YY0505-2012电磁兼容性检测

YY0505-2012电磁兼容性检测
YY0505-2012电磁兼容性检测

YY0505-2012电磁兼容性检测

—样品送检要求

关于YY0505检测,请送检企业准备好以下文档资料:

1)样机及辅助设备

测试附件

测试软件

测试工装

2)随机文件

使用说明书(应符合YY0505中6.8.2.201的条款)

技术说明书(应符合YY0505中6.8.3.201的条款)

如有,提供基于风险分析确定的基本性能或风险分析报告

3)产品标识、标记

设备或部件的外部标识(应符合YY0505中6.1.201.1)

警示(应符合YY0505中6.1.201.1 )

4)说明样机的产品结构

5)样机电路原理图(网电源部分、应用部分、电路板等详细图纸)

6)样机结构图、装配图

7)样机PCB布板图(包括各电子部件的安放位置图)

8)填写以下表格

车辆、航空器、救护车。

注:工作频率是指在设备或系统中设定用来控制某种生理参数的电信号或非电信号的基频;生理模拟频率是指用于模拟生理参数的电信号或非电信号的基频,使得设备或系统以一种与用于患者时相一致的方式运行。

表3 样品基本信息

表4 样品的构成

表5 样品的运行模式

表6 样品的电缆信息

注:电缆包括产品外部连接线(电源线、适配器电缆、各端口连接导线、各接线端子导线等)、产品部件间的连接线和患者导联线。

注:包括开关电源、晶振、时钟频率、电机等,主要针对射频范围9 kHz~3000 GHz

表8 样品的EMC关键元器件清单

9)EUT的基本性能描述以及生产商声称的抗扰度试验性能判据

国家食品药品监督管理局湖北医疗器械质检中心

业务室&电磁兼容室

电磁辐射例子

由北京金融街地区的电磁辐射事件,关注电磁污染与自身健康Electromagnetic radiation incident in Financial Street, Beijing, concerned about the electromagnetic pollution and its own health 2007年1月中旬起,在北京金融街区域(礼士路和复兴门附近),电子卷帘门和汽车遥控器经常无故失灵,居民怀疑与电磁辐射(功率大的无线发射设施)有关,并担心这种电磁辐射对自身健康的影响。在1月28日市政协会议的小组讨论会上,由市政协委员提到,而且市环保局副局长透露:不排除这可能是一些通讯类的发射或接收设施引起的,而目前国内关于电子污染防控的法规还不健全。市环保局已经向国家环保总局提出,希望由国家环保总局牵头,对在京相关单位各类无线发射设施展开统一调查。回顾以往居民担心电磁辐射对自身健康的影响而导致群体纠纷的事件,如朝阳区南十里居,北四环科学院南里,西北旺百旺家园等等。 人们,尤其是在(大)城市里生活、居住的人,时刻处在无形的“波磁海洋”中。了解电磁辐射知识,正确对待电磁辐射,自我主动预防无形的危害,已是关键所在。 我国的《电磁辐射环境保护管理办法》第一章第二条: 本办法所称电磁辐射是指以电磁波形式通过空间传播的能量流,且限于非电离辐射, 包括信息传递中的电磁波发射,工业、科学、医疗应用中的电磁辐射,高压送变电中产生的电磁辐射。电磁辐射主要通过热效应和非热效应作用于人体。电磁辐射的热效应,引起人体热平衡的失调;造成白内障;破坏睾丸的生精能力,导致不育等等。电磁辐射的非热效应主要影响人体的神经系统,感觉系统,免疫系统,内分泌系统。 电磁辐射的来源有自然和人工两大类。人们日常生活已离不开的人工设备,也都产生电磁辐射。这些产生电磁辐射的设备主要分为五大类:广播电视电磁设备类,包括广播、电视、调频等设备;通信、雷达及导航发射设备类,包括通信、基站设备、雷达及导航发射设备等;工、科、医电磁设备,如高频冶炼炉、塑料热合机、大型医疗电磁设备等;交通系统设备,如磁悬浮列车、地铁等;输电线路系统设备,如高压交流直流输电系统、变电站、换流站等。人们日常生活和工作已离不开的输变电设施、输电线路、动力与电热设备或家用电器等都或多或少地产生着电磁辐射。对无所不在的电磁辐射要有正确的认识。电磁辐射和电磁污染是两个概念。由国家环保总局制定的《电磁辐射防护规定》中,针对人体易敏感频段的电磁辐射的限值,比西方和国际上的要严格、标准高。 世界各国的许多研究机构、医学专家调查研究报告指出:经常受到电磁辐射的人员,其各种癌症发病的比例偏高。高压线附近居住的人们,不管是生理影响还是心理影响,反映出现头晕、恶心、烦燥、工作效率降低、失眠、记忆力减退等症状的事例,现在是越来越多。据英国国家辐射保护委员会的报告,达到或超过132千伏的高压线在数十米范围内的电磁辐射强度超过0.4微特斯拉;11-66千伏的高压线在十数米范围内的电磁辐度强度超过0.4微特斯拉;而埋藏在地下的高压线只在数米范围内的电磁辐射强度超过0.4微特斯拉。为了在更短的距离内、更多地削减电磁辐射,可在埋藏地段的土壤中,尤其是经过生活、工作区的,镶辅以匹热迷能高性能新型材料(有磁滞损耗机制的材料)制成的板块或半环圈,从而减少埋藏的深度并且最大限度地降低高压电力系统产生的电磁辐射对人体健康的影响。英国国家辐射保护委员会的一份写于2001年的调查报告称:居住在高压线周边,有电磁辐射下的儿童,其白血病发病率比居住在别处的儿童的高

