机能够有效地完成各种飞行任务,研发者开发了各种技术方式的飞行控制系统,完成对无人机的起飞、飞行控制、着陆以及相应目标任务等操作的控制。飞行路线控制是飞行控制系统中最基础也是最核心的功能控制部分,其它所有的飞行任务控制都是飞行路线控制的基础之上实现。目前对于无人机飞行路线的控制已有各种各样方式的系统,但大多数系统都存在一定缺陷,如有些系统操作过于繁杂,不够智能化;有些系统只能在视距范围遥 控无人机,严重限制了无人机的使用;有些系统过于专用化,不能适用于大多数类型的无人机;有些比较完善的系统,造价又过于昂贵,等等一系列问题。针对以上存在的这些问题,本课题提出了一种成本低、

遥控距离远、智能化、高效化、适用性广的无人机飞行路线控制系统设计方案。该系统方案包括两大部分,一部分是操作人员所处的地面监控系统,一部分是无人机端的受控系统,实现的机制主要是无人机不断地将自身的定位信息实时地传送给地面控制系统,地面控制系统将无人机位置信息通过电子地图可视化显示给操作人员,操作人员结合本次飞行任务,采用灵活的鼠标绘制方式在地图上绘制预定的飞行路线,地面控制系统对绘制路线进行自动处理生成可用的路线控制信息帧并发送给无人机受控系统,无人机受控系统接收到位置控制信息帧,不断结合实时的方位信息得到飞行控制信息,从而遥控无人机按照预定路线飞行。此外,为方便用户以后对历史数据的查看,以分析总结得到一些有价值的信息,地面监控系统还包含了对预定路线和无人机历史飞行路线的存储、查询和在地图中回放功能。基于GIS技术的地面监控系统的具体实现是在Windows操作系统上,采用Visual Basic作为系统开发环境并结合MSComm串口通信技术、Mapx二次开发组件技术、Winsock网络接口技术以及Access数据库技术完成软件设计,实现与无人机受控系统的无线通信、GIS系统操作和监控、历史数据存储和重现等,其中实验区域的电子地图采用Mapinfo Professional开发软件绘制完成,并创新性地设计并绘制了画面简洁的带高层信息的二点三维矢量地图,而对于绘制路线的优化和提取处理采用了垂距比值法和最小R值法。无人机端使用BDS-2/GPS双卫星系统对无人机实时位置进行高精度的定位,采用双串口单片机进行运算控制处理,实时的飞行控制信息采用了几何空间算法得到,另外采

某小型无人机测控系统的设计

某小型无人机测控系统的设计 测控系统作为无人机电子信息系统的核心,是无人机系统的重要组成部分。本文阐述了无人机测控系统的主要功能,描述了某小型无人机测控系统的组成。 标签:无人机;遥控遥测;地面站;操纵器 1 引言 无线电遥控遥测系统是实施对无人机飞行管理的核心,也是保证无人机安全飞行与回收的关键,无线电遥控遥测分系统简称为测控分系统,按功能可以分为无线电遥控子系统、无线电遥测子系统和地面站显示终端。无线电遥控子系统主要用于传输地面操纵人员的指令,引导无人机按操纵人员的旨意飞行以及对安全区的坐标数据进行传输;无线电遥测子系统用于传送无人机的状态参数、位置坐标等信息给地面站;地面站显示终端对无人机的飞行参数、飞行姿态、航向和航迹进行显示,并对程控航线和安全区域进行规化,将规化好的坐标以无线电方式实时转送到机载飞控系统,显示终端还可以对飞行数据进行保存和回放。 作为无人机飞行管理的核心,无线电遥控遥测分系统的主要功能如下: (1)传送遥控指令; (2)显示无人机的航迹、姿态、位置、机载设备工作状态、当前遥控指令、测控数据传输质量等信息; (3)设置并装定无人机的原始参数、原点位置、飞行航路和安全区; (4)管理无人机飞行数据; (5)提供遥测信息的串口数据,以接入局域网。 2 测控系统的组成 该小型无人机测控分系统组成框图如图1,它包括机载遥控遥测收发一体机、地面遥控遥测收发一体机、地面站、遥控指令操纵器及天线,并在地面站上增加了一个专用接口供数据接入局域网。 2.1 遥控遥测收发一体机 遥控遥测机载及地面收发一体机均由GD无线数传电台构成,该电台具有如下特点: (1)高性能、高稳定、高可靠,适用于各种恶劣的工作环境;

