02—高速列车(车体)

02—高速列车(车体)
02—高速列车(车体)

1第二章高速列车车体技术

第一节流线形车体结构

第二节高速列车车体的轻量化设计第三节车体的密封隔声技术第四节防火安全技术第五节

高速列车连接装置

2

一、列车空气动力学二、高速列车头型设计

三、高速列车车身外型设计

第一节流线形车体结构

3

一、列车空气动力学

随着列车运行速度的提高,周围空气的动力作用一方面对列车和列车运行性能产生影响;同时,列车高速运行引起的气动现象对周围环境也产生影响,这就是高速列车的空气动力学问题。

4

1.高速列车运行中列车的表面压力

从风洞试验结果来看,列车表面压力可以分为三个区域:

(1)头车鼻尖部位正对来流方向为正压区;(2)车头部附近的高负压区:从鼻尖向上及向两侧,正压逐渐减小变为负压,到接近与车身连接处的顶部与侧面,负压达最大值;(3)头车车身、拖车和尾车车身为低负压区。

5

因此,在动车(头车)上布置空调装置及冷却系统进风口时,应布置在靠近鼻尖的区域内,此处正压较大,进风容易;而排风口则应布置在负压较大的顶部与侧面。

在有侧向风作用下,列车表面压力分布发生很大变化,尤其对车顶小圆弧部位表面压力的影响最大。当列车在曲线上运行又遇到强侧风时,还会影响到列车的倾覆安全性。

6

2.高速列车会车时列车的表面压力

列车交会时产生的最大压力脉动值的大小是评价列车气动外形优劣的一项指标。在一列车与另一静止不动的列车会车时,以及两列等速或不等速相对运行的列车会车时,将在静止列车和两列相对运行列车一侧的侧墙上引起压力波(压力脉冲)。

这是由于相对运动的列车车头对空气的挤压,在与之交会的另一列车侧壁上掠过,使列车间侧壁上的空气压力产生很大的波动。

7

试验研究和计算表明,高速列车会车压力波幅值大小与下列因素有关:(1)随着会车速度的大幅度提高,会车压力波的强度将急剧增大,如图所示:

8

会车压力波幅值与速度的关系曲线

9由上图可见,当头部长细比γ为2.5,两列车以等速相对运行会车时,速度由250km/h提高到350km/h ,压力波幅值由1015Pa 增至1950Pa,增大近一倍。

(2)会车压力波幅值随着头部长细比的增大而近似线性地显著减小。为了有效地减小高速列车会车引起的压力波的强度,应将动车(车头)的头部设计成细长而且呈流线型。

10

(3)会车压力波幅值随会车高速列车侧墙间距增大而显著减小。为了减少会车压力波及其影响,应适当增大铁路的线间距。我国《铁路主要技术政策》中规定:?160km/h时,线间距≥4.2m;?200km/h时,线间距≥4.4m;?250km/h时,线间距≥4.6m;?300km/h时,线间距≥4.8m;?350km/h时,线间距≥5.0m。

11

(4)会车压力波幅值随会车长度增大而近似成线性地明显增大。

(5)会车压力波幅值随侧墙高度增大明显减小,但减小的幅度随侧墙高度增大而逐渐减小。

12

(6)高、中速列车会车时,中速车的压力波幅值远大于高速车(一般高1.8倍以上)。这是由于会车压力波的主要影响因素是通过车的速度,在高、中速列车会车时,中速车压力波主要受其通过车高速车速度的影响,高速车压力波主要受其通过车中速车速度的影响,所以中速车上的压力波幅值远大于高速车。

13

3.高速列车通过隧道时列车的表面压力列车在隧道中运行时,将引起隧道内空气压力急剧波动,因此列车表面上各处的压力也呈快速大幅度变动状况,完全不同于在明线上的表面压力分布。