电磁兼容性分析

电磁兼容性(EMC,即Electromagnetic Compatibility)是指设备或系统在其电磁环境中符 合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁骚扰(Electromagnetic Disturbance)不能超过一定的限值;另一方面是指设备对所在环境中存在的电磁骚扰具有一定程度的抗扰度,即电磁敏感性(Electromagnetic Susceptibility,即EMS)。 自从电子系统降噪技术在70年代中期出现以来,主要由于美国联邦通讯委员会在1990年和欧盟在1992提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。 电磁兼容性electromagnetic compatibility(EMC) 设备或系统在其电磁环境中能正常工作且不对该环境中的任何事物构成不能承受的电磁骚扰的能力。(GB/T 4365-1995中1.7节) 干扰的形成 1、折叠干扰源与受干扰源 无论何种情况下电磁相容的问题出现总是存在两个互补的方面: 一个是干扰发射源和一个为此干扰敏感的受干扰设备。 如果一个干扰源与受干扰设备都处在同一设备中称为系统内部的EMC 情况。 不同设备间所产生的干扰状况称为系统间的EMC 情况。 大多数的设备中都有类似天线的特性的零件如电缆线、PCB 布线、内部配线、机械结构等这些零件透过电路相耦合的电场、磁场或电磁场而将能量转移。 实际情况下设备间和设备内部的耦合受到了屏蔽与绝缘材料的限制而绝缘材料的吸收与导体相比的影响是微不足道的。 电缆线对电缆线的耦合既可以是电容性也可以是电感性并且取决于方位、长度及接近程度的影响。 2、折叠公共阻抗的耦合 公共阻抗耦合线路是干扰源与受干扰设备共用电路阻抗所引起的。 公共导线也因两个电流环之间的互感而引起或因两个电压节点之间的互容耦合而引起。 对于传导性的公共阻抗耦合的解决是将连接线分离使系统各自独立避免形成公共阻抗。 折叠发射 来自PCB 的发射:在大多数设备中主要的电流源是流入PCB 板上的电路中这些能量借由PCB 板所模拟成的天线而将干扰辐射出去。 来自电缆线的辐射:干扰电流以共模形式产生于在PCB 和设备内部其他位置形成的对地噪声并沿着导体或者屏蔽电缆的屏蔽层流动。 传导发射:干扰也可能从其他电缆以感性或容性方式偶合到电缆线上。 产生的干扰可能以差模(在火线与中线或在信号线之间)或共模(在火线/中线/信号线与接地

电子常识-GB-T17626-电磁兼容试验简介

标准-GB/T 17626 电磁兼容试验全标准 电磁兼容性测试(简称EMC,是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电 磁干扰的能力。EMC设计与EMC测试是相辅相成的。EMC设计的好坏是要通过EMC测试来衡量的。只有在产品的EMC设计和研制的全过程中,进行EMC的相容性预测和评估,才能及早发 现可能存在的电磁干扰,并采取必要的抑制和防护措施,从而确保系统的电磁兼容性。 GB/T 17626 电磁兼容试验和测量技术系列标准包括以下部分:GB/T 17626.1-2006 电磁兼容试验和测量技术抗扰度试 验总论 GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电 抗干扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁 场辐射抗干扰度试验 GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬 变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验

应的传导骚扰抗扰度 GB/T 17626.7-2008 电磁兼容试验和测量技术供电系统 及所连设备谐波、谐间波的测量和测量仪器导则 GB/T 17626.8-2006 电磁兼容试验和测量技术工频磁场 抗扰度试验 GB/T 17626.9-1998 电磁兼容试验和测量技术脉冲磁场 抗扰度试验 GB/T 17626.10-1998 电磁兼容试验和测量技术阻尼振荡 磁场抗扰度试验 GB/T 17626.11-2008 电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗扰度试验 GB/T 17626.12-1998 电磁兼容试验和测量技术振荡波抗 扰度试验 GB/T 17626.13-2006 电磁兼容试验和测量技术交流电源 端口谐波、谐间波及电网信号的的低频抗扰度试验 GB/T 17626.14-2005 电磁兼容试验和测量技术电压波动 抗扰度试验 GB/T 17626.17-2005 电磁兼容试验和测量技术直流电源 输入端口纹波抗扰度试验 GB/T 17626.27-2006 电磁兼容试验和测量技术三相电压 不平衡抗扰度试验

