Medium effects in the production and decay of $omega$- and $rho$-resonances in pion-nucleus

Medium effects in the production and decay of $omega$- and $rho$-resonances in pion-nucleus
Medium effects in the production and decay of $omega$- and $rho$-resonances in pion-nucleus

a r X i v :n u c l -t h /9612026v 1 11 D e c 1996Medium e?ects in the production and decay of ω-and ρ-resonances in pion-nucleus interactions ?W.Cassing 1,Ye.S.Golubeva 2,A.S.Iljinov 2and L.A.Kondratyuk 31Institute for Theoretical Physics,University of Giessen,D-35392Giessen,Germany 2Institute of Nuclear Research,117312Moscow,Russia 3Institute of Theoretical and Experimental Physics,117259Moscow,Russia Abstract The ω-and ρ-resonance production and their dileptonic decay in π?A reac-tions at GSI energies are calculated within the intranuclear cascade (INC)ap-proach.The invariant mass distribution of the dilepton pair for each resonance is found to have two components which correspond to the decay of the resonances outside and inside the target nucleus.The latter components are strongly dis-torted by the nuclear medium due to resonance-nucleon scattering and a possible mass shift at ?nite baryon density.These medium modi?cations are compared to background sources in the dilepton spectrum from πN bremsstrahlung and

the Dalitz decays of ?’s,ωand ηmesons produced in the reaction.

The question about the properties of hadronic resonances in the nuclear medium has received a vivid attention during the last years(cf.Refs.[1,2,3,4]).Here,QCD inspired e?ective Lagrangian models[1,2]or approaches based on QCD sum rules [3,4]predict that the masses of the vector mesonsρ,ωandφshould decrease with the nuclear density.Furthermore,along with a dropping mass the phase space for the resonance decay also decreases which results in a modi?cation of the resonance width in matter.On the other hand,due to collisional broadening-which depends on the nuclear density and the resonance-nucleon interaction cross section(cf.Refs.[5,6])-the resonance width should increase again.

The in-medium properties of vector mesons have been addressed experimentally so far by dilepton measurements at the SPS,both for proton-nucleus and nucleus-nucleus collisions[7,8,9].As proposed by Li et al.[10],the enhancement in S+Au reactions compared to p+Au collisions in the invariant mass range0.3≤M≤0.7 GeV might be due to a shift of theρmeson mass.The microscopic transport studies in Refs.[11,12]for these systems point in the same direction,however,also more conventional selfenergy e?ects cannot be ruled out at the present stage[11,13].It is therefore necessary to have independent information on the vector meson proporties from reactions,where the dynamical picture is more transparent,i.e.in pion-nucleus collisions.Here,especially theωmeson can be produced with low momenta in the laboratory system,such that a substantial fraction of them will still decay inside a heavy nucleus[14].

The mass distributions of the vector mesons in the latter case are expected to have a two component structure[6]in the dilepton invariant mass spectrum:the?rst component corresponds to resonances decaying in the vacuum,thus showing the free spectral function which is very narrow in case of theωmeson;the second(broad) component then corresponds to the resonance decay inside the nucleus.We will use that(in?rst order)the in-medium resonance can also be described by a Breit-Wigner formula with a mass and width distorted by the nuclear environment.

In this letter we present?rst microscopic calculations for the production and dilep-tonic decay ofωandρresonances inπ?A collisions at pion momenta of1.3GeV/c available at GSI in the near future.The calculations are performed within the frame-work of the intranuclear cascade model(INC)[15]which was extended earlier[16,17] to account for the in-medium resonance decays.First calculations for the shapes of theωandρpeaks in proton(antiproton)induced reactions pA→V X→e+e?X

(ˉp A→V X→e+e?X)have been reported in Refs.[16,17].Here we consider ex-plicitlyπ?induced reactions and also compute the background sources in the dilepton spectrum from nucleon-nucleon and pion-nucleon bremsstrahlung as well as the Dalitz decays?→Ne+e?,ω→π0e+e?andη→γe+e?following Refs.[11,12,18].