关于无人机飞行控制系统的全面解析

关于无人机飞行控制系统的全面解析 飞控的大脑:微控制器在四轴飞行器的飞控主板上,需要用到的芯片并不多。目前的玩具级飞行器还只是简单地在空中飞行或停留,只要能够接收到遥控器发送过来的指令,控制四个马达带动桨翼,基本上就可以实现飞行或悬停的功能。意法半导体高级市场工程师介绍,无人机/多轴飞行器主要部件包括飞行控制以及遥控器两部分。其中飞行控制包括电调/马达控制、飞机姿态控制以及云台控制等。目前主流的电调控制方式主要分成BLDC方波控制以及FOC正弦波控制。 高通和英特尔推的飞控主芯片CES上我们看到了高通和英特尔展示了功能更为丰富的多轴飞行器,他们采用了比微控制器(MCU)更为强大的CPU或是ARM Cortex-A系列处理器作为飞控主芯片。例如,高通CES上展示的Snapdragon Cargo无人机是基于高通Snapdragon芯片开发出来的飞行控制器,它有无线通信、传感器集成和空间定位等功能。Intel CEO Brian Krzanich也亲自在CES上演示了他们的无人机。这款无人机采用了RealSense技术,能够建起3D地图和感知周围环境,它可以像一只蝙蝠一样飞行,能主动避免障碍物。英特尔的无人机是与一家德国工业无人机厂商Ascending Technologies合作开发,内置了高达6个英特的RealSense3D摄像头,以及采用了四核的英特尔凌动(Atom)处理器的PCI-express定制卡,来处理距离远近与传感器的实时信息,以及如何避免近距离的障碍物。这两家公司在CES展示如此强大功能的无人机,一是看好无人机的市场,二是美国即将推出相关法规,对无人机的飞行将有严格的管控。 多轴无人机的EMS/传感器某无人机方案商总经理认为,目前业内的玩具级飞行器,虽然大部分从三轴升级到了六轴MEMS,但通常采用的都是消费类产品如平板或手机上较常用的价格敏感型型号。在专业航拍以及专为航模发烧友开发的中高端无人机上,则会用到质量更为价格更高的传感器,以保障无人机更为稳定、安全的飞行。这些MEMS传感器主要用来实现飞行器的平稳控制和辅助导航。飞行器之所以能悬停,可以做航拍,是因为MEMS传感器可以检测飞行器在飞行过程中的俯仰角和滚转角变化,在检测到角度变化