电磁兼容检测领域中-CNAS

CNAS—GL07 EMC检测领域不确定度的评估指南 中国合格评定国家认可委员会 二〇〇六年六月

电磁干扰测量中不确定度的评定指南 1目的与范围 1.1本指南是采用国际电工委员会下属国际无线电干扰特别委员会(缩写为CISPR)的标准CISPR 16-4(First edition 2002-05)编制而成的,为EMC检测中电磁干扰测量时的不确定度评定提供指南。 1.2在EMC检测中,如需考虑所使用的仪器引入的不确定度对测量结果或符合性判断结论的影响时,可以参考本指南。 1.3本指南的附录A提供了为确定各测量不确定度分量而需要的有关数据信息。附录A不是用户指南,不希望用户在进行不确定度评定时照搬照抄。 1.4本指南在文献目录中列出了部分不确定度评定的参考资料。 2引用文件 JJF1059-1998 《测量不确定度的评定与表示》 JJF1001-1998《通用计量术语及定义》 JJF1049-2003《测量仪器特性的评定》 3术语、定义和符号 本指南采用下列术语、定义和符号。 3.1术语、定义 关于不确定度的术语和定义见JJF1059-1998 《测量不确定度的评定及表示》;计量学通用名词术语和定义见JJF1001-1998 《通用计量术语及定义》。 3.2通用符号 X i:输入量 x i:X i的估计值

u(x i):x i的标准不确定度 c i:灵敏系数 y:测量结果,被测量的估计值,对所有能识别的和明显的系统影响已修正的测量结果 u c(y):y的合成标准不确定度 k:包含因子 U:y的扩展不确定度 3.3被测量 V:电压,dBμV P:骚扰功率,dB PW E:电场强度,dBμV/m 3.4输入量 V r:接收机电压读数,dBμV Lc:接收机与人工电源网络、吸收钳或天线之间的连接网络的衰减量,dB 注:“阻抗稳定网络”-在CISPR 16-4原文中称为“人工电源网络”(Artificial Mains Network),所以采用的缩写符号为AMN。 Lamn:人工电源网络的电压分压系数,dB Lac:吸收钳的插入损耗,dB AF:天线系数,dB(/m) δVsw:对接收机正弦波电压不准确的修正值,dB δVpa:对接收机脉冲幅度响应不理想的修正值,dB δVpr:对接收机脉冲重复频率响应不理想的修正值,dB δVnf:对接收机本底噪声影响的修正值,dB δM:对失配误差的修正值,dB δMD:对电源骚扰造成的误差的修正值,dB δZ:对人工电源网络阻抗不理想的修正值,dB δE:对环境条件影响的修正值,dB δ AFf:对天线系数内插误差的修正值,dB

通信电源电磁兼容性分析与测试

通信电源电磁兼容性分析与测试 1 引言 为保证通信设备稳定可靠工作,电源在现代通信系统中的作用愈来愈重要。为此,国内外通信电源研发和制造者作出了积极努力,各种通信电源不断涌现,且趋向智能化,小型化、低功耗、高效率、长寿命,以满足通信和信息产业发展的需要。近年来,国内开始对通信电源的电磁兼容性提出一定要求,而欧美等工业发达国家已于90年代初期开始强制对电子产品及电气设备进行电磁兼容性能检测和改进,以减少电磁环境污染,保证电子设备正常可靠运转,保护人类良好生态环境。我国于80年代中期开始建立军用电磁兼容的测试手段,制定了相应标准。随着民用电子工业、信息产业的迅猛发展,为适应国际市场要求,90年代我国民用电磁兼容检测机构应运而生。到目前已基本建立了能适应国内外需求,满足不同行业技术标准要求的检测手段,为提高我国电子产品电磁兼容性能奠定了良好基础。通信电源作为通信电子产品的重要分支,其电磁兼容性能已引起国内外同行广泛关注,我国也制定了相应的技术标准。通信电源广泛用于通信网络,为保证通信设备、广播电视等系统可靠运行,提高通信电源的电磁兼容性能势在必行。 2 通信电源电磁兼容标准及限值 我国通信电源执行的电磁兼容标准基本参照了IEC61000系列、EN55022、 EN50091-2:1996等国际和欧洲标准。 我国对通信电源电磁兼容执行的标准有: GB9254-1998“信息技术设备的无线电骚扰限值和测量方法” YD/T983-1998“通信电源设备电磁兼容性限值及测量方法” GB/T14745-93“信息技术设备不间断电源通用技术条件” 说明:国内外标准对高频开关电源、电磁兼容性的抗扰度及传导和辐射骚扰均给出了明确的技术要求和限制。对UPS不间断电源,目前我国的国标仅对小型UPS提出传导和辐射骚扰电压限值,抗扰度等级和判定准则尚未明确规定。

电磁兼容标准与测试

电磁兼容作业 电磁兼容标准与测试 班级:电气工程及其自动化0703班 姓名:贾震 学号:070301091

电磁兼容标准及测试 一.概述 随着科学技术的发展,特别是微电子、信息、通讯等高科技的迅速进步与发展,对电磁骚扰的控制与防护提出了繁多而又复杂的问题。在世界各国,特别是欧洲的一些先进国家,经过几十年对电磁干扰和抗干扰等问题的研究和控制,已将这些技术研究形成了一门新兴的学科——电磁兼容(Electromagnetic Compatibility)。 电磁兼容就是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统,系统、广义的还包括生物体),可以共存并不致引起降级的一门科学,国家标准GB/T 4365-1995《电磁兼容术语》对电磁兼容所下的定义为:“设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力”。就是说在规定的电磁环境中,任何设备、系统都不因受电磁干扰而降低工作性能,并且其本身所发射的电磁能量也不大于规定的极限值,以免影响其它设备或系统的正常工作,从而达到互不干扰而共存的目地。 国际无线电干扰特别委员会(法文缩写是CISPR)是国际电工委员会(IEC)的一个特别委员会,它成立于1934年,是最早开始系统地对电磁兼容进行研究的国际性的标准化组织。该委员会成立的初衷主要是保护广播、通讯不受电磁干扰的影响。围绕这方面的问题,对车辆、

