结合Wireshark捕获分组深入理解TCPIP协议栈之TCP协议

摘要:

本文简单介绍了TCP面向连接理论知识,详细讲述了TCP报文各个字段含义,并从Wireshark俘获分组中选取TCP连接建立相关报文段进行分析。

一、概述

TCP是面向连接的可靠传输协议,两个进程互发数据之前需要建立连接,这里的连接只不过是端系统中分配的一些缓存和状态变量,中间的分组交换机不维护任何连接状态信息。连接建立整个过程如下(即三次握手协议):

首先,客户机发送一个特殊的TCP报文段;

其次,服务器用另一个特殊的TCP报文段来响应;

最后,客户机再用第三个特殊报文段作为响应。

图1 三次握手协议示意图[1]

二、TCP报文格式

2.1 概述

为了提供可靠的数据传输,TCP报文首部字段有较多的字段,TCP报文格式如下图:

图2 TCP报文格式

源和目标端口

用于多路复用/多路分解来自或送至上层应用的数据,可以这样理解,端口用来标识同一台计算机的不同进程。

序列号和确认号

这两个字段是TCP可靠传输服务的关键部分,序列号是该报文段首字节的字节流编号(TCP把数据看成是有序的字节流,TCP隐式地对数据流的每个字节进行编号)。这样理解可能更直观,当报文被分解成多个报文段时,序列号就是报文段首字节在整个报文的偏移量。确定号指定下一个期待的字节。TCP是全双工的,假设从主机A接收到主机B的数据,则主机A填充进报文段的确认号是主机A

期望从主机B收到的下一个字节序号。还没理清这两者的关系?见下图(三次握手):

图3 正常情况下TCP连接建立过程

首部长度(4位)

因为选项是不定长的,这就需要标识整个首部字段的长度(单位是32位字),即5+选项个数。4位,单位是32位字,所以首部最长是15*4=60字节,即选项最长是40字节(10个选项)。

标志

URG

指示报文段里存在着被发送方的上层实体标记为"紧急"数据,当URG=1时,其后的紧急指针指示紧急数据在当前数据段中的位置(相对于当前序列号的字节偏移量),TCP接收方必须通知上层实体。

ACK

当ACK=0时,表示该数据段不包含确认信息,当ACK=1时,表示该报文段包括一个对已被成功接收报文段的确认。

PSH

当PSH=1时,接收方在收到数据后立即将数据交给上层,而不是直到整个缓冲区满。

RST

用于重置一个已经混乱的连接(如主崩溃),也可用于拒绝一个无效的数据段或者拒绝一个连接请求。一般而言,如果你得到的数据段被设置了RST位,那说明你这一端有问题了。

SYN

用于建立连接过程,在连接请求中,SYN=1和ACK=0表示该数据段没有使用捎带的确认域,而连接应答捎带一个确认,即SYN=1和ACK=1。

注:捎带是指对客户机到服务器数据的确认被装载在一个承载服务器到客户机的数据报文段中。

FIN

用于释放一个连接,表示发送方已经没有数据要传输了。此时,接收方可能继续接收数据,好在SYN和FIN数据段都有序列号,从而保证了这两种数据段以正确顺序被处理。

窗口大小

用于流控制(确保连接的任何一方都不会过快地发送过量的分组而淹没另一方),窗口大小指定了从被确认的字节算起可以发送多少个字节。

校验和

提供了额外可靠性,在计算检验和的时候,TCP的Checksum域设为0,如果数据域的字节数为奇数,则数据域填补一个额外的0字节。校验和算法:将所有的16位字按1的补码形式累加起来,取累加结果的补码。因此,当接收方执行同样计算时(包括Checksum域),结果应该是0。

紧急指针

参考标志字段的URG位。

选项

选项部分是为了适合复杂网络环境和更好地服务于应用层设计的。TCP选项最长是40字节。详情见2.2。

数据

无任何数据的TCP段也是合法的,通常用于确认和控制信息。

2.2 选项字段[2]

TCP选项部分很好出现在已经建立连接的会话中,只要出现在TCP连接建立阶段,即三次握手。TCP选项部分实际运用有以下几种:

(1)最大报文传输段(MMS, Maximum Segment Size)

用于发送发与接收方协商最大报文段长度(仅仅是净荷数据,不包括TCP首部字段)。TCP在三次握手中,每一方都会通告期望收到的MSS(MSS只出现在SYN 数据包中),如果一方不接受另一方的MSS值,则使用默认的536字节净荷数据,即主机能够接受20+536字节的TCP报文段。

(2)窗口扩大选项(Window scaling)

TCP报文的窗口大小字段占16位,即最大值是65535,但随着时延和带宽比较大的通信产生(如卫星通信),需要更大的窗口满足性能和吞吐率,这就是窗口扩大选项存在的意义。例子见参考资料[2]。