美军无人机地面控制系统最新发展

美军无人机地面控制系统最新发展 对于无人机系统来说,设计焦点大多都是集中在飞机本身,包括有效载荷。但根据数据统计表明,地面系统所需成本非常高,往往是单架无人机成本的 0.5 ~ 4 倍之间。这说明研制一个能够控制多种类型无人机的通用地面控制系统,不仅可以极大地降低无人机系统的开发、后勤支持和训练费用,也可以较大程度地改进无人机系统作战的灵活性,从而实现无人机系统之间的互操作性。 地面控制站一般由三部分组成,包括:操作员工作站,用于操作无人机发射、回收和控制软件;飞行用传感器载荷;视距和卫星数据链路无线电终端,用于传输飞行指挥命令和接收来自无人机的监视图像。美军的主要无人机系统,如美国空军的 " 捕食者 " 、 " 全球鹰 " 和美国陆军的 " 影子 200" 都是由不同的军种独立开发的,通用性和互操作性能很差,甚至没有。它们的地面控制站尤其如此。因此,空军的 " 捕食者 "/" 捕食者 B" 地面站是无法控制空军的 " 全球鹰" 或海军陆战队的 " 先锋 " 无人机,也无法接收他们的图像。但是,美国海军和陆军已经采取措施着力解决无人机间的互操作问题。而促进无人机互操作性发展的强大驱动因素就是与北约的标准化协议 STANAG4586 相兼容。 1 战术控制系统 战术控制系统( TCS ),是美国海军的通用无人机地面控制站,由海军的无人空中系统项目办公室( PMA-263 )管理、雷声公司情报和信息系统部门从 2000 年开始进行开发的。其研制目标就是提供一个开放式体系结构软件,能够控制多种不同类型的海上 / 岸上计算机硬件,实现任务规划、指挥与控制以及情报数据接收和分发等功能。 TCS 在 2003 年之前是一个联合军种项目,后来由于陆军和空军抵制将 TCS 用于它们的无人机系统,国会将其削减为海军一家的研制项目。 目前, TCS 已经研制成功。 PMA-263 希望将其应用于海军未来所有的无人机系统,包括预计将于 2008 年在美海军的第一艘 " 濒海战斗舰 " 上使用的垂直起降无人机 --" 火力侦察兵 " 在内。 TCS 的运行依靠的是基于 Unix 的计算机。该计算机的操作系统是 Sun 微系统公司开发的 Solaris 8 网络操作系统,尽管雷声公司曾经也开发了一个应用于该计算机的基于 Linux 的操作系统。 TCS 软件的最新版本是于 2006 年 6 月份交付给 " 火力侦察兵 " 的制造商诺思罗普· 格鲁门公司的,软件中增加了一系列的新功能,包括可以容纳多种不同的 " 即插即用 " 传感器载荷、在指挥、控制和信息分发时执行 STANAG 4586 标准等。 为了与 STANAG4586 兼容,雷声公司开发了一个可以操作多种美军和 NATO 无人机的 TCS 核心系统。不同无人机制造商开发的与 STANAG 4586 协同的无人机专用模块,可以与该核心系统接口,提供 TCS 的所有控制能力,实现各无人机系统之间的互操作。(如果未来需要在不同的无人机系统之间完全实现互操作,则各数据链必须互相兼容) 海军的 " 宽域海上监视 " ( BAMS )无人机计划于 2011 年进入制造,是TCS 的下一个潜在用户。目前,美国海军在演习中使用的是两架从美国空军采购的 " 全球鹰海上演示型 "(GHMD) 高空长航时无人机来帮助 BAMS 无人机开发操作概念和作战战术。由于美国国会削减了美国海军在 2004 年的预算中计划给 " 全球鹰 " 开发 TCS 能力的费用,这两架 GHMD 飞机使用的是美国空军现有的 " 全球鹰 " 地面站硬件和软件,而不是 TCS 。 PMA-263 的负责人,海军上校 Paul Morgan 称,洛克希德· 马丁公司和诺思罗普· 格鲁门公司正在开展 BAMS" 持久无人海上空中监视 " ( PUMAS )能力研究,包括评估 TCS 对于 BAMS 在该能力方面的适应性。

九天无人机-地面控制系统简介

九天创新地面控制系统简介 深圳市九天创新科技有限责任公司 二零一六年八月

地面控制系统 1)概述 九天自主研发《地面控制系统》,实现人机实时交互连接,可分别操控固定翼无人机、四旋翼无人机和多旋翼无人机等多种机型。 地面控制系统是无人机的飞行控制终端,拥有友好的操作界面,是给无人机发送各种控制指令、规划飞行任务、实时显示各项飞行指标参数的控制系统。 通过对地面控制系统的操作,能够精准控制无人机的飞行,实时对无人机的飞行状态进行监测,以确保无人机安全起飞和降落,最终顺利地完成航拍作业任务和进行数据管理。 地面控制系统界面 在地面站软件的操作界面中主要包含工具栏、地图视图窗口,侧

边栏等。 工具栏主要是对地图缩放、定位、切换地图类型及目标航点。地图视图窗口可浏览飞行区域的航迹规划状况、飞行区域的地理信息等。而侧边栏主要包含飞行数据、航迹规划和飞行记录三项,分别能够对无人机进行实时监控、规划航迹及飞行记录的下载等。 2)工具栏 目标航点切换:飞行过程中切换飞行目标航点。 地图定位:将地图缩放并定位到回家点或者飞机定位点。 地图缩放:地图放大缩小控制指令。 地图类型:地图类型切换,卫星影像与矢量地图。 3)飞行数据监控 飞行数据监控是通过查看地面站软件右侧的重要飞行数据,对无人机飞行状态进行实时监控。其包括飞行状态、飞行参数。