The vector mesonsρ,ωare produced in the?rst hard pion-nucleon collision in the target and propagate through the rest of the nucleus.If the wave length of the produced meson is much smaller than the nuclear radius,it is possible to use the eikonal approximation for the Green function describing its propagation from the point r=( b,z)to r′=( b′,z′)[6],

G k( b′,z′; b,z)=1

2k

(?+4πf(0)ρ( b,ζ)]dζ}(1)×δ( b? b′)θ(z′?z),

where the z-axis is directed along the resonance momentum k, b is the impact pa-rameter,f(0)is the resonance–nucleon forward scattering amplitude,ρis the nuclear density and?is the inverse resonance propagator

?=P2?M2R+iM RΓR(2)

with M R,ΓR and P being the mass,width and four momentum of the resonance.The latter can be de?ned through the four momenta of its decay products

P=p1+p2+ (3)

Let us now consider the production of the vector mesonsρandωin the nuclear target and their decay into the e+e?pair:

π?A→RX→e+e?X.(4)

If the resonance R is created at( b,z)and decays in( b′,z′),the exponent of the Green function(1)can be separated into the contributions from the two regions

1)z≤z′≤z s=

R2? b2.

When the resonance decays inside the nucleus of radius R,only the?rst part contributes and the inverse resonance propagator has the form

??=?+4πf(0)ρ0=P2?M?2R+iM?RΓ?R(5)

where

M?2R=M2R?4πRef(0)ρ0,(6)

M?RΓ?R=M RΓR+4πImf(0)ρ0.(7)

If the resonance decays outside the nucleus,both regions contribute and the probability for lepton pair production with total momentum P and invariant mass squared P2can be written as

|M( P,P2)|2=N|fπ?N→RX|2 d2 bdzρ( b,z)|A in( P,P2; b,z)+A out( P,P2; b,z)|2.(8) In Eq.(8)the contributions from the?rst and second part can be written as

1?exp[i(??/2k)(z s?z)]

A in( P,P2; b,z)=

,(10)

?

where fπ?N→RX is the amplitude for the resonance production on a nucleon in the channel RX and N is the normalization factor which contains the branching ratio R→e+e?.

When the resonance decays inside the nucleus,its form is described by the Breit–Wigner formula(9)with??from(5),that contains the e?ects of collisional broadening

Γ?R=ΓR+δΓ,(11) where

δΓ=γvσ(RN)ρB,(12)

and a shift of the meson mass

M?R=M R+δM R,(13) where

δM R=?γvσ(RN)ρBα.(14)

In Eqs.(12)and(14)v is the resonance velocity with respect to the target at rest,γis the associated Lorentz factor,ρB is the nuclear density,σ(RN)is the resonance–nucleon total cross section andα=(Ref(0))/(Imf(0)).

If the ratioαis small-which is actually the case for the reactions considered because many reaction channels are open-the broadening of the resonance will be the main

e?ect.The sign of the mass shift depends on the sign of the real part of the forward RN scattering amplitude which,in principle,also depends on the momentum of the resonance.For example,at low energy various authors[1,2,3,4]predict a decreasing mass of the vector mesonsρ,ωandφwith the nucleon density,whereas Eletsky and Io?e have argued recently[19]that theρmight become heavier in nuclear matter at energies of2-7GeV.

In the following we consider the reactionπ?A→V X→e+e?X for Pb-targets at a pion momentum of1.3GeV/c.The yields ofω–andρ–mesons are calculated within the framework of the intranuclear cascade model developed in Ref.[15],where the nucleus is devided into series of concentric zones and it is possible to follow the propagation of each produced particle from one zone to another.The decay of the resonances to e+e?with their actual spectral shape was performed here as in Refs. [16,17].The calculation proceeds as follows:when the resonance decays into dileptons inside the nucleus its mass is generated according to the Breit–Wigner distribution with M?R=M R+δM R andΓ?R=ΓR+δΓR,where the collisional broadening and the mass shift are calculated according to the local nuclear density.Its decay to dileptons is recorded as a function of the corresponding invariant mass bin and the local density. If the resonance leaves the nucleus,its spectral function automatically coincides with the free distribution becauseδM R andδΓR are zero in this case(cf.Eqs.(12),(14)).