Windows scaling占3个字节,最后一个字节是移位值(Shift count),即首部的窗口位数16向左移动,如移位值为14,则新的窗口最大值增大到

65535*(2^14)。

窗口扩大选项是在TCP建立之初进行协商,如果已实现了窗口扩大,当不再需要扩大窗口时,发送移位值=0就可以恢复到原窗口大小,即65535。

(3)选择确认选项(SACK, Selective Acknowledgements)

考虑这样情况,主机A发送报文段12345,主机B收到135且报文无差错,SACK用来确保只重传缺少的报文段,而不是重传所有报文段。

SACK选项需要2个功能字节,一个用来指明使用SACK选项(SACK Permission),另一指明这个选项占多少字节。

那怎么形容丢失的报文段2,说明2的左右边界分别是1、3。TCP的数据报文是有字块边界的,而这种边界是由序列号表示的。

最多能指明多少个字节块的边界信息呢?答案是4个。这是因为选项字段最大是40字节,去除2个功能字节,序列号是32位即4字节,并且需要左右边界,所以(40-2)/8 = 4。

(4)时间戳选项(timestamps)

时间戳选项用来计算往返时间RTT,发送方在发送报文段时把当前时钟的时间值放入时间戳字段,接收方将该时间戳字段的值复制到确认报文中,当接收方收到确认报文,对比确认报文的时间戳(等于发送方发送报文段的时间戳)和现在的时钟,即可算出RTT。

时间戳选项还可用于防止回绕序号PAWS。序列号只有32位,每2^32个序列号就会回绕(想想环形队列),采用时间戳选项很容易区分相同序列号的报文段。

(5)NOP(NO-Operation)

TCP的头部必须是4字节的倍数,而大多数选项不是4字节倍数,不足的用NOP填充。除此之外,NOP也用于分割不同的选项数据,如窗口扩大选项和SACK 之间使用NOP隔离(下面的实例将看到这一点)。

三、实例解析

3.1 概述

还是以访问百度首页为例,首先用DNS协议将URL解析成IP地址,接着在客户机和服务器间建立TCP连接,用Wireshark俘获的分组如下图:

图4 Wireshark俘获建立TCP连接分组

你一看会觉得有些奇怪,理论上应该是3个分组的,怎么有6个分组?先不急,先把这6个报文收发示意图作出来(结合时间和报文含义),如下:

图5 TCP连接建立实例

从图可知,连接建立伊始,客户机发了两个报文段,这也许是为了更快建立连接(假设有个请求报文段丢失,也不至于要等一段时间,重发报文)。接下来,以19、21、22(上图红色线条所示)分析TCP连接建立过程。

3.1 第一次握手19

Wireshark俘获TCP连接第一次握手的报文段如下:

图6 TCP连接第一次握手实例

这里主要挑几个字段分析:

标志字段,SYN=1、ACK=0表示该数据段没有使用捎带的确认域。

最大报文段长度(MMS)1460是怎么来的,链路层的以太网物理特性决定数据帧长度为1500(即MTU,最大传输单元),1460=1500-20(IP首部长度)-20(TCP 首部长度)。不要被该报文首部长度32字节所迷惑,这只是建立连接过程。MSS 与MTU关系见下图[2]:

图7 MSS与MTU关系

NOP字段,可以作为不足4倍数字节填充,也可作为选项间分隔,该报文段出现了3个NOP,具体功能见下图:

图8 TCP报文NOP字段

3.3 第二次握手21

服务器响应客户端TCP报文段,此时确认号为1了,SYN=1、ACK=1表明连接应答捎带一个确认,Wireshark俘获分组如下:

图9 TCP连接第二次握手实例

为什么MSS是1452而不是1460?这是因为使用PPPoE(Point-to-Point over Ethernet,可以使以太网的主机通过一个简单的桥接设备连到一个无端的接入集中器上[3])拨号上网,PPoP首部是8个字节,所以PPPoE的MTU是1492,MSS 也就为1492-40=1452。

那么,TCP连接建立后数据传输的MSS是多少呢,1460 or 1452 or 536 ?我的理解是默认值536,这样理解对吗?求指点!