家电、电动工具、工科医射频设备、高压架空线路等提出了一系列骚扰限值(包括射频辐射和传导两方面,工作频率多在9kHz~18GHz)和测试方法的标准。近几年来随着它的业务范围不断扩大,也开展了一些抗扰度标准的研究。它更主要的重点还是研究电磁骚扰限值及其测量方法。 二、电磁兼容标准 早在一九三四年国际电工委员会就成立了无线电干扰特别委员会简称CISPR,专门研究无线电干扰问题,制定有关标准,旨在保护广播接收效果。当初只有少数国家参加该委员会,如比利时、法国、荷兰和英国等。经过多年的发展人们对电磁兼容的认识发生了深刻的变化,1989年欧洲共同体委员会颁发了89/336/EEC指令,明确规定,自1996年1月1日起,所有电子、电器产品须经过EMC性能的认证,否则将禁止其在欧共体市场销售。此举在世界范围内引起较大反响,EMC已成影响国际贸易的一项重要指标。随着技术的发展CISPR工作范围也由当初保护广播接收业务扩展到涉及保护无线电接收的所有业务。国际电工委员会IEC有两个专们从事电磁兼容标准化工作的技术委员会:一个就是CISPR成立于1934年;另一个是电磁兼容委员会TC77,成立于1981年。CISPR最初关心的主要是广播接收频段的无线电骚扰问题,之后在EMC标准化工作方面进行了不懈的努力。 CISPR已基本上将工业和民用产品的EMC考虑在其标准中。CISPR 还起草了通用射频骚扰限额值国际标准草案,这样,对那些新开发的以及暂时还不能与现有CISPR产品标准相对应的产品,可以用射频骚扰

通信电源电磁兼容性分析与测试

通信电源电磁兼容性分析与测试[转帖] 摘要:针对近年来通信和广播电视等行业使用的高频开关电源,不间断电源电磁兼容性能所出现的一些带有普遍性的问题作了研究分析,重点讲座了引起传导骚扰电压和辐射骚扰场强超出限值的几种因素。建议电源生产厂家在产品的研发阶段对电磁兼容性予以足够的重视,并采取相应的技术措施,使产品定型生产后尽可能不出现电磁兼容性问题,避免重新设计整改所造成的损失。同时,简要介绍了与高频开关电源和不间断电源相关的国内外电磁兼容标准,对其中的一些重要内容以表格的形式逐项列出,并给出部分通信电源骚扰电压和辐射骚扰场强的测试结果。 关键词:电磁兼容传导骚扰电压辐射骚扰场强抗扰性静电放电电快速瞬变脉冲群浪涌(冲击) 1引言 为保证通信设备稳定可靠工作,电源在现代通信系统中的作用愈来愈重要。为此,国内外通信电源研发和制造者作出了积极努力,各种通信电源不断涌现,且趋向智能化,小型化、低功耗、高效率、长寿命,以满足通信和信息产业发展的需要。近年来,国内开始对通信电源的电磁兼容性提出一定要求,而欧美等工业发达国家已于90 年代初期开始强制对电子产品及电气设备进行电磁兼容性能检测和改进,以减少电磁环境污染,保证电子设备正常可靠运转,保护人类良好生态环境。我国于80年代中期开始建立军用电磁兼容的测试手段,制定了相应标准。随着民用电子工业、信息产业的迅猛发展,为适应国际市场要求,90 年代我国民用电磁兼容检测机构应运而生。到目前已基本建立了能适应国内外需求,满足不同行业技术标准要求的检测手段,为提高我国电子产品电磁兼容性能奠定了良好基础。通信电源作为通信电子产品的重要分支,其电磁兼容性能已引起国内外同行广泛关注,我国也制定了相应的技术标准。通信电源广泛用于通 信网络,为保证通信设备、广播电视等系统可靠运行,提高通信电源的电磁兼容性能势在必行。 2通信电源电磁兼容标准及限值 我国通信电源执行的电磁兼容标准基本参照了IEC61000 系列、EN55022 、EN50091-2 :1996 等国际和 欧洲标准。 我国对通信电源电磁兼容执行的标准有: GB9254-1998信息技术设备的无线电骚扰限值和测量方法” YD/T983- 1998通信电源设备电磁兼容性限值及测量方法” GB/T14745- 93信息技术设备不间断电源通用技术条件” 标准主要技术要求及限值见表1、表2、表3、表4。 说明:国内外标准对高频开关电源、电磁兼容性的抗扰度及传导和辐射骚扰均给出了明确的技术要求 和限制。对UPS不间断电源,目前我国的国标仅对小型UPS提出传导和辐射骚扰电压限值,抗扰度等级 和判定准则尚未明确规定。

ANSYS电磁兼容仿真软件解析

ANSYS 电磁兼容仿真设计软件 用途:用于电子系统电磁兼容分析,包括PCB信号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及 机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。 一、购置理由 1 现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和 电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx 系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标 GJB151A,GJB152A。 长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计 手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如 果EMI 测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的 措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。 2 目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经