For theωproduction we consider the channels:π?p→ωn andπ?n→ωπ?n with parametrizations from Ref.[20].Though the momentum of1.3GeV/c is smaller than the threshold momentum for the second channel,it contributes toωproduction inπ?A collisions due to the Fermi motion of the target nucleons.Forρ-meson production we use the same cross sections as forω-mesons;this holds experimentally within20%.

The resulting momentum distribution of all decayingω-mesons and those decaying inside the nucleus(at densitiesρ≥0.03ρ0)are displayed in Fig.1by the solid and dotted histograms,respectively.They extend to1.1GeV/c with average momenta of about0.65and0.53GeV/c,respectively.The bump in the full spectrum around0.5 GeV/c describes the contribution of the channelπ?n→ωπ?https://www.360docs.net/doc/fd1753201.html,ing a cut of0.03ρ0, approximately47%of the producedω-mesons are absorbed at?nite density.We note that theω-mesons decaying outside the nucleus show a momentum distribution very similar to the solid curve in Fig.1especially at high laboratory momenta.On the other hand,ωmesons with low momenta to a large extend still decay within the target nucleus.

In Fig.2a we present the e+e?mass spectrum fromω-decays neglecting collisional broadening,however,including a medium dependentω-mass as suggested by Hatsuda and Lee[3]

M?R=M R(1?0.18ρB(r)/ρ0),(15) whereρB(r)is the nuclear density at the resonance decay andρ0=0.16fm?3.Fig.2a describes the full mass distribution whereas Fig.2b includes a cut in theωmomentum for p lab≤0.4GeV/c.The shaded histograms describe the contributions of the’in’components,while the solid histograms are the sum of the’in’and’out’components. Due to sizeable surface e?ects(with lower nucleon density)the mass distribution of the’in’components is spread out.Nevertheless,we still observe two sharp peaks cor-responding to the in-medium and vacuum masses,respectively.As expected from Fig. 1,a cut in the momentum distribution for p lab≤0.4GeV/c enhances the contribution from the’in’component relative to the’out’component(Fig.2b).

In Fig.2c we show the dilepton spectrum fromωdecays when a mass shift and col-lisional broadening are taken into account.Here we have parametrized the momentum dependentω?N cross section by

σωN(p lab)=A+B/p lab(16)

with A=11mb and B=9mb?GeV/c,which is taken as a guide due to the lack of experimental data1.Furthermore,we have assumedσρN≈σπN in our calculations forρ+N collisions.Again the relative contribution of the’in’component(shaded histograms)in the e+e?invariant mass spectrum considerably increases whenω-mesons with momenta less than0.4GeV/c are selected(Fig.2d).Due to collisional broadening the width of the’in’component increases substantially relative to the freeωwidth such that a pronounced peak for the’in’component can no longer be observed.

Whereas theωdilepton mass distributions show quite considerable changes for the di?erent scenarios proposed,it is questionable if these modi?cations actually can be seen when including all other known sources of dilepton channels,i.e.π-nucleon and proton-neutron bremsstrahlung,the Dalitz decays of theη,ωand?as well as the direct decay of theρ0meson.The individual branching ratios and formfactors for the latter processes are taken from Ref.[11,12],while the bremsstrahlung channels are evaluated in the soft photon approximation[18],which will provide an upper estimate for the dilepton yield from bremsstrahlung.