3.4 第三次握手22

客户机再次服务器的报文段,此时序列号和确认号都为1,没有选项字段,Wireshark俘获的分组信息如下:

图10 TCP连接第三次握手实例

值得注意的,因为窗口扩展大小协商未果,所以就不扩大窗口了,即窗口大小最大为65535。

如此,TCP连接建立:-)

CycloneTCP协议栈移植与使用简介

Arda Technology Arda Tech P.F.FU 2014-12-19 Ver 0.1 #elif defined(USE_XXXXXX) #include "os_port_xxxxxx.h"

NicType type;//控制器类型。0:以太网接口,1:PPP接口,2:6LowPan接口 NicInit init;//控制器初始化函数指针 NicTick tick;//控制器周期性事务处理函数指针 NicEnableIrq enableIrq;//打开控制器中断函数指针 NicDisableIrq disableIrq;//关闭控制器中断函数指针 NicEventHandler eventHandler;//控制器中断响应函数指针,这个是下半段的中断处理部分。 NicSetMacFilter setMacFilter;//配置多播MAC地址过滤函数指针 NicSendPacket sendPacket;//发送包函数指针 NicWritePhyReg writePhyReg;//写PHY寄存器函数指针 NicReadPhyReg readPhyReg;//读PHY寄存器函数指针 bool_t autoPadding;//是否支持自动填充 bool_t autoCrcGen;//是否支持自动生成CRC校验码 bool_t autoCrcCheck;//是否支持自动检查CRC错误 NicSendControlFrame sendControlFrame;//发送控制帧函数指针 NicReceiveControlFrame receiveControlFrame;//接收控制帧函数指针 NicPurgeTxBuffer purgeTxBuffer;//清除发送缓冲函数指针 NicPurgeRxBuffer purgeRxBuffer;//清除接受缓存函数指针 xxxxEthInitGpio(...)//用于在init中初始化GPIO。 xxxxEthInitDmaDesc(...)//用于在init中初始化DMA任务描述符列表。 XXXX_Handler(...)//用于MAC中断的上半段处理。 xxxxEthReceivePacket(...)//用于在eventHandler中收包,把数据从dma的缓冲复制到外部缓冲。xxxxEthCalcCrc(...)//计算CRC值,这个函数基本上是固定的。 xxxxEthDumpPhyReg(...)//用于调试的打印PHY寄存器列表值。

TCPIP协议栈实践报告

《专业综合实践》 训练项目报告训练项目名称:TCP/IP协议栈

1.IP协议 IP协议是TCP/IP协议的核心,所有的TCP,UDP,IMCP,IGCP的数据都以IP数据格式传输。要注意的是,IP不是可靠的协议,这是说,IP协议没有提供一种数据未传达以后的处理机制--这被认为是上层协议--TCP或UDP要做的事情。所以这也就出现了TCP是一个可靠的协议,而UDP就没有那么可靠的区别。这是后话,暂且不提 1.1.IP协议头如图所示

挨个解释它是教科书的活计,我感兴趣的只是那八位的TTL字段,还记得这个字段是做什么的么?这个字段规定该数据包在穿过多少个路由之后才会被抛弃(这里就体现出来IP协议包的不可靠性,它不保证数据被送达),某个ip数据包每穿过一个路由器,该数据包的TTL数值就会减少1,当该数据包的TTL成为零,它就会被自动抛弃。这个字段的最大值也就是255,也就是说一个协议包也就在路由器里面穿行255次就会被抛弃了,根据系统的不同,这个数字也不一样,一般是32或者是64,Tracerouter这个工具就是用这个原理工作的,tranceroute 的-m选项要求最大值是255,也就是因为这个TTL在IP协议里面只有8bit。 现在的ip版本号是4,所以也称作IPv4。现在还有IPv6,而且运用也越来越广泛了。 1.2.IP路由选择 当一个IP数据包准备好了的时候,IP数据包(或者说是路由器)是如何将数据包送到目的地的呢?它是怎么选择一个合适的路径来"送货"的呢? 最特殊的情况是目的主机和主机直连,那么主机根本不用寻找路由,直接把数据传递过去就可以了。至于是怎么直接传递的,这就要靠ARP协议了,后面会讲到。 稍微一般一点的情况是,主机通过若干个路由器(router)和目的主机连接。那么路由器就要通过ip包的信息来为ip包寻找到一个合适的目标来进行传递,比如合适的主机,或者合适的路由。路由器或者主机将会用如下的方式来处理某一个IP数据包 如果IP数据包的TTL(生命周期)以到,则该IP数据包就被抛弃。 搜索路由表,优先搜索匹配主机,如果能找到和IP地址完全一致的目标