开始高速通道设计的预研。在相关PCB 布线工具的帮助下,将复杂 的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上 没有问题。但是随着应用深入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板 的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效 位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括: ● 高速通道中,连接器,电缆等三维全波精确和建模仿真,这 些结构的寄生效应对于信号的传输性能有至关重要的影响; ● 有效的PCB电源完整性分析工具,对PCB 上的电源、地等 直流网络的信号质量进行仿真 ●为提高仿真精度,需要SPICE 模型,IBIS模型和S 参数模 型的混合仿真 ●需要同时进行时域和频域仿真和设计,观察时域的眼图、 误码率,调整预加重和均衡电路的频域参数,使得信号通道 的物理特性与集成电路和收/发预加重、均衡等相配合,达到 系统性能的最优 ● 有效的PCB的辐射控制与仿真手段,确保系统EMI性能 达标。 现在EDA 市场上已经有一些SI/PI 和EMI/EMC 仿真设计工具,但存在多方面的局限性。我们的PCB 布线工具虽然能解决一定的问

电磁兼容国家标准分类和电磁兼容的通用标准

电磁兼容国家标准分类和电磁兼容的通用标准 (一)参照国际上的标准分类方法,电磁兼容国家标准分为四类,组成了中国的电磁兼容标准体系。 (1)基础标准 属于基础标准的有电磁兼容名词术语、电磁环境、电磁兼容测 量设备规范和测量方法等。这类标准的特点是不给出指令性限 值,也不给出产品性能的直接判据,但它是编制其他各类标准 的基础。如GB/T 4365--1995《电磁兼容术语》,GB/T 6113 系列标准《无线电骚扰和抗扰度测量设备规范和测量方法》, GB/T17626 系列标准《电磁兼容试验方法和测试技术》等等。(2)通用标准 通用标准是对给定环境中所有产品给出一系列最低的电磁兼容 性能要求。通用标准中的各项试验方法可以在相应的基础标准 中找到,通用标准可以成为编制产品族标准和专用产品标准的 导则。通用标准对那些暂时还没有相应标准的产品有极好的参 考价值,可用作进行电磁兼容摸底试验。 通用标准讲述住宅、商业、轻工业环境等两种不同环境,考虑 到电磁兼容有电磁骚扰发射和抗扰度两个不同方面。因此通过

不同组合,通用标准实际上有四个分标准。我国的电磁兼容通 用标准选自IEC61000-6 系列标准,对应的通用国家标准的系 列号为GB/T17799 。 (3)产品族标准 产品族标准针对特定的产品类别,规定他们的电磁兼容性能要 求及详细测量方法。产品族标准规定的限值应与通用标准相一 致,但不同的产品族产品有它的特殊性,必要时可增加试验项 目和提高试验限值。产品族标准是电磁兼容标准中所占份额最 多的标准。如GB9254-1998《信息技术设备的无线电骚扰限值 和测量方法》,GB4343-1995 《家用和类似用途电动、电热器具、电动工具以及类似电器无线电干扰特性测量方法和允许值》等。(4)专用产品标准 专用产品标准通常不单独形成电磁兼容标准,而以专门条款包 含在产品通用技术条件中,专用产品标准的电磁兼容要求与产 品族标准相一致(在考虑到产品的特殊性后,对其电磁兼容性 要求也可作某些更改),但产品标准对电磁兼容的要求更加明 确,还要增加产品性能和价格的判据。产品标准通常不给出具 体的试验方法,而给出相应的基础标准号,以备查考。 表1 部分电磁兼容国家标准与国际标准的对应关系

无人机电气系统的电磁兼容性研究

无人机电气系统的电磁兼容性研究 专业: 电力电子与电力传动 关键词: 电磁兼容电磁干扰飞机电气工程 分类号: V279 形态: 共76 页约49,780 个字约 2.381 M内容 阅读: 内容摘要-全文目录-相似论文-下载全文 内容摘要 该文对电气系统的电磁环境效应进行了分析,根据干扰源和干扰传输特点确定电气系统中以分析低频信号干扰为主,在此基础上制订了研究的主要内容和方向。 论文分别从飞机电源系统、大电流电源线、电磁继电器和接触器、感性负载、雷击电流和屏蔽体设计等五个方面进行研究。 每个方面都包括了干扰产生的原因分析、仿真或实验验证、干扰抑制措施等。 在飞机电源系统中讨论了不同类型电源的干扰产生机理,相应给出了不同的滤波电路形式;大电流电源线问题的研究主要集中于对信号线的影响,根据计算和实验验证,提出在布线中的最小距离确定;电磁继电器和接触器作为开关元件,会产生火花和电弧干扰。 计算得出主控制盒中接触器对其他元件的干扰,并提出抑制方法;电气系统中感性负载较多,尖峰电压是最常见的干扰形式,通过仿真研究,确定了抑制措施;对于雷击电流进行了分析,依据屏蔽效能的计算与对比,确定屏蔽体的选择…… 全文目录 文摘 英文文摘 第一章绪论 1.1电磁兼容性研究的发展历程 1.2电磁兼容性研究的现状 1.2.1研究的主要内容 1.2.2研究的重要性和特点 1.3课题背景及意义 1.3.1课题来源 1.3.2电气系统简介 1.4课题的主要研究内容 第二章电磁兼容环境效应分析 2.1飞机的电磁环境效应分析