In Fig.3we show the inclusive dilepton spectrum forπ?+Pb at1.3GeV/c-in log-arithmic representation-from the various channels described above including collisional broadening,however,no mass shifts of theωandρmesons in the medium.The domi-nant background processes are seen to result from pion-nucleon(πN)bremsstrahlung, theηDalitz decay(denoted byη;solid line)and theωDalitz decay(ω→π0e+e?). The?Dalitz decay(?)as well as proton-neutron(pn)bremsstrahlung are of minor importance.The upper solid curve represents the sum of all contributions.We note that the width of theρ–peak here is about220MeV,which is essentially larger than its vacuum widthΓρ≈150MeV due to collisional broadening as described above.Nev-ertheless,above about0.65GeV of invariant mass M the spectrum is fully dominated by the vector meson decays with a low background.

In Fig.4we show the resulting inclusive dilepton spectrum for the same system including collisional broadening as well as mass shifts of theωandρmesons in the medium according to Eq.(15).The background processes here are practically the same as in Fig.3and dominate for M≤0.6GeV.When comparing the total spectrum from Fig.3with that from Fig.4we?nd an enhancement by a factor of2for0.65≤M≤0.75GeV for the dropping vector meson masses as well a decrease of the spectrum for M≥0.85GeV due to the shiftedρmass because theρalmost completely decays inside the Pb-nucleus.The relative modi?cations of the dilepton spectra are qualitatively very similar to the situation at SPS energies in case of nucleus-nucleus collisions[22],when employing a mass resolution of?M=10MeV as in the present case.Thus dileptons from pion-nucleus reactions at much lower energy also qualify for the experimental investigation of in-medium vector meson properties.

In summary,we have presented?rst calculations for dilepton production in pion-nucleus reactions and investigated the various contributing channels as well as in-medium modi?cations of the vector mesons due to collisional broadening or in-medium mass shifts[1,2,3,4].Our results forπ?+Pb at1.3GeV/c indicate that the dominant background for invariant masses M above0.6GeV arises fromπ?N bremsstrahlung which,however,is still small compared to the yield from the direct vector meson decays.

A mass shift of theρandωmesons should be seen experimentally by an enhanced yield in the mass regime0.65≤M≤0.75GeV and a mass shift of theρmeson especially for M≥0.85GeV because theρalmost completely decays inside a Pb-nucleus.The in-medium modi?cations of theωmesons are most pronounced for small momentum cuts on the e+e?pair in the laboratory.This,however,will require a high mass resolution

at least in the order of the freeωwidth.

The authors acknowledge many helpful discussions with E.L.Bratkovskaya and A. Sibirtsev throughout this study.

References

[1]G.Brown and M.Rho,Phys.Rev.Lett.66(1991)2720.

[2]C.M.Shakin and W.-D.Sun,Phys.Rev.C49(1994)1185.

[3]T.Hatsuda and S.Lee,Phys.Rev.C46(1992)R34.

[4]M.Asakawa and C.M.Ko,Phys.Rev.C48(1993)R526.

[5]L.A.Kondratyuk,M.Krivoruchenko,N.Bianchi,E.De Sanctis and V.Muccifora,

Nucl.Phys.A579(1994)453.

[6]K.G.Boreskov,J.Koch,L.A.Kondratyuk and M.I.Krivoruchenko,Proc.of the

3rd International Conference on Nucleon-Antinucleon Physics(NAN’95),Phys.of Atomic Nuclei10(1996)1908.

[7]G.Agakichiev et al.,Phys.Rev.Lett.75(1995)1272.

[8]M.A.Mazzoni,Nucl.Phys.A566(1994)95c.

[9]T.Akesson et al.,Z.Phys.C68(1995)47.

[10]G.Q.Li,C.M.Ko,and G.E.Brown,Phys.Rev.Lett.75(1995)4007.

[11]W.Cassing,W.Ehehalt and C.M.Ko,Phys.Lett B363(1995)35.

[12]W.Cassing,W.Ehehalt and I.Kralik,Phys.Lett B377(1996)5.