mtcp协议栈

mTCP:A Highly Scalable User-level TCP Stack for Multicore Systems EunYoung Jeong,Shinae Woo,Muhammad Jamshed,Haewon Jeong Sunghwan Ihm*,Dongsu Han,and KyoungSoo Park KAIST*Princeton University Abstract Scaling the performance of short TCP connections on multicore systems is fundamentally challenging.Although many proposals have attempted to address various short-comings,inef?ciency of the kernel implementation still persists.For example,even state-of-the-art designs spend 70%to80%of CPU cycles in handling TCP connections in the kernel,leaving only small room for innovation in the user-level program. This work presents mTCP,a high-performance user-level TCP stack for multicore systems.mTCP addresses the inef?ciencies from the ground up—from packet I/O and TCP connection management to the application inter-face.In addition to adopting well-known techniques,our design(1)translates multiple expensive system calls into a single shared memory reference,(2)allows ef?cient?ow-level event aggregation,and(3)performs batched packet I/O for high I/O ef?ciency.Our evaluations on an8-core machine showed that mTCP improves the performance of small message transactions by a factor of25compared to the latest Linux TCP stack and a factor of3compared to the best-performing research system known so far.It also improves the performance of various popular applications by33%to320%compared to those on the Linux stack. 1Introduction Short TCP connections are becoming widespread.While large content transfers(e.g.,high-resolution videos)con-sume the most bandwidth,short“transactions”1dominate the number of TCP?ows.In a large cellular network,for example,over90%of TCP?ows are smaller than32KB and more than half are less than4KB[45]. Scaling the processing speed of these short connec-tions is important not only for popular user-facing on-line services[1,2,18]that process small messages.It is 1We refer to a request-response pair as a transaction.These transac-tions are typically small in size.also critical for backend systems(e.g.,memcached clus-ters[36])and middleboxes(e.g.,SSL proxies[32]and redundancy elimination[31])that must process TCP con-nections at high speed.Despite recent advances in soft-ware packet processing[4,7,21,27,39],supporting high TCP transaction rates remains very challenging.For exam-ple,Linux TCP transaction rates peak at about0.3million transactions per second(shown in Section5),whereas packet I/O can scale up to tens of millions packets per second[4,27,39]. Prior studies attribute the inef?ciency to either the high system call overhead of the operating system[28,40,43] or inef?cient implementations that cause resource con-tention on multicore systems[37].The former approach drastically changes the I/O abstraction(e.g.,socket API) to amortize the cost of system calls.The practical lim-itation of such an approach,however,is that it requires signi?cant modi?cations within the kernel and forces ex-isting applications to be re-written.The latter one typically makes incremental changes in existing implementations and,thus,falls short in fully addressing the inef?ciencies. In this paper,we explore an alternative approach that de-livers high performance without requiring drastic changes to the existing code base.In particular,we take a clean-slate approach to assess the performance of an untethered design that divorces the limitation of the kernel implemen-tation.To this end,we build a user-level TCP stack from the ground up by leveraging high-performance packet I/O libraries that allow applications to directly access the packets.Our user-level stack,mTCP,is designed for three explicit goals: 1.Multicore scalability of the TCP stack. 2.Ease of use(i.e.,application portability to mTCP). 3.Ease of deployment(i.e.,no kernel modi?cations). Implementing TCP in the user level provides many opportunities.In particular,it can eliminate the expen-sive system call overhead by translating syscalls into inter-process communication(IPC).However,it also in-

TCPIP协议分析

TCP/IP协议分析及应用 在计算机网络的发展过程中,TCP/IP网络是迄今为止对人类社会影响最重要的一种网络。TCP和IP是两种网络通信协议,以这两种协议为核心协议的网络总称为TCP/IP网络。人们常说的国际互联网或因特网就是一种TCP/IP网络,大多数企业的内部网也是TCP/IP网络。 作为一名学习计算机的学生,我们一定要对TCP/IP协议进行深刻的解析。通过对协议的分析进一步了解网络上数据的传送方式和网络上出现的问题的解决方法。本实验就是对文件传输协议进行分析来确定FTP协议工作方式。 目的:通过访问FTP:202.207.112.32,向FTP服务器上传和下载文件。用抓包工作来捕捉数据在网络上的传送过程。为的方便数据包的分析,通过上传一个内容为全A的TXT文件,来更直观的分析文件传输的过程。 过程: 1.在本机上安装科莱抓包软件 2.对科莱进行进滤器的设置(arp、ftp、ftp ctrl、ftp data) 3.通过运行CMD窗口进行FTP的访问 4.用PUT和GET进行文件的上传与下载 5.对抓到的包进行详细的分析 CMD中的工作过程: C:\Documents and Settings\Administrator>ftp 202.207.112.32 Connected to 202.207.112.32. 220 Serv-U FTP Server v5.1 for WinSock ready... User (202.207.112.32:(none)): anonymous //通过匿名方式访问 331 User name okay, please send complete E-mail address as password. Password: 230 User logged in, proceed. ftp> cd 学生作业上传区/暂存文件夹 250 Directory changed to /学生作业上传区/暂存文件夹 ftp> put d:\aaa123.txt //上传aaa123.txt文件 200 PORT Command successful. 150 Opening ASCII mode data connection for aaa123.txt.