14

试验研究表明,压力幅值的变动与列车速度,列车长度,堵塞系数(列车横截面积与隧道横截面积的比值)、头型系数(长细比,即车头前端鼻形部位长度与车头后部车身断面半径之比),以及列车侧面和隧道侧面的摩擦系数等因素有关,其中以堵塞系数和列车速度为重要的影响参数。

15

国外有的研究报告指出:

单列车进入隧道的压力变化大约与列车速度的平方成正比,与堵塞系数的1.3±0.25次方成正比例。

两列车在隧道内高速会车时车体所受到的压力变化更为严重,此时压力变化与堵塞系数的2.16±0.06次方成正比。并且两列车进入隧道的时差对压力变化也有很大的影响,当形成波形叠加时将引起很高的压力幅值和变化率,此时车体表面的瞬时压力可在正负数千帕之间变化。

16

4.列车风

当列车高速行驶时,在线路附近产生空气运动,这就是列车风。当列车以200km/h速度行驶时,根据测量,在轨面以上0.814m、距列车1.75m 处的空气运动速度将达到17m/s (61.2km/h),这是人站立不动能够承受的风速,当列车以这样或更高的速度通过车站时,列车风将给铁路工作人员和旅客带来危害。

17

高速列车通过隧道时,在隧道中所引起的纵向气流速度约与列车速度成正比。在隧道中列车风将使得道旁的工人失去平衡以及将固定不牢的设备等吹落在隧道中,这都是一些潜在的危险。

国外有些铁路规定,在列车速度高于160km/h行驶时不允许铁路员工进入隧道。列车速度稍低时,也不让员工在隧道中行走和工作,必须要在避车洞内等待列车通过。

18

5.列车空气动力学的力和力矩

如图所示,作用于车辆上的空气动力学的力和力矩,其中有:空气阻力、上升力、横向力,以及纵向摆动力矩、扭摆力矩和侧滚力矩。下面作一简要介绍。

19(1)空气阻力

减少高速列车的空气阻力对于实现高速运行和节能都有重要意义,因此,需要对车体外形进行最优化设计,以便最大可能地降低空气阻力。高速列车的运行阻力主要由空气阻力和机械阻力(即轮轨摩擦阻力、轴承等滚动部件的摩擦阻力等)组成。

20

空气阻力可以简略地用下面公式表示:

式中

Cx —空气阻力系数ρ—空气密度V —列车速度A —列车横截面积

A

V C R x 22

1

ρ=21空气阻力主要由以下三个部分组成:

–压差阻力:头部及尾部压力差所引起的阻力;–摩擦阻力:由于空气的粘性而引起的、作用于车体表面的剪切应力造成的阻力;

–干扰阻力:车辆的突出物(如手柄、门窗、转向架、车体底架、悬挂设备、车顶设备、及车辆之间的连接风挡等)所引起的阻力。

22

研究表明,空气阻力与速度的平方成正比,机械阻力则与速度成正比。

–速度为100km/h时,空气阻力和机械阻力各占一半;

–速度提高到200km/h时,空气阻力占70%,机械阻力只占30%;

–250km/h速度平稳运行时,空气阻力约占列车总阻力的80~90%以上。

23法国对TGV动车的空气阻力(R)的测试结果:–V=100km/h时,R=5.526KN;–V=200km/h时,R=15.25KN。

这说明,当速度提高1倍时,空气阻力(R)提高约2倍。

24

(2)升力

把高速列车表面的局部压力高于周围空气压力的称为正,局部压力低于周围空气压力的称为负。作为一个整体,车辆是受正的(向上的)升力还是受负的(向下的)升力,取决于车辆所有截面的表面压力累加结果是正还是负。

升力也与列车速度的平方成正比。正升力将使轮轨的接触压力减小,为此将对列车的牵引和动力学性能产生重要影响。

25(3)横向力

高速列车运行中遇到横向风时,车辆将受到横向力和力矩的作用,当风载荷达到一定程度时,横向力及其侧滚力矩、扭摆力矩将影响车辆的倾覆安全性。

26

侧向阻力可以简略地用下面公式表示:

式中

C D —侧面阻力系数ρ—空气密度V —列车速度A —列车侧面投影面积

A

V C D D 22

1

ρ=27就车辆形状而言,车顶越有棱角,其阻力越大。通过风洞试验研究认为,最佳的车体横断面形状应当是:车体侧面平坦,且上下渐内倾(可以降低升力)、顶部稍圆、车顶与车体侧面拐角处完全修圆(可以降低力矩)。

28

二、高速列车头型设计

对于高速高速列车来说,列车头型设计非常重要,好的头型设计可以有效地减少运行空气阻力,列车交会压力波和解决好运行稳定性等问题。

29

1.头型设计的基本要求

(1)阻力系数

一些高速铁路发展比较早的国家,通过试验研究和理论计算,明确提出了各自的列车阻力系数指标。

在“德国联邦铁路城间特快列车ICE技术任务书”中规定:

–列车前端的驱动头车空气阻力系数C=0.17;–列车末端的驱动头车空气阻力系数C=0.19。

30

(2)头型系数(长细比)

长细比,即车头前端鼻形部位长度与车头后部车身断面半径之比。

头、尾车阻力系数与流线化头部长细比直接有关,高速列车头部的长细比一般要求达到3左右或者更大,如图所示:

3132

2.高速列车头部流线化设计

头部纵向对称面上的外形轮廓线,要满足司机室净空高、前窗几何尺寸、玻璃形状,以及了望等条件。在此基础上,尽可能降低该轮廓线的垂向高度,使头部趋于扁形,这样可以减小压力冲击波,并改善尾部涡流影响。同时,将端部鼻锥部分设计成椭圆形状,可以减少列车运行时的空气阻力,如图所示。

33

(a)一拱方案

(b)二拱方案(c)设导流板方案

34

头车外形比较

35在设计俯视图最大轮廓线形时,首先要满足司机室的宽度要求,然后再将鼻锥部分设计为带锥度的椭圆形状。这样既有利于减小列车交会压力波和改善尾部涡流影响的梭形,又兼顾到有利于降低空气阻力的椭球面形状。此外还应设计凹槽形的导流板,将气流引向车头两侧。

36

在主型线设计完成后,还要做到头部外形与车身外形严格相切;头部外形中,任意选取的两曲面之间也要严格相切,以保证头部外形的光滑性,这样既减少空气阻力,又可以降低列车交会压力波幅值。

37三、高速列车车身外型设计

高速列车车身横断面形状设计有以下特点:

1.整个车身断面呈鼓形,即车顶为圆弧形,侧墙下部向内倾斜(5o 左右)并以圆弧过渡到底架,侧墙上部向内倾斜(3o 左右)并以圆弧过渡到车顶。

38

下图为德国ICE高速列车车身断面形状。这不仅能减小空气阻力,而且有利于缓解列车交会压力波及横向阻力、侧滚力矩的作用。

39车体断面比较

40

2. 车辆底部形状对空气阻力的影响很大,为了避免地板下部设备的外露,采用与车身横断面形状相吻合的裙板遮住车下设备,以减少空气阻力,也可防止高速运行带来的沙石击打车下设备。

413.车体表面光滑平整,尽量减少突出物。如侧门采用塞拉式;扶手为内置式;脚蹬做成翻板式,使侧面关闭时可以包住它。

4.两车辆连接处采用橡胶大风挡,与车身保持平齐,避免形成空气涡流。

42

第二节高速列车车体的轻量化设计

一、轴重对轮轨相互作用的影响二、车体结构的轻量化技术三、车内设备的轻量化技术四、转向架结构轻量化技术

43一、轴重对轮轨相互作用的影响

1.轴重对轨道损伤的影响

随着轴重的增加,钢轨承受轮载而产生的轮轨接触应力、轨头内部的剪切应力、局部应力和弯曲应力将相应增加,同时疲劳荷载作用下的应力水平也将随之提高,从而大大缩短了钢轨的使用寿命。