[13]R.Rapp,G.Chanfray,and J.Wambach,Phys.Rev.Lett.76(1996)368.

[14]V.Metag,private communication.

[15]Ye.S.Golubeva,A.S.Iljinov,B.V.Krippa and I.A.Pshenichnov,Nucl.Phys.A

537(1992)393.

[16]Ye.S.Golubeva,A.S.Iljinov and L.A.Kondratyuk,Proc.of the3rd International

Conference on Nucleon-Antinucleon Physics(NAN’95),Phys.of Atomic Nuclei No.10(1996)1894.

[17]Ye.S.Golubeva,A.S.Iljinov and L.A.Kondratyuk,Proc.of the3rd International

Conference”Mesons-96”,Cracow,May1996,to be published by World Scienti?c, Singapore,1997.

[18]Gy.Wolf,G.Batko,W.Cassing et al.,Nucl.Phys.A517(1990)615;

Gy.Wolf,W.Cassing and U.Mosel,Nucl.Phys.A552(1993)549.

[19]V.Eletsky and B.L.Io?e,Preprint KFA-IKP(TH)-1996-10.

[20]A.Sibirtsev,Nucl.Phys.A604(1996)455;

A.Sibirtsev,W.Cassing and U.Mosel,nucl-th/9607047,Z.Phys.A,in print

[21]Ye.S.Golubeva,A.S.Iljinov and I.A.Pshenichnov,Nucl.Phys.A562(1993)389

[22]E.L.Bratkovskaya and W.Cassing,nucl-th/9611042,submitted to Nucl.Phys.

A.

Figure captions

Fig.1:The momentum distribution of theωmesons produced in the reactionπ?P b→ωX at1.3GeV/c in the laboratory;solid histogram:allωmesons;dotted histogram: those decaying inside the nucleus.

Fig.2:The e+e?mass spectrum fromω-decay when including a medium dependent ω-mass shift according to Hatsuda and Lee([3]):a)and b)-without collisional broad-ening;c)and d)-with collisional broadening.Figs.a)and c)describe the full mass distributions,b)and d)events with aωmomentum cut p lab≤0.4GeV/c.The hatched histograms describe the contribution of the’in’component,while the solid histograms display the total contribution from the’in’and’out’components,respectively.

Fig.3:The dilepton spectra forπ?+Pb reactions at1.3GeV/c in logarithmic representation when a mass shift of the vector mesons is neglected and collisional broadening according to Eq.(12)is taken into account.The upper solid curve is the sum of all contributions;the individual channels correspond to theηDalitz decay(η), pion-nucleon bremsstrahlung(πN),theωDalitz decay(ω→π0e+e?),the?Dalitz decay(?),proton-neutron bremsstrahlung(pn),and the direct decays of the vector mesonsρandω.The mass resolution adopted is?M=10MeV.

Fig.4:The dilepton spectra forπ?+Pb reactions at1.3GeV/c in logarithmic representation when including a mass shift of the vector mesons according to Eq.(15) and collisional broadening according to Eq.(12).The notations are the same as in Fig.3.

0.00.20.40.60.8 1.0 1.2

10

203040

50

60

Fig. 1

ω-mesons in

all

π- + Pb

1.3 GeV/c

e v e n t s p lab (GeV/c)

M (GeV)e v e n t s e v e n t s e v e n t s

π- + Pb, 1.3 GeV/c e v e n t s M (GeV)

M (GeV)M (GeV)Fig. 2

0.20.40.60.8 1.0

10-1

100

101102

103

Fig. 3

ωρ

ω->π0e +e -all ?πN

pn η

π-

+ Pb 1.3 GeV/c

d σ/d M (μb /G

e V )M (GeV)

0.20.40.60.8 1.0

10-1

100

101102

103

Fig. 4ωρω->π0e +e -all ?