tcp、ip协议栈移植

This article was downloaded by: [University of Jiangnan] On: 27 March 2015, At: 06:51 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Discrete Mathematical Sciences and Cryptography Publication details, including instructions for authors and subscription information: https://www.360docs.net/doc/f72246937.html,/loi/tdmc20 An abridged protocol stack for micro controller in place of TCP/IP R. Seshadri a a Computer Centre, S.V. University , Tirupati , 517 502 , India Published online: 03 Jun 2013. PLEASE SCROLL DOWN FOR ARTICLE

An abridged protocol stack for micro controller in place of TCP/IP R.Seshadri ? Computer Centre S.V .University Tirupati 517502India Abstract The existing TCP/IP protocol stack running in hosts takes lot of overhead while the node in network is for a speci?c purpose.For example transferring simple messages across network.If the node in the network is not a PC but,some thing like a micro controller,which measures some values and stores in its local memory,then it becomes lavishness in using the micro controller’s memory.As it is a node in a network,working with TCP/IP ,it should be able to transfer those values in the form of messages to other hosts which are in either local network or global network. But in micro controller terms the memory is expensive and compact.The existing TCP/IP stack consumes a few mega bytes of memory.Therefore it can’t be accommodated in the memory of micro controller.Hence one needs to reduce the memory consumption.In this regard,an abridged protocol which replaces the existing TCP/IP has been designed to suit the above needs.For this purpose,the TCP/IP have been combined with KEIL C51features for 8051micro controller to make it work in transferring messages in local area network as well as global network. The above scheme was implemented and tested and the system was working satisfac-torily.The results are found to be more effective in communicating information/message from the micro controller to a PC. Keywords :Ethernet,stack,Transmission Control Protocol (TCP ),Internet Protocol (IP ).Introduction to TCP/IP The name TCP/IP refers to a suite of communication protocols.The name is misleading because TCP and IP are the only two of the dozens of protocols that compose the suite.Its name comes from two of the most ?E-mail :ravalaseshadri@yahoo.co.in —————————————————– Journal of Discrete Mathematical Sciences &Cryptography Vol.9(2006),No.3,pp.523–536 c Taru Publications D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 06:51 27 M a r c h 2015

tcp,ip详解卷1,协议,下载

竭诚为您提供优质文档/双击可除tcp,ip详解卷1,协议,下载 篇一:tcp_ip协议详解 tcp/ip协议详解 这部分简要介绍一下tcp/ip的内部结构,为讨论与互联网有关的安全问题打下基础。tcp/ip协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如t1和x.25、以太网以及Rs-232串行接口)之上。确切地说,tcp/ip协议是一组包括tcp协议和ip协议,udp (userdatagramprotocol)协议、icmp (internetcontrolmessageprotocol)协议和其他一些协议的协议组。 tcp/ip整体构架概述 tcp/ip协议并不完全符合osi的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而tcp/ip通讯协议采用了4层的层级结构,每一层都呼叫它的

下一层所提供的网络来完成自己的需求。这4层分别为:应用层:应用程序间沟通的层,如简单电子邮件传输(smtp)、文件传输协议(Ftp)、网络远程访问协议(telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(tcp)、用户数据报协议(udp)等,tcp和udp给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(ip)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如ethernet、serialline等)来传送数据。 tcp/ip中的协议 以下简单介绍tcp/ip中的协议都具备什么样的功能,都是如何工作的: 1.ip 网际协议ip是tcp/ip的心脏,也是网络层中最重要的协议。 ip层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---tcp或udp层;相反,ip层也把从tcp或udp层接收来的数据包传

tcp-ip协议详细讲解

TCP/IP协议详解 这部分简要介绍一下TCP/IP的部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。 TCP/IP整体构架概述 TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为: 应用层:应用程序间沟通的层,如简单电子传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。 TCP/IP中的协议 以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的: 1. IP 网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。 IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。 高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一

TCPIP协议栈

TCP/IP协议族 IPv4包 UDP包 UDP的伪首部(根据IP数据包的内容建立) UDP校验和覆盖的内容超出了UDP数据报本身的X围。计算校验和,先把零值赋予校验和字段,然后对整个对象,包括伪首部、UDP的首部和用户数据,算出一个16比特的二进制

TCP包 TCP的伪首部(根据IP数据包的内容建立) 三次握手报文序列 在网点1的事件网络报文在网点2的事件 发送SYN seq=x 接收SYN报文段 发送SYN seq=y,ACK x+1

接收SYN+ACK报文段 发送ACK y+1 接收ACK报文段 TCP连接关闭的三次握手 在网点1的事件网络报文在网点2的事件 (应用程序关闭连接) 发送FIN seq=x 接收FIN报文段 发送ACK x+1 接收ACK报文段 发送FIN seq=y,ACK x+1 接收FIN+ACK报文段 发送ACK y+1 接收ACK报文段 IPv6 IPv6是“Internet Protocol Version 6”的缩写,它是IETF设计的用于替代现行版本IP协议-IPv4-的下一代IP协议。IPv6采用了分级地址模式、高效IPXX、服务质量、主机地址自动配置、认证和加密等许多技术。