44

研究结果表明,钢轨头部损伤几乎全是疲劳损伤,钢轨折损率随轴重的增加而增加。法国依据钢轨疲劳损伤统计资料的分析得出,钢轨疲劳折损率与轴载荷的2.25次方成正比关系。

美国认为与轴载荷的3.8次方成正比。

45

接触理论表明,轮、轨面上的接触应力和轨头内部的剪切应力与轴载荷成正比,且与车轮直径及踏面外形有关。所以减小轴重可减少钢轨的损伤和提高其使用寿命。

日本高速列车为动力分散式,早期的轴重和簧下质量较大,轮轨动力作用和因此产生的钢轨磨耗和破坏严重,所以日本在高速列车的发展中非常重视降低轴重。

46

2.高速对轮轨间垂向动力作用的影响列车运行中,如果存在车轮偏心和扁疤,或者遇到轨道不平顺时,将产生轮轨间的冲击载荷,这种载荷属于“动态作用力”。下图为B0-B0式电力机车以160km/h速度进行线路试验得出的过轨接头时轮轨间总载荷的时间历程。该电力机车的轴重为20t。

47

上图中,纵坐标为垂向总载荷与车轮静载荷之比,横坐标为时间(ms);虚线为轮-轨系统冲击响应的理论计算值,实线为实测值。由图可见,在这个冲击过程中,轮轨间的载荷出现两个峰值P1和P2。

48

P1力出现在轮轨冲击后的瞬时(约0.3~0.4ms),频率为500Hz~1000Hz,称之为高频力,其值为车轮静载的5倍左右。

P1力的高频瞬时冲击作用很快被钢轨及轨道的惯性反作用力抵消,很快衰减,来不及向上和向下传播,其破坏作用对钢轨和车轮最严重。它直接影响钢轨轨头的接触应力,容易发生钢轨剥离等接触疲劳;对车轮产生剧烈的冲击作用,导致车轮扁疤等。

49P2力出现在轮轨冲击2ms以后,持续时间较长,频率为20Hz~100Hz,称之为中频力,其值为车轮静载的2.5~3.5倍。

P2力可直接向钢轨以下和车轮以上传递,造成轨枕破裂、道床粉化和板结、严重者引起路基下陷;造成列车垂向动力学性能恶化,特别是降低滚动轴承的疲劳寿命,在这种脉冲式激扰下,构架的动应力也将增大。

50

上图为各种车速下的轮轨冲击力响应。从图中可以看出,P1力和P2力随行车速度的提高而增大,当速度由80km/h提高到250km/h时,P1力增加1倍,P2力增加0.8倍。

51

3.高速高速列车对轴重及簧下质量的要求(1)高速列车的最大轴重、平均轴重

牵引动力集中配置的高速列车,动力车的轴重为最大。如法国TGV-A的最大轴重为17t,德国ICE-2的最大轴重为19.5t。尽管这些高速列车的最大轴重比较高,但整列车中大量拖车的轴重较轻,因而列车的平均轴重较低,如ICE-2的平均轴重为14.2t,TGV因拖车采用雅克比式转向架,其平均轴重相对高一些,为16t。

52

2.各国高速高速列车的轴重、簧下质量

欧洲铁路联盟在“高速列车技术条件”中对轴重有明确规定:允许的静态轴重为17t,新建线路和300km/h速度运行时,每个轮子作用在正常维护线路钢轨上的静态和动态力之和不得超过170KN。表2-1列出了各国高速列车轴重比较。表2-2列出了若干典型高速机车和动车的簧下质量。