2.1.1系统内部干扰 2.1.2系统外部干扰 2.2电气系统的电磁环境效应分析 2.2.1概述 2.2.2电磁干扰源分析 2.2.3电磁干扰的传输方式 2.3电气系统电磁兼容性分析 第三章飞机电源系统的电磁兼容分析 3.1主电源的电磁兼容分析 3.1.1电源中存在的电磁干扰 3.1.2电源开关过程的影响 3.1.3电源的内阻对系统的影响 3.1.4主电源的滤波器设计 3.2交流电源的电磁兼容分析 3.3开关电源的电磁兼容性分析 3.3.1电磁干扰分析 3.3.2开关电源电磁兼容设计 3.4汇流条的滤波措施 3.5在实际系统设计中的应用 第四章大电流电源线的电磁兼容分析 4.1导线对导线感应耦合的一般原理 4.2大电流电源线的电磁兼容计算与设计 4.2.1低频大电流电源线的分析与计算 4.2.2高频大电流电源线的分析与计算 4.3实验验证 4.3.1实验数据及分析 4.3.2实验波形分析 4.4在实际系统设计中的应用 第五章电磁继电器和接触器的电磁兼容分析 5.1电磁干扰产生的原因 5.2大电流接触器的电磁干扰分析与计算 5.2.1接触器稳态工作时对微型继电器的影响 5.2.2接触器通断时对计算机信号线的影响 5.2.3接触器在通断时大电流的变化对微型继电器的影响5.3电磁接触器和继电器开关触头的保护 5.4在实际系统设计中的应用 第六章感性负载的瞬态干扰 6.1电磁干扰产生原因 6.2电磁干扰抑制的方法及其仿真研究 6.2.1并联电阻通路 6.2.2并联双向稳压管通路 6.2.3并联R-C网络 6.2.4并联二极管—电阻通路 6.2.5并联二极管通路

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

教你如何看懂EMC空间辐射测试数据

教你如何看懂EMC空间辐射测试数据 电磁辐射(electromagnetic radiation):能量以电磁波的形式通过空间传播的现象。Radiation空间辐射(简写:RE)是最常做的EMC电磁兼容项目之一,也是最容易出现问题的一个测试项目。对很多刚接触EMC的朋友来讲,拿到EMC 的测试数据,往往感觉比较陌生,不知道怎么看这份数据,相信看完以下内容,你就不会陌生了。 专业测试辐射的场所是屏蔽室,主要有3米和10米暗室,由于10米暗室建设成本很高,所以一般以3米暗室居多,在专业的检测实验室检测的数据才更更加真实可靠。 3米暗室:

参考测试数据: Horizontal 表示接收天线处于水平位置(另外还有一种是天线处于垂直位置,也就是说,这个产品需要有2张这样的图才算完整); EN55015是测试标准,表明测试产品是灯具类; Freq是频率点,一般可能有问题的点需要单独点出来进行完整确认; Measurement是测试值,表示该频率点经确认后的最终值; Limit表示改点的限值,也就是测试值不能超过该值; Over表示超过Limit限值多少,也就是测试值减去限值的计算;(上面负数表示没超过限值,也就是符合要求;但有的机构是正数是符合要求,需要看清楚);

以第一个为例:频率点为53.4714MHz,测试值为29.40 dBuV/m,限值为40 dBuV/m,超过限值为-10.60 dBuV/m(也就是没超过)。 同样的方法我们来看垂直的测试数据: 如第1个点,:频率点为43.0647MHz,测试值为46.90 dBuV/m,限值为40 dBuV/m,超过限值为6.9 dBuV/m(也就是超了,需要整改)。 另外需要注意的是:一般测试时需要留预留3dB才好(也就是距离限值有3dB的余量),因为EMC是不稳定的,而且不同实验室之间也是有误差的,所以余量愈多,就越保险。

电磁兼容性检验测试方法

电磁兼容性测试方法 各式各样整合系统设备带给人类生活无限方便利益, 却也造成复杂电磁噪声环境。四十年前欧体IEC/CISPR等委员会之电磁兼容性(ElectroMagnetic Compatibility, EMC)研究小组有鉴于此电磁噪声环境趋势,发出 89/336/EEC EMC 指令(及后续修订版92/31/EEC,93/68/EEC),说明电子电机设备相关产品必须符合辐射干扰与传导干扰发射规格外,同时陆续增订辐射耐受性与传导耐受性规格,要求1996年元旦起强制实施,国内各类电子电机产品厂商为强化所生产产品符合内外销相关EMC指令,促使EMC测试场地快速成长,较大规模之信息厂都趋向自行筹建EMI (ElectroMagnetic Interference)除错场地,加速产品EMC设计达到外销各国相关EMC需求。然而为了验证电子电机设备电磁兼容性设计是否良好,就必须在研发之整个过程中,对各种电磁干扰源之发射噪声、传输特性及受干扰设备能否负荷耐受性测试,验证设备是否符合相关电磁兼容性标准和规范;找出设备设计及生产过程中,在电磁兼容性方面之盲点。在客户安装和使用设备时,提供了既真实又有效之数据,因此,电磁兼容性测试是电磁兼容性设计所不可或缺之重要环节。本文将针对EMC测试最新之军规、商规、车辆规范等作一比较分析测试方法差异及相关经验。 表一 . 常见美军军规, 欧美商规及车辆用电磁干扰(EMI)测试项目摘要比较