IPv4和IPv6的主要差别 IPv6包结构 IPv6包由IPv6XX、扩展XX和上层协议数据单元三部分组成:

IPv6XX Version(4bit) Traffic Class(8bit) Flow Label(20bit) Payload Length(16bit) Next Header(8bit) Hop Limit(8bit) Source IP address (128bit) Destination IP address (128bit) 附:常用的Next Header 字段值表 扩展头 一个典型的IPv6包,没有扩展头。仅当需要路由器或目的节点做某些特殊处理时,才由发送方添加一个或多个扩展头。与IPv4不同,IPv6扩展头长度任意,不受40字节限制,但是为了提高处理选项头和传输层协议的性能,扩展头总是8字节长度的整数倍。 目前,RFC 2460中定义了以下6个IPv6扩展头: 1)Hop-by-Hop选项XX 包含分组传送过程中,每个路由器都必须检查和处理的特殊参数选项。Hop-by-Hop选 项XX中的选项描述一个分组的某些特性或用于提供填充。这些选项有: Pad1选项(选项类型为0),填充单字节。

TCPIP协议详解-配置选项

附录E 配置选项 我们已经看到了许多冠以“依赖于具体配置”的T C P/I P特征。典型的例子包括是否使能U D P的检验和(11 .3节),具有同样的网络号但不同的子网号的目的I P地址是本地的还是非本地的(1 8.4节)以及是否转发直接的广播(1 2.3节)。实际上,一个特定的T C P/I P实现的许多操作特征都可以被系统管理员修改。 这个附录列举了本书中用到的一些不同的T C P/I P实现可以配置的选项。就像你可能想到的,每个厂商都提供了与其他实现不同的方案。不过,这个附录给出的是不同的实现可以修改的参数类型。一些与实现联系紧密的选项,如内存缓存池的低水平线,没有描述。 这些描述的变量只用于报告的目的。在不同的实现版本中,它们的名字、默认值、或含义都可以改变。所以你必须检查你的厂商的文档(或向他们要更充分的文档)来 了解这些变量实际使用的单词。 这个附录没有覆盖每次系统引导时发生的初始化工作:对每个网络接口使用i f c o n f i g 进行初始化(设置I P地址、子网掩码等等)、往路由表中输入静态路由等等。这个附录集中描述了影响T C P/I P操作的那些配置选项。 E.1 BSD/386 版本1.0 这个系统是自从4 .2B S D以来使用的“经典”B S D配置的一个例子。因为源代码是和系统一起发布的,所以管理员可以指明配置选项,内核也可重编译。存在两种类型的选项:在内核配置文件中定义的常量(参见c o n f i g( 8)手册)和在不同的C源文件中的变量初始化。大胆而又经验丰富的管理员也可以使用排错工具修改正在运行的内核或者内核的磁盘映像中这些变量的值,以避免重新构造内核。 下面列出的是在内核配置文件中可以修改的常量。 IPFORWARDING 这个常量的值初始化内核变量i p f o r w a r d i n g。如果值为0(默认),就不转发I P数据报。如果是1,就总是使能转发功能。 GATEWAY 如果定义了这个常量,就使得I P F O R WA R D I N G的值被置为1。另外,定义这个常量还使得特定的系统表格(A R P快速缓存表和路由表)更大。 SUBNETSARELOCAL 这个常量的值初始化内核变量s u b n e t s a r e l o c a l。如果值为1(默认),一个和发送主 I P地址被认为是本地的。如果是0,只有在同一个子

详解TCPIP协议的含义和参数

详解TCP/IP协议的含义和参数最重要的概念是IP地址,它是32位地址,采用如下的形式: nnn.nnn.nnn.nnn 其中每个nnn为8位,范围为0~255。通常互连网上的每台机器的地址都是唯一的。这相当于身份证号码,但这号码不易记忆,后来就出现了域名的概念,它与IP地址唯一对应,实际就是网络世界的门牌号码。如网事网络:域名:https://www.360docs.net/doc/f72246937.html, IP地址:210.77.43.3 域名的申请是有专门的管理机关负责的。常用的定级域名有行业与地区两种,以下为常见的域名: 地区: .cn中国; .hk香港; .uk英国; .tw台湾; .au澳大利亚; .jp日本; .ru俄罗斯; .fr法国 行业: .com公司;