5354

55二、车体结构的轻量化技术

普通速度车体结构的自重在14t左右,而国外高速客车车体结构重量为10t左右。总体上看,实现结构轻量化的主要途径有两个:一是采用新材料,二是合理优化结构设计。

56

1.车体轻量化材料

–耐候钢车体–不锈钢车体–铝合金车体

572.车体结构的轻量化设计

(1)车体结构的优化设计

–日本100系高速列车,采用耐候钢(SPA),车体钢结构自重仅为10.3t

–我国的“168”客车,也采用耐候钢制造,车体钢结构自重为13.1~13.2t

58

(2)铝合金车体的三种结构:–大型中空挤压铝型材焊接结构–采用航空骨架式铝合金车体结构

–大型中空挤压铝型材与开口型材的混合结构

59采用大型中空挤压铝型材焊接结构60

采用航空骨架式铝合金车体结构

61德国ICE铝合金车体断面

62

63三、车内设备的轻量化技术

车内设备材料,首先应满足功能要求和防火阻燃要求,装饰板应反映时代感,车内设备约占客车总重量的20%,轻量化具有重要意义。1.车内设备如门、窗、行李架、座椅、供水设备、卫生设备等等,均可选用轻合金或高分子工程材料和复合材料,使设备重量大大减轻。

64

仅座椅一项,日本采用铝-钢合制或全铝制双人座椅,其重量由原钢制的56kg分别降为32kg和24kg,

聚碳酸脂(PC)板材作为透明车窗材料,重量约为同厚度玻璃的1/15,而且透光、耐压、耐冲击均较普通玻璃好,能方便地制作车辆通长的车窗。

2.车内装饰板材广泛采用薄膜铝合金墙板,工程塑料顶板等。

653.其它设备的轻量化

如日本100系采用直流牵引电机,每台重量为825kg(功率为230kw),而300系采用交流感应电机后,每台重量仅为390kg(功率增至300kw)。德国(ICE3)的主变压器铁芯采用优质铁-铝合金,使导磁率提高4-5倍,又将铜编线改为铝编线,冷却使用硅油,这样其总重由11.5吨降为7吨等等。

66

四、转向架结构轻量化技术

降低转向架自重是高速转向架技术开发的一个重要方面,它对改善车辆振动性能和减小轮轨之间的动力作用均具有显著效果。国外高速转向架轻量化的主要措施之一是采用无摇枕结构,此外还有很多轻量化措施:

67

1.构架结构轻量化。采用焊接构架可比铸钢结构减重50%左右。

2.轮对轻量化。采用空心车轴和小直径车轮;采用S形薄辐板车轮。

德国MBB公司研制了玻璃钢(FRP)轮心,车轮由钢质车箍、FRP轮心和钢质轮毂三部分组成,其簧下质量至少降低了20%(100Kg左右);采用双排圆锥滚子轴承,同时承受径向和轴向载荷,其重量只有40Kg,约为日本新干线原用轴承重量的一半。

68

3.轴箱和齿轮箱采用铝合金制作。铝合金轴箱的重量只有原来的40%左右,齿轮箱亦减到原来的56%。

通过对车体结构、转向架结构、车内设备及其它设备从选材和结构优化设计上采取措施,可使车辆自重(轴重)明显降低。

6970

第三节车体的密封隔声技术

一、车体的密封隔声性能二、车体的密封技术三、车内噪声控制技术

71

一、车体的密封隔声性能

1.车体的密封性能

(1) 压力波对旅客舒适性的影响

车外压力的波动会反应到车厢内,使旅客感到不舒服,轻者压迫耳膜,重则头晕恶心,甚至造成耳膜破裂。许多国家先后在压力波对旅客舒适性的影响方面进行了研究。

72

国外高速列车的运用实践表明,没有交会列车时,头、尾车外面的气流压力变化为:头部受2.5KPa左右的正压、尾部为2.0KPa左右的负压;