πN pn

η

π-

+ Pb 1.3 GeV/c

d σ/d M (μb /G

e V )M (GeV)

汉语拼音12.aneninunvn教案

汉语拼音12.ɑneninunün 教学目标: 1. 正确认读前鼻韵母ɑn、en、in、un、ün 和整体认读音节 yuɑn、yin、yun,读准音,认清形。 2. 正确拼读声母和ɑn、en、in、un、ün 组成的音节。能在四线格中正确书写音节词“lún chuán”。 3. 借助拼音,正确认读“蓝天、白云、草原、森林”4 个词语;正确朗读儿歌《家》。 4. 认识“草、家、是”3 个生字。 教学重点:前鼻韵母和整体认读音节 yuɑn、yin、yun 的正确认读;声母和前鼻韵母组成音节的正确拼读。 教学难点:前鼻韵母 un、ün 和整体认读音节 yuan、yun 的正确认读;ɡ、k、h 与介母 u、前鼻韵母ɑn 组成的三拼音节的正确拼读,j、q、x 与介母ü、前鼻韵母ɑn 组成的三拼音节的正确拼读。 教学准备:课件、卡片 课时安排:2课时 教学过程:第一课时 一、前鼻韵母及整体认读音节的教学。 1. 读准音。利用情境图中的学习资源,引导学生在看图说话,学生说到“安、摁、饮、纹、云、圆”等读音的时候,教师相机出示ɑn、en、in、un、ün 五个前鼻韵母,以及整体认读音节 yuɑn、yin、yun。 教师可以重点指导ɑn 的发音。掌握“ɑn”的发音要领。然后以此类推让学生自学 en、in、un、ün 的发音。 2. 识记形。 放手让学生自主发现字形的特点:5个前鼻韵母都是由一个单韵母和一个字母n 组成的。引导学生在观察中发现前鼻韵母的组合规律。 3. 整体认读音节 yuɑn、yin、yun 的教学。 出示已学韵母 i、ü、 ie、üe 和整体认读音节 yi、yu、ye、yue 两组卡片,让学生自主发现:凡是 i、ü开头的韵母,都有相对应的整体认读音节,它们的读音和韵母一样。在此基础上,出示五个前鼻韵母,让学生从中找出“孪生兄弟”——前鼻韵母 in、ün 和整体认读音节 yin、yun,并借助“音、阴”“晕、云”等口语中常用的发音帮助学生准确认读 yin、yun 这两个整体认读音节。 二、拼读教学。 1. 两拼音节。 声母与前鼻韵母ɑn、en、in 的拼读困难不大,可以先出现带拼音的熟字“人r én 、文wén、山shān、站zhàn、三sān、音yīn、云yún”等进行引导拼读,借助图片或学生口语常用词帮助拼读。 2. 三拼音节。 ɡ、k、h 与介母 u、韵母ɑn 组成的音节,以及 j、q、x 与介母ü、韵母ɑn 组成的音节,学生拼读有一定难度,教师可以联系学生熟悉的事物帮助学生拼读:例:ɡuān 出示图片“开关”和“水管”,出示图片“圆圈”和“拳头” 在教学中,要继续巩固 j、q、x 和ü相拼时ü上两点省略的书写规则,使学生可以顺利地拼出 j、q、x 和üɑn 组成的三拼音节。 三拼音节练读时,教师还可出示带有“iɑn”的音节,利用熟字“天、田”来体

拼音anenin的教案

拼音anenin的教案 【篇一:汉语拼音12.aneninunvn教案】 教学目标: 3. 借助拼音,正确认读“蓝天、白云、草原、森林”4 个词语;正确 朗读儿歌《家》。 4. 认识“草、家、是”3 个生字。 教学准备:课件、卡片 课时安排:2课时 教学过程:第一课时 一、前鼻韵母及整体认读音节的教学。 2. 识记形。 放手让学生自主发现字形的特点:5个前鼻韵母都是由一个单韵母 和一个字母n 组成的。引导学生在观察中发现前鼻韵母的组合规律。 二、拼读教学。 1. 两拼音节。 2. 三拼音节。 会发音。 三、巩固练习。 1.认读前鼻韵母。 2.正确拼读音节。 3.练习用音节组词或说话。