4)飞行参数 飞行参数包括无人机当前飞行姿态参数、气压高度、目标航点等信息. 屏幕上直观显示飞行状态(横滚俯仰),以及机头指向、当前航飞高度(相对起飞高度)、目标航点(无人机要飞向的航点,到达目标航点后飞向下一航点)。 指令发送 航线规划 在地图中找到规划区域进行航线规划。

无人机数据传输系统-手册

1.概论: 无人机,即无人驾驶的飞机。是指在飞机上没有驾驶员,只是由程序控制自动飞行或者由人在地面或母机上进行遥控的飞机。它装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统可以实现远距离飞行并得以控制。无人机与有人驾驶的飞机相比而言,重量轻、体积小、造价低、隐蔽性好,特别宜于执行危险性大的任务,因此被广泛应用。 二、无人机的特点及技术要求 无人机没有飞行员,其飞行任务的完成是由无人飞行器、地面控制站和发射器组成的无人机系统在地面指挥小组的控制一下实现的。据此,无人机具有以下特点: (1)结构简单。没有常规驾驶舱,无人机结构尺寸比有人驾驶飞机小得多。有一种无尾无人机在结构上比常规飞机缩小40%以上。重量减轻,体积变小,有利于提高飞行性能和降低研制难度。 (2)安全性强。无人机在操纵人员培训和执行任务时对人员具有高度的安全性,保护有生力量和稀缺的人力资源。可以用来执行危险性大的任务。 (3)性能提高。无人机在设计时不用考虑飞行员的因素。许多受到人生理和心理所限的技术都可在无人机上使用,从而突破了有人在机的危险,保证了飞行的安全性。 (4)一机多用,稍作改进后发展为轻型近距离对地攻击机。

(5)采用成熟的发动机和主要机载设备,以减少研制风险与经费投入,加快研制进度。联合研制以减小投资风险、解决经费不足有利于扩大出口及扬长技术与设备优势。 (6)研制综合训练系统。技术要求有: (1)信息技术包括信息的收集和融合,信息的评估和表达,防御性的信息战、自动目标确定和识别等; (2)设备组成包括低成本结构、小型化及模块化电子设备、低可见性天线、小型精确武器、可储存的高性能发动机及电动作动器等; (3)性能实现包括先进的低可见性和维护性技术、任务管理和规划、组合模拟和训练环境等。 三、无人机系统按照功能划分,主要包括四部分: (1)飞行器系统 包括空中和地面两大部分。空中部分包括:无人机、机载电子设备和辅助设备等,主要完成飞行任务。地面部分包括:飞行器定位系统、飞行器控制系统、导航系统以及发射回收系统,主要完成对飞行器的遥控、遥测和导航任务,空中与地面系统通过数据链路建立起紧密联系。 (2)数据链系统 包括:遥控、遥测、跟踪测量设备、信息传输设备、数据中继设备等用以指挥操纵飞机飞行,并将飞机的状态参数及侦察信息数据传到控制站。 (3)任务设备系统 包括:为完成各种任务而需要在飞机上装载的任务设备。

远程无人机控制系统的制作技术

本技术公开了一种远程无人机控制系统,包括无人机组和远程控制中心,所述无人机组包括若干架无人机,每架所述无人机包括第二无线通讯模块、智能监控器、自动驾驶装置和航拍装置,所述智能监控器通过无线传输线路与遥控器连接,所述的遥控器用于控制无人机,包括遥控器本体和安装在遥控器本体上的无线传输模块,所述远程控制中心包括第一无线通讯模块、任务分配模块、信号处理模块和初始化模块。本技术不仅能够同时控制多架无人机,智能化程度高,而且航拍所得到的图像质量较好。 技术要求 1.一种远程无人机控制系统,其特征在于:包括无人机组和远程控制中心,所述无人机组包括若干架无人机,每架所述无人机包括第二无线通讯模块、智能监控器、自动驾驶装 置和航拍装置; 所述第二无线通讯模块用于向远程控制中心发送实时飞行数据,接收并回复远程控制中 心发送的测试命令,并发送命令至所述自动驾驶装置和所述航拍装置; 所述自动驾驶装置用于接收第二无线通讯模块发送的任务命令并驱动所述无人机执行飞 行任务;