有交会列车时特别在隧道内会车时,车外气流压力会大幅度变化,对进入隧道列车的气流测定结果:速度200km/h时,头部正压为3.2KPa、尾部负压为4.9KPa;

速度为280km/h时,头部正压为3.9KPa、尾部负压为5.5KPa。

73

74

(2) 对车体密封性能的要求

日本高速列车密封试验,要求将车体所有开启部位堵塞,车内压力由4000Pa降至1000Pa的时间必须大于50s。

欧洲高速列车曾采用压力从4000Pa 降至1000Pa的时间大于50s(车辆通过台和空调设备关闭)。

现在,德国、意大利等国家采用压力从3600Pa降至1350Pa的时间大于18s。

75

我国在《200km/h及以上速度级列车密封设计及试验鉴定暂行规定》中要求:

整车落成后的密封性能试验,要求达到车内压力从3600Pa降至1350Pa的时间大于18s;车体结构的密封性能要求压力从3600Pa降至1350Pa的时间须大于36s;

组成后的车窗、车门、风挡应能在

±4000Pa的气动载荷作用下保持良好的密封性

76

2.车体的隔声性能(1)高速列车的噪声源高速列车的声源主要是:

–轮轨噪声(碰撞、摩擦声);

–空气沿车体表面流动产生的摩擦声和受电弓与接触网导线的摩擦声;–风挡等构件的撞击声。

–列车进出隧道产生的压缩波和反射波所产生的噪声等。

77(2)国外高速列车运行噪声的控制

德国在联邦铁路城间特快列车ICE技术任务书中,对高速列车运行噪声作了技术规定:距铁路中心线25m处,当列车运行速度为250km/h时,列车通过的最大声级不得高于88dB(A);列车运行速度为280km/h时,通过的最大声级不得高于89dB(A)。

78

日本多年来投入了大量人力物力财力降低新干线铁路噪声,效果显著。目前日本新干线距铁路中心25m处列车通过最大声级为:高架桥、高路堤区段65~75dB(A),达到了新干线环境噪声标准限值。即:

居民住宅室外的最大噪声级≤70dB(A);工业,商业区或有少量居民居住混合区的室外≤75dB(A)。

79

80

(3)车内噪声的标准极限值车内噪声一般由以下几部分组成:

–车体外部传入车内的噪声,一般称之为空气声;–由于各种原因导致的车体内表面结构振动,特别是薄壁结构振动产生的辐射声,一般称之为结构振动噪声;

–各种车内设备、系统(如空调通风系统,各类管道等),作为振源、声源所产生的噪声;

–上述各类噪声在车厢内部传播与反射所形成的混响声等组成。

81车内噪声的标准限值:

–德国铁路规定,速度为250km/h时,一等车噪声不超过65dB(A),二等车不超过68dB(A)。

–国际铁路联盟(UIC)规定:客车车内噪声应小于65dB(A)。在隧道里,噪声可宽限5dB(A)。在过道、厕所、其噪声水平不能超过75dB(A)。

82

二、车体的密封技术

列车的密封需要从车体结构和部件上给以考虑。当前世界各国在高速列车上采用的密封技术主要有:

1.车体结构采用连续焊缝以消除焊接气隙;对不能施焊的部位,必须用密封胶密封。

83

2.采用固定式车窗,车窗的组装工艺要保证密封的可靠性和耐久性,同时保证在压力波造成的气动载荷下(我国“高速列车密封技术暂行规定”确定组成后的车窗应能承受±6000Pa的气动载荷,)不会造成变形和破坏。

3.侧门采用密封性能良好的塞拉门;头、尾的端门要采用可充压缩空气的橡胶条;通过台风挡采用橡胶大风挡,并注意处理好渡板处的密封问题。

84

4.空调环控设备设立压力控制:如在客室进排气风口安装压力保护阀,在排气风道中装设带节气阀的排风机,安装压力保护通风机等,主要目的是既保证正常的通风换气又保证车内压力变化在限值之内。