.gov政府; .net网络; .edu教育; .mil军事; .org非赢利组织 TCP/IP协议中的三个参数 TCP/IP(TransmiteControlProtocol传输控制协议/InternetProtocol网际协议)已成为计算机网络的一套工业标准协议。Internet网之所以能将广阔范围内各种各样网络系统的计算机互联起来,主要是因为应用了“统一天下”的TCP/IP协议。在应用TCP/IP协议的网络环境中,为了唯一地确定一台主机的位置,必须为TCP/IP协议指定三个参数,即IP地址、子网掩码和网关地址。 IP地址 IP地址实际上是采用IP网间网层通过上层软件完成“统一”网络物理地址的技巧,这种技巧使用统一的地址格式,在统一管理下分配给主机。Internet 网上不同的主机有不同的IP地址,每个主机的IP地址都是由32比特,即4个字节组成的。为了便于用户阅读和理解,通常采用“点分十进制表示技巧”表示,每个字节为一部分,中间用点号分隔开来。如210.77.43.3就是网事网络WEB服务器的IP地址。每个IP地址又可分为两部分。网络号表示网络规模的大小,主机号表示网络中主机的地址编号。按照网络规模的大小,IP地址可以分为A、B、C、D、E五类,其中A、B、C类是三种主要的类型地址,D类专供多目传送用的多目地址,E类用于扩展备用地址。A、B、C三类IP地址有效范围如下表: 类别 网络号 主机号 A

TCP协议详解

TCP协议详解 为什么会有TCP/IP协议 在世界上各地,各种各样的电脑运行着各自不同的操作系统为大家服务,这些电脑在表达同一种信息的时候所使用的方法是千差万别。就好像圣经中上帝打乱了各地人的口音,让他们无法合作一样。计算机使用者意识到,计算机只是单兵作战并不会发挥太大的作用。只有把它们联合起来,电脑才会发挥出它最大的潜力。于是人们就想方设法的用电线把电脑连接到了一起。 但是简单的连到一起是远远不够的,就好像语言不同的两个人互相见了面,完全不能交流信息。因而他们需要定义一些共通的东西来进行交流,TCP/IP就是为此而生。TCP/IP不是一个协议,而是一个协议族的统称。里面包括了IP协议,IMCP协议,TCP协议,以及我们更加熟悉的http、ftp、pop3协议等等。电脑有了这些,就好像学会了外语一样,就可以和其他的计算机终端做自由的交流了。 TCP/IP协议分层 ![TCP分层 2.jpg](http://upload-images.jianshu.io/upload_images/2964446-94da7e7442050d15.jpg?i mageMogr2/auto-orient/strip%7CimageView2/2/w/1240) TCP/IP协议族按照层次由上到下,层层包装。 应用层: 向用户提供一组常用的应用程序,比如电子邮件、文件传输访问、远程登录等。远程登录TELNET使用TELNET协议提供在网络其它主机上注册的接口。

TELNET会话提供了基于字符的虚拟终端。文件传输访问FTP使用FTP协议来提供网络内机器间的文件拷贝功能。 传输层: 提供应用程序间的通信。其功能包括:一、格式化信息流;二、提供可靠传输。为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必须重新发送。 网络层: 负责相邻计算机之间的通信。其功能包括三方面。 一、处理来自传输层的分组发送请求,收到请求后,将分组装入IP数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口。 二、处理输入数据报:首先检查其合法性,然后进行寻径--假如该数据报已到达信宿机,则去掉报头,将剩下部分交给适当的传输协议;假如该数据报尚未到达信宿,则转发该数据报。 三、处理路径、流控、拥塞等问题。 网络接口层: 这是TCP/IP软件的最低层,负责接收IP数据报并通过网络发送之,或者从网络上接收物理帧,抽出IP数据报,交给IP层。 IP 是无连接的 IP 用于计算机之间的通信。 IP 是无连接的通信协议。它不会占用两个正在通信的计算机之间的通信线路。这样,IP 就降低了对网络线路的需求。每条线可以同时满足许多不同的计算机之间的通信需要。 通过IP,消息(或者其他数据)被分割为小的独立的包,并通过因特网在计算机之间传送。 IP 负责将每个包路由至它的目的地。 IP地址 每个计算机必须有一个IP 地址才能够连入因特网。 每个IP 包必须有一个地址才能够发送到另一台计算机。