所述智能监控器通过无线传输线路与遥控器连接,所述的遥控器用于控制无人机,包括遥控器本体和安装在遥控器本体上的无线传输模块,其每隔一段时间就会往将所接收到的数据包向外界发送; 所述航拍装置一方面根据所述第二无线通讯模块接收到的航拍指令进行图像采集和处理,另一方面通过所述第二无线通讯模块向所述远程控制中心发送航拍图片信息; 所述远程控制中心包括第一无线通讯模块、任务分配模块、信号处理模块和初始化模块,所述第一无线通讯模块用于向所述第二无线通讯模块发送测试命令和任务命令,接收所述第二无线通讯模块发送实时飞行数据; 所述任务分配模块用于用户输入每一架无人机任务命令并通过第一无线通讯模块发送至对应的无人机; 所述信号处理模块用于对所述第一无线通讯模块接收的实时飞行数据进行处理得到无人机执行命令并将执行命令和任务命令比对; 所述初始化模块用于对第一无线通讯模块、任务分配模块和信号处理模块进行初始化; 所述航拍装置包括图像采集模块、图像编码模块、图像压缩模块、图像存储模块和微控制模块,所述图像采集模块采集视频信号,所述视频信号为一系列模拟图像的集合,所述图像编码模块对所述模拟图像进行编码转化为数字图像,所述图像压缩模块对所述数字图像进行编码压缩后形成压缩图像传送给所述图像存储模块进行存储,所述微控制模块控制所述图像采集模块采集所述视频信号,协调控制所述图像编码模块进行图像编码,所述图像压缩模块进行图像压缩,所述图像存储模块对所述压缩图像进行存储; 所述微控制模块与所述无线通信装置电连接,接收所述拍摄指令,从所述图像存储模块中提取存储的所述压缩图像并通过所述第二无线通讯模块发送给所述第一无线通讯模块。 2.根据权利要求1所述的一种远程无人机控制系统,其特征在于:所述智能监控器包括相对独立的控制器和信号切换器,二者之间通过RS485通讯端口进行通讯,所述控制器可控制8台带有摄像机的云台,所述信号切换器装有红外遥控接收器件,所述遥控器通过有线或无线方式和远程控制中心连接。

八旋翼无人机系统

八旋翼无人机系统 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

八旋翼无人机系统技术文件 一、产品名称:X-8八旋翼无人机系统 X-8是全新研制的八旋翼无人机系统,具有载重量大、续航时间长、体积小、重量轻、目标特性小,使用快捷、机动灵活、操作使用及维修简便等特点,自成体系独立执行电力巡检任务。 简介: X-8 八旋翼是专业无人机技术研发团队经过多年研究、测试,最新推出的一款全球同类产品载重量最大、可垂直起降、拥有多项专利的无人飞行系统。 1)X-8选用自主驾驶设备,大大提高飞控稳定性。 2)可携带多种任务载荷。 3)可用于执行资料收集、测量、检测、侦查等多种空中任务,在电力巡检领域能发挥其高效、隐蔽性强的特点,能对目标物进行远距离监视。 产品特点: (1)飞行器具有遥控、自主飞行能力,可以实时修改飞行航路和任务设置;(2)测控与信息传输设备具有遥控、实时信息传输的功能,具有多机、多站兼容工作及一定的抗截获、抗干扰能力; (3)侦察任务设备能昼夜实时获取目标图像信息,具有手动、自动控制工作模式,可迅速发现、捕获、识别、跟踪目标; (4)飞行控制与信息处理站具有对飞行器进行遥控飞行和对机载任务设备进行操控的功能,具有飞行参数/航迹显示、航路规划和实时修改飞行计划、重新设置任务样式的能力;具有通过视频实现第一视角控制飞行的能力;具有接收标准视频信号、实时处理/存储图像、数据叠加等能力,具有目标定位和引导打击的能力,且能与上级指挥机关、情报处理中心和指挥系统相通连; (5)地面保障设备具有简易检测、维修与训练的能力,具有快速更换易 损件、备用动力电池组和双模态充电的功能; (6)全系统外场展开迅速,具有车载大范围机动和携行能力。 机体结构技术参数:

无人机编程技术及智能系统设计

无人机编程技术及智能系统设计 1.无人机编程技术 1.1.无人机编程技术综述 无人机本身是个非常综合性的系统。就基本的核心的飞行控制部分来说,一般包括内环和外环。内环负责控制飞机的姿态,外环负责控制飞机在三维空间的运动轨迹。高端的无人机,依靠高精度的加速度计和激光陀螺等先进的传感器(现在流行的都是基于捷连惯导而不是平台式),计算维持飞机的姿态。低端的型号则用一些MEMS器件来做姿态估算。但它们的数学原理基本是相同的。具体的算法根据硬件平台的能力,可能采用离散余弦矩阵/四元数/双子样/多子样. 高端的无人机,AHRS/IMU采用的基本都是民航或者军用的著名产品。例如全球鹰的利顿LN-100G/LN-200等。这些系统价格昂贵但精密,内部往往是零锁激光陀螺之类。例如LN-100G的GPS-INS组合,即使丢失GPS,靠惯性器件漂移仍可以控制在120m/min。低端的无人机就没那么精密讲究了,一般都依赖GPS等定位系统来进行外环控制,内环用MEMS陀螺和加速度计进行姿态估算。 如果把无人机看成一个完整的系统,那么还需要很多其他支持,例如任务规划,地面跟踪等等.进行无人机编程,得看你具体是指哪方面。如果是飞控系统,你得需要比较扎实的数学知识,对各种矩阵运算/控制率什么的有深刻的了解。如果只是希望现有的带飞控的平台去做一些任务,那么需要根据具体的平台来考虑。有些平台提供了任务编辑器,甚至更灵活的任务脚本。 1.2.无人机编程模块分类: 模块分类最粗的分法就是两个模块,一个模块负责飞行,维持飞机航线和姿态,以及和地面控制的通信,另一个模块就是功能模块,因为无人机总是要完成一些任务,具有一定功能的,如果再细分的话飞行模块里还有姿态控制,航线控制,GPS定位,电源或者燃料的管理等等。功能那一部分就看无人机要完成的任务了。如果说编程的话任何一个部分都可以通过程序自动划实现的。 1.硬件接口编程:如控制器和各传感器之间 2.控制算法程序实现,控制姿态调整的算法,编队飞行的算法,自主飞行智能算法等等。这些算法需要在主控器上通过机器语言(程序)实现。 3.传感器数据处理。如陀螺仪的角速度,强磁计的偏航信息,加速度计

无人机地面站

概述 近20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。 地面站的配置和功能概述 地面站的典型配置 目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。 (1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。 (2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。 (3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。 (4)数据分发系统。用于分析和解释从无人机获得的图像。 (5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。 数据链应用于不同的UAV系统,实现以下主要功能:用于给飞行器发送命令和有效载荷;接收来自飞行器的状态信息及有效载荷数据。 (6)中央处理单元。包括一台或多台计算机,主要功能:获得并处理从UAV来的实时数据;显示处理;确认任务规划并上传给UAV;电子地图处理;数据分发;飞行前分析;系统诊断。 地面站的典型功能 GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能: (1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。 (2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面