表二. 常见美军军规, 欧美商规及车辆用磁用耐受性(EMS)测试项目摘要比较

电磁兼容性测试范围与所采用之标准和规范 依据相应之电磁兼容性标准和规范,电磁干扰(EMI)及电磁耐受性测试(EMS)在不同频率范围内,采用不同之方式进行。基于任意电子电机设备既可能是一个干扰源,也可能是被干扰者。因而,电磁兼容性测试包含电磁干扰测试(EMI)及电磁耐受性测试(EMS)。由于电磁兼容性测试种类太多,实在无法逐一详细说明,本文就表1及表2摘要列举了几个典型EMC测试标准和规范(含常见美军军规、欧美商规及车辆用EMC标准),在不同频率范围中之测试项目,从军规EMC标准之

手机辐射测量实验报告

手机辐射测量实验 课程名称:电磁兼容设计任课教师:实验教师: 班级:姓名: 同组同学: 一、实验目的 现代社会手机越来越普及,人们在享受方便快捷的同时,也在遭受手机信号产 生的电磁辐射的危害。打电话时手机离人脑很近,手机信号很容易被脑部组织吸收,产生一些难以预料的后果,因此用实验的方法了解手机辐射的大小分布;了解不同 制式、不同通话状态、不同使用条件下手机辐射大小的变化,对于我们正确防护至 关重要。 不同品牌的手机通信质量、信号强度总有差异,不同型号手机辐射强度大小、 不同网络之间的辐射差异以及不同距离的辐射强度大小究竟如何都是值得关心的问题。 二、实验设备 测量系统组成:(如右图) Agilent EMI接收机 E7405A 喇叭天线 3115 复合天线 3142 指针式电场测量仪 VUFM1670 电磁辐射分析仪NBM-550 各向同性电场探头EF0391 该系统可进行30M~18GHz频段的辐射发射测试。 手机信号的频段也在此范围内。 三、实验内容 1、测量手机的电磁辐射强度与距离的关系。测量距离分别取1.5 米、2 米和 2.5 米,测量时注意手机的位置保持不变,记录测量数据,比较其大小,分析原 因。 2、测量手机不同方位的辐射强度,测量取手机距复合天线1.5 米。取前面、 背面和侧面,手机放垂直方向。 3、测量手机不同状态的辐射强度变化,如待机、开机、关机、拨通瞬间和 正常通话几种状态,使用指针式电场测量仪,为减小测量误差可测三次取平均, 测量时尽量保持手机位置不变。尽量减少周围人员走动。 4、测量手机发短信、收短信时、浏览网页时的电场强度,记录测量数据。 5、测量使用手机耳机时辐射强度的变化,并解释“辐射强度变小”的原因, 用指针式电场测量仪测。 6、测量使用蓝牙时手机辐射的强度、信号弱与强时手机辐射强度的变化、不 同制式手机的辐射强度差异。 7、网络上流传在密闭空间打手机,如电梯间、小汽车内,信号强度会大几千倍,是真的吗?请设计实验验证。 四、实验数据及分析 1、测量手机的电磁辐射强度与距离的关系

EMC电磁兼容性测试国标

1.900/1800MHz TDMA数字蜂窝移动通信PDA 手机EMC电磁兼容性测试 1.1 范围 本标准规定了发送和接收语音和/或数据的第一阶段和第二段GSM 900MHz和DCS 1800MHz数字蜂窝通信系统的移动台(MS)及其辅助设备的电磁兼容性(EMC要求,包括测量方法、频率范围、限值和性能判据。 1.2 引用标准 下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 ●GB/T 6113.1-1995 无线电骚扰和抗扰度测量设备规范 ●GB 9254-1998 信息技术设备的无线电骚扰限值和测量方法 ●GB/T 17626.2-1998 电磁兼容试验和测量技术静电放电抗扰度试验 ●GB/T 17626.3-1998 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 ●GB/T 17626.4-1998 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 ●GB/T 17626.5-1998 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 ●GB/T 17626.6-1998 电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度试验 ●GB/T 17626.11-1998 电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗 扰度试验 ●ISO 7637-1 (1990) 车辆传导和耦合的电气骚扰第一部分带有12V额定电压电 源的客车和小型商用交通工具公沿电源线的瞬态传导 ●ISO 7637-2 (1990) 车辆传导和耦合的电气骚扰第二部分带有24V额定电压电 源的客车和商用交通工具仅沿电源线的瞬态传导 ●ETS300 607-1(1997-1) 欧洲数字蜂窝通系统(第二阶段)移动台的一致性规范 (GSM11.10-1) 1. 3 定义和缩略语 1.3。1 定义 下列定义适用于本标准: ●辅助设备(Ancillary Equipment) 与MS收信机、发信机或收发信机相连的设备(装置),且同时满足下列条件; i.与MS收信机、发信机或收发信机相连,以提供额外的操作和/或控制特性(例如,把控 制延伸到其它位置); ii.不能独立于收信机、发信机或收发信机使用,否则不能单独提供用户功能; iii.所连接的收信机、发信机或收发信机,在没有此辅助设备时,能执行诸如收发等预定的功能(即辅助设备不是主设备基本功能的子单元)。 ●固定台(Base Station Equipment) 在固定位置使用并由交流电源供电的MS。 ●空闲模式(Idle Mode) MS收信机或收发信机的一种工作模式。在这种模式下,被测设备(EUT)已加电,可提 供服务,并能对建立呼叫的要求作出响应。 ●一体化天线设备(Integral Antenna Equipment) 该类设备的天线无需外部接头,是设备的一部分。一体化天线可以是内置的或外置的。 ●端口(Port) 指定设备与外部电磁环境的特定接口。