TCPIP协议栈实践报告

《专业综合实践》 训练项目报告 训练项目名称:TCP/I P 协议栈 1、IP 协议 IP 协议就是TCP/IP 协议得核心,所有得TCRUDPJMCP, I GCP 得数据都 以IP 数据格式传输。要注意得就是,IP 不就是可靠得协议,这就是说,I P 协议 没有提供一种数据未传达以后得处理机制一一这被认为就是上层协议一一TCP 或UDP 要做得事情。所以这也就出现了 TCP 就是一个可靠得协议,而UDP 就 没有那么可靠得区别。这就是后话,暂且不提 1、1、IP 协议头如图所示 挨个解释它就是教科书得活计,我感兴趣得只就是那八位得TT L 字段,还记 得这个字段就是做什么得么?这个字段规定该数据包在穿过多少个路山之后才 会被抛弃(这里就体现出来I P 协议包得不可靠性,它不保证数据被送达),某个 ip 数据包每穿过一个路III 器,该数据包得TTL 数值就会减少1,当该数据包得T TL 成为零,它就会被自动抛弃。这个字段得最大值也就就是2 5 5,也就就是说 一个协议包也就在路由器里面穿行2 55次就会被抛弃了,根据系统得不同,这个 数字也不一样,一般就是32或者就是64, T r acero ute r 这个工具就就是用这个 原理丄作得,trancer o ute 得-m 选项要求最大值就是25 5,也就就是因为这个T TL 在IP 协议里面只有8b i to 现在得ip 版本号就是4,所以也称作IPv 4。现在还有IPv 6 ,而且运用也 越来越广泛了。 1、2、IP 路由选择 当一个IP 数据包准备好了得时候,IP 数据包(或者说就是路111器)就是如何 将数据包送到LI 得地得呢?它就是怎么选择一个合适得路径来”送货“得呢? 最特殊得情况就是U 得主机与主机直连,那么主机根本不用寻找路山,直接 把数 ii 恤如紀伯 字方

TCPIP详解-卷一-协议-14.4一个简单的例子.

14.4一个简单的例子 让我们从一个简单的例子来了解一个名字解析器与一个名字服务器之间的通信过程。在sun 主机上运行Telnet 客户程序远程登录到gemini 主机上,并连接daytime 服务器: 在这个例子中,我们引导sun 主机(运行Telnet 客户程序)上的名字解析器来使用位于https://www.360docs.net/doc/f72246937.html, (140.252.1.54)的名字服务器。图14-9显示了这三个系统的排列情况。和以前提到的一样,名字解析器是客户程序的一部分,并且在Telnet 客户程序与daytime 服务器建立TCP 连接之前,名字解析器就能通过名字服务器获取IP 地址。在这个图中,省略了sun 主机与140.252.1以太网的连接实际上是一个SLIP 连接的细节(参见封2的插图),因为它不影响我们的讨论。通过在SLIP 链路上运行tcpdump 程序来了解名字解析器与名字服务器之间的分组交换。 图14-9用于简单DNS 例子的系统 sun 主机上的文件/etc/resolv.conf将告诉名字解析器作什么: sun%cat/etc/resolv.confnameserver140.252.1.54doma https://www.360docs.net/doc/f72246937.html, 第1行给出名字服务器—主机https://www.360docs.net/doc/f72246937.html, 的IP 地址。最多可说明3个名字服务器行来提供足够的后备以防名字服务器故障或不可达。域名行说明默认域名。如果要查找的域名不是一个完全合格的域名(没有以句点结束),那末默认的域 名https://www.360docs.net/doc/f72246937.html, 将加到待查名后。 图14-10显示了名字解析器与名字服务器之间的分组交换。

图14-10向名字服务器查询主机名https://www.360docs.net/doc/f72246937.html, 的输出 让tcpdump 程序不再显示每个IP 数据报的源地址和目的地址。相反,它显示客户 (resolver )的IP 地址140.252.1.29和名字服务器的IP 地址140.252.1.54。客户的临时端口号为1447,而名字服务器则使用熟知端口53。如果让tcpdump 程序显示名字而不是IP 地址,它可能会和同一个名字服务器联系(作指示查询),以致产生混乱的输出结果。 第1行中冒号后的字段(1+)表示标识字段为1,加号“+”表示RD 标志(期望递归)为1。默认情况下,名字解析器要求递归查询方式。 下一个字段为A? ,表示查询类型为A (我们需要一个IP 地址),该问号指明它是一个查询 (不是一个响应)。待查名字显示在后面:https://www.360docs.net/doc/f72246937.html,. 。名字解析器在待查名字后加上句点号指明它是一个绝对字段名。 在UDP 数据报中的用户数据长度显示为37字节:12字节为固定长度的报文首部(图143);21字节为查询名字(图14-6),以及用于查询类型和查询类的4个字节。在DNS 报文中无需填充数据。 tcpdump 程序的第2行显示的是从名字服务器发回的响应。1*是标识字段,星号表示设置 AA 标志(授权回答)(该服务器是https://www.360docs.net/doc/f72246937.html, 域的主域名服务器,其回答在该域内是可相信的。)输出结果2/0/0表示在响应报文中最后3个变长字段的资源记录数:回答RR 数为2,授权RR 和附加信息RR 数均为0。tcpdump 仅显示第一个回答,回答类型为A (IP 地址),值为 140.252.1.11。

相关文档
最新文档