基于CDMA技术的无人机接力测控系统

龙源期刊网 https://www.360docs.net/doc/f91655581.html, 基于CDMA技术的无人机接力测控系统 作者:李超朱铁林李明李平敏律会丽 来源:《科技风》2020年第19期 摘要:; 无人机在海域动态监视监测、电力巡检、油气管道巡线、森林防火巡查等应用场景,飞行范围大、距离远、遮挡严重,测控距离受限的问题突出,为此探讨了常见中继测控方案的优缺点。根据以上几种场景下线路较为固定的特点,提出了基于CDMA软切换的接力测控系统设计方案、技术实现路径及测试结果,证明本方案可以较低的费效比解决无人机长距离、大范围的测控问题。 关键词:;无人机;接力测控;CDMA;无缝软切换 中图分类号:TN92; 文献标识码:A 2015年我国提出“中国制造2025”,以智能制造为核心的工业4.0战略得以加快推进,融合了通用航空与智能制造的无人机,在各个领域得到了广泛应用。在海域实时动态监测[1]、电 力系统的日常巡检和维护[2-3]、森林防火[4-5]、应急测绘等领域,无人机发挥着日益重要的作用。针对以上大规模、远距离作业需求,亟须对无人机的测控范围进行超视距扩展。当前扩展测控距离的手段主要有:机载蜂窝移动网络中继、机载卫星中继、机间空空中继、地面移动中继和地面固定中继等。针对这类场景具备范围大、距离远、线路固定等特征,设计了一种基于软切换无缝接力测控系统,通过在地面建设多个线型分布的测控站,实现无人机控制权无缝变换。在超远距离,尤其是无人机航程远超单地面站测控范围的情况下,可以延伸无人机作业区域,实现无人机巡检效率最大化。 1 系统方案 基于CDMA无缝软切换的无人机接力测控通信系统,由无人机机载数据链、地面测控站(含地面数据链、测控信息转发设备、网络接入终端)和监控指挥终端(含视频监控设备和飞行监控设备)组成。无人机机载数据链和地面数据链实现无人机与地面测控站之间的点对点视距通信,测控信息转发设备实现对地面数据链数据的IP化转换,网络接入终端实现地面测控站之间的网络互通,主要采用光纤、4G/5G、卫通等方式。无人机上行主要是遥控数据,传输带宽低,下行主要包括高带宽视频数据和低带宽遥测数据。本系统中,无人机下行数据通过机载数据链回传至地面数据链,地面数据链通过测控转发设备将遥测信息回传至指挥中心的飞行监控设备,将视频数据回传至指挥中心的视频监控设备。飞行监控设备发出的无人机控制信息,通过具有控制权的地面测控站上传至机载数据链和飞控设备。无人机数据链路的上行遥控数据速率较低,具备采用扩频的条件,因此系统采用码分多址(CDMA)技术对各机载及地面测控站进行标识。码分多址不同于频分多址(FDMA)和时分多址(TDMA),是由扩频理论和技术引出的一种全新的方法。将频带资源和时间资源都分给地面终端,每个地面终端采用一

无人机设计手册及主要技术

无人机设计手册及主要技术 容简介 独家《无人机设计手册》分上、下两册共十二章。 上册包括无人机系统总体设计,气动、强度、结构设计,动力装置,发射与回收系统,飞行控制与管理系统。 下册包括机载电气系统,指挥控制与任务规划,测控与信息传输,有人机改装无人机,综合保障设计,可靠性、维修性、安全性和环境适应性以及无人机飞行试验等。有关无人机任务设备、卫星中继通信的设计以及正在发展的无人机技术等容,有待手册再版时编入,使无人机设计手册不断成熟和丰富。 适用人群 本手册是国第一部较全面系统阐述无人机设计技术的工具书,不仅可作为无人机的设计参考,也可以作为院校无人机教学、无人机行业的工程技术人员和管理人员的参考书,并可供无人机部队试验人员使用。希望本手册的出版能对我国无人机研制工作的技术支持有所裨益。 作者简介 祝小平,现任西北工业大学无人机所总工程师,主要从事无人机总体设计、飞行控制与制导系统设计等研究工作。主持了工程型号、国防预研等国家重点项目多项,获国家和部级科学技术奖9项,其中国家科技进步一等奖1项,国防科技进步一等奖4项,获技术发明专利10项,荣立“国防科技工业武器装备型号研制”个人一等功,发表论著150多篇。先后入选国家级“新世纪百千万人才工程”、国防科技工业“511人才工程”和教育部“新世纪优秀人才支持计划”,获得“ 国防科技工业百名优秀博士、硕士”、“国防科技工业有突出贡献的中青年专家”、“省有突出贡献专家”和“科学中国人(2009)年度人物”等荣誉称号。 无人机相关GJB标准-融融网 gjb 8265-2014 无人机机载电子测量设备通用规 gjb 4108-2000 军用小型无人机系统部队试验规程 gjb 5190-2004 无人机载有源雷达假目标通用规 gjb 7201-2011 舰载无人机雷达对抗载荷自动测试设备通用规 gjb 5433-2005 无人机系统通用要求 gjb 2347-1995 无人机通用规

相关文档
最新文档