第二课时 一、教学词语。 1.创设情境提问:如果让你去旅游,你打算去哪儿游玩?学生自由说。 2.谈话:老师想带大家去一个非常美丽的地方玩。出示教材中的情 境图,让学生观察图上有哪些事物,引出“蓝天、白云、草原、森 林”4 个词语。 3.重点指导读好带有整体认读音节的“白云、草原”。 4.借助拼音读词语,可以个体拼读,也可以请小老师带领拼读。 二、教学儿歌《家》。 1.让学生自主拼读音节,认读已认识的字。 2.强调新音节 men 是轻声,通过 men 的四声对比读,让学生体会 轻声要读得短而轻。指导学生注意“的、子”在课文中也是轻声。 3.强调“蓝、泥”“祖、种”声母的区别,正确、流利朗读儿歌。 4.模仿说话。()是()的家。 三、识字教学。 1.学习“草”。结合情境图,让学生观察草原,然后让学生展开联想,拓展扩词,如“茅草、野草、稻草”,还可以出示熟字组成的词语, 让学生在词语中复习生字,巩固字形,如“草地、花草、水草、小草”。 2.学习“家”。在哪见过这个字?结合家庭作业写字本上的“家”来回忆,进行生活识字。让学生用“家”字组词,如“大家、回家、家人、 科学家”。交流:说说自己家住在哪里,家里有哪些人??

汉语拼音anenin教案

教学过程 第一课时 一、复习导入 师:在美丽的拼音王国里,住着我们的许多老朋友,我们先和6个单韵母老朋友打个招呼好吗? 生:ɑ o e i u ü 师:接下来准备把我们的小火车开起来,去和声母朋友们问好。小火车开起来。 生:咕噜咕噜开起来。 师:火车头在哪里? 生:火车头在这里。 师:这列火车开起来。 生:b p m f d t n l g k h j q x zh ch sh r z c s y w 师:还有哪个老朋友没有打招呼啊? 生:复韵母。 师:好,全班,开始 生:ɑi ei ui ɑo ou iu ie üe er 师:今天啊,我们来认识几位新的朋友,(课件出示ɑn en in un ün),小朋友们,他们有什么共同的特征? 生:都有一个声母n. 师:小朋友们看得真仔细,不过啊,今天老师要告诉大家一个秘密,他们都有一个共同的小尾巴-n,可是这个-n,不是声母n,只表示鼻音。发音时摆好发“n”的准备,舌尖顶住上颚的前部,让气流从鼻孔出来。(教师用手势演示。)因此,这样的韵母叫前鼻韵母。领

读“前鼻韵母”2遍(板书课题)。 二、学习新课 1.看图学习韵母ɑn en in un ün 师:刚才小朋友们都很热情地向老朋友打了招呼,我们现在也要同样热情地欢迎新朋友的到来!。 请大家看看这幅图,这是什么地方? 生:天安门。 师:谁去过天安门,谁知道关于天安门的故事,我们来说一说。 生:(让学生充分的说) 在学生说的过程中,注意要让学生说完整话。 指导学生读准“天安门”一词,告诉学生,“安”的读音就是我们今天要学的第一个前鼻韵母ɑn的读音。 师:谁来说说ɑn是由什么组成的? 生:是由ɑ和n组成的 师:发ɑn时要先做ɑ的口型,再过渡到n(范读)。 生:ɑn 师:对。念的时候要很高兴地咧开嘴巴,我们一起来念一念 全班念,念给同桌听。 师:刚才大家读得都不错,我们一起来看一看下一个前鼻韵母,谁会读? 生:en 师:你读得不错,带同学们读一读好吗? 生:en 全班读,开火车读ɑn、en

相关主题
相关文档
最新文档