电磁兼容(EMC)主要检测设备列表

电磁兼容(EMC)主要检测设备列表 序号仪器设备名称范围型号生产厂家 1 接收机20Hz~26.5GHz ESIB26 德国R/S公司 2 ESR接收机10Hz~3.6GHz ESR 3 德国R&S 3 信号发生器9kHz~3.3GHz SML03 德国R/S公司 4 微波信号源1GHz~20GHz SMR20 德国R/S公司 5 脉冲信号发生器1kHz~10MHz 9355-1 美国Solar公司 6 瞬态脉冲信号发生器10kHz~100MHz 9354-1 美国Solar公司 7 瞬态信号发生器(0~50)Hz; (100~600)V 8282-1 美国Solar公司 8 低频信号发生器20 MHz 33220A 美国安捷伦 9 连续波模拟器10kHz~1GHz CWS500D 瑞士EM-TEST公司 10 喀呖声分析仪10kHz~18GHz CL55C AFJ公司 11 单相谐波闪烁分析仪16A DPA500 瑞士EM-TEST公司 12 单相电源(配DPA500)6kVA;300V/20A ACS500 瑞士EM-TEST公司 13 功率表频率DC(0~26.5)GH z,200μV~1000V URV5-Z2 德国R/S公司 14 功率放大器 2.5GHz~6GHz BLMA 2560-30 德国BONN公司 15 功率放大器6GHz~18GHz BLMA 6018-20 德国BONN公司 16 功率放大器10KHz-100MHz 500w100A 美国AR公司 17 功率放大器(80-1000)MHz 250W/1000A 德国R/S公司 18 功率放大器1GHz~3GHz 60S1G3 美国AR公司 19 功率计10MHz~18GHz R&S? NRP2德国R/S公司 20 有效值/峰值电压表DC-30MHz URE3 德国R/S公司 21 场强仪FM5004 德国R/S公司 22 电流注入钳20Hz~100MHz EZ-17 德国R/S公司

电磁辐射暴露限值和测量方法

各国工频电磁场限值的有关情况汇总 据了解,到目前为止,国际上尚无工频电磁场暴露限值的IEC标准或其他国际标准,只有ICNIRP(国际非电离辐射防护委员会)向世界各国推荐了一个电场和磁场辐射限值的导则:《限制时变电场、磁场和电磁场暴露(300GHz以下)导则》,其中推荐以5000V/m作为居民区工频电场限值标准,100μT作为公众全天辐射时的磁感应强度限值标准。 目前我国所有相关的规范和技术标准中,涉及环境中工频电场强度、磁场强度限值的只有《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T 24–1998),其原文是:“关于超高压送变电设施的工频电场、磁场强度限值目前尚无国家标准。为便于评价,根据我国有关单位的研究成果、送电线路设计规定和参考各国限值,推荐以4000V/m作为居民区工频电场评价标准,推荐应用国际辐射保护协会关于公众全天辐射时的工频限值100μT作为磁感应强度的评价标准。待相应国家标准发布后,以其规定限值为准。”很明显,该推荐限值就是以国际非电离辐射防护委员会的导则为基础的,并且电场强度的限值更严格。 世界上其他各国或学术组织关于工频电场和磁场的限值情况见下表: 另外需要说明的是: 欧洲议会1999年7月发布了一个一般公众电磁场暴露限值的推荐标准。这是一个供欧洲各国制定标准的框架,目前已有许多欧洲国家准备接受这一标准。这个标准建立在ICNIRP导则基础之上,同样是以目前已经得到确认的效应作为

基准。 美国没有统一的国家标准。一些学术组织制定了自己的标准,许多州也根据自己的情况制定了输电线路的工频电磁场标准。 日本并没有公众工频磁场暴露限值的明确标准,1993年,日本一个政府研究机构的报告中提到,居住环境中产生的工频磁场场强比WHO和类似组织的标准中的限值要低得多,认为没有必要制定工频磁场标准。 英国NRPB(国家辐射防护委员会)在1993年制定了自己的电磁暴露标准。 澳大利亚,德国这两个国家分别在1989年,1996年出台了自己的电磁场暴露标准。 瑞典根据住在高压输电线附近,儿童白血病和年磁场电平影响的相关性,提出工频磁场2mG(0.2μT)作为输电线路通过居民区的导则。 瑞士规定工频磁场强度限值为1μT。 综观上述各国以及国际组织的标准,可以看出以下一些特点: (1)电场标准目前比较一致,磁场标准差异较大。公众工频电场暴露限值在安全系数的选取上各有不同,这里边既有技术上的因素,也和各国社会政治,经济方面的差异有关,和标准出台的时间也有关系,并没有明确的科学依据。磁场标准的差异主要是因为各国对磁场长期暴露效应的看法不同。 (2)ICNIRP导则已得到相当多国家的认可。 相对世界上其他国家和组织的同类限值,我国的《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T 24–1998)中推荐的限值从数值上是居中的。在针对磁悬浮线路电磁环境影响的评价和监测中,只要正确地引用上述限值就无不妥之处。 上海市辐射环境监督站 二○○八年一月十八日

相关文档
最新文档