5.厕所、洗脸室的水不能采用直排式,而要通过密封装置排到车外;对直通车下的管路和电缆孔应采取必要的密封措施。

6.车辆出厂前都要通过整车气密性、水密性试验。

85三、车内噪声控制技术

为了降低车内噪声,一方面要削弱噪声源发出噪声的强度,另一方面要提高车体的隔声性能。

1.削弱噪声源发出噪声强度的措施:

①在车轮上安装消音器和开发弹性车轮,可有效地降低轮轨噪声;

86

②车体外形设计成流线形,车体表面平整、光滑都有利于减小空气与车体的摩擦声;③采用橡胶风挡,可减小撞击声;

④在空调系统上安装消音器,降低牵引电机风扇的噪声、驱动装置等设备的振动噪声。

87

2.提高车体隔声性能的措施

①采用双层墙结构,可增加隔声量4-5 dB(A)。所谓双层墙,就是指地板、侧墙、车顶等多层结构,在层间采用橡胶垫隔开,一方面起隔振作用,同时使声波不能通过金属螺钉(声桥)传递,有效地提高了车体的隔声性能;②在车体金属(如地板)表面涂刷防振阻尼层,使钢结构的声频振动转化为热能消散,减少了声波的辐射和声波振动的传递,从而减少车内噪声;

88

③采用双层车窗,减少从侧面传入车内的噪声;④车内选用吸声效果好的高分子聚合材料;⑤提高车体气密性的措施,同样可以起隔声作用。

法国TGV-A高速列车,通过各种隔声措施,速度达300km/h 时客室内噪声值为66 dB(A)。

89第四节防火安全技术

一、防火系统设计原则二、防火结构设计

三、火灾预测和灭火装置设计四、火灾发生时的对策

90

一、防火系统设计原则

高速列车防火系统设计原则:系统集成、预防为主、应急对策、以人为本。

系统集成:防火措施按区域配套,通过列车网络构成防火系统的集成响应、信号传递和信息显示;

91

预防为主:所有材料与器件的选用以防止不会发生火燃或防止火种蔓延为主体,将火情发生因素压到最小程度,达到预防火灾的要求;应急对策:一旦火灾发生,有严格的分级应急对策,将火灾限制在区域内,限制在低等级火警之下;

以人为本:一切应急对策均以“以人为本”为出发点,防止措施的最终手段要以实现旅客的安全转移为目的。

92

二、防火结构设计

1.选用耐火材料

①车辆使用的耐火材料,主要指阻燃、低烟、低毒的高分子材料和耐火涂料。

如英国和法国规定,通过海峡隧道区间列车的内装饰和包覆材料,必须采用阻燃无毒的酚醛纤维增强塑料(FRP)材料。

93国内目前也在大力开发车辆上使用的酚醛玻璃钢材料,用来制造车内设备、装饰板、通风管道等。

国外车辆为了提高窗帘隔热和耐火程度,采用聚酯纤维上喷镀不锈钢或采用玻璃纤维做基底的纺织窗帘布。

94

②根据车型和部位不同选择不同等级的防火、防烟毒材料。

例如,法国TGV高速列车车体材料的防火、防烟毒等级远高于速度200km/h的VTU、VU系列车;车顶部位高于侧墙和地板。

③卧车包间的隔墙全部采用防火板包上,隔墙里添加阻燃材料;采用阻燃风挡。在两头端门关闭时保证10min内不致火灾蔓延至邻车;

952.车门有自动和手动开关功能,失火时能安全疏散旅客;车窗上设有应急手柄或备有应急手锤,平时手锤封在盒内,火警时操纵应急手柄打开车窗或用手锤把窗玻璃击碎。

96

三、火灾预测和灭火装置设计

1.设置烟雾探测及失火警报装置。烟雾报警器在明火火灾发生前作出预警,并与地面防火系统联防;

2.手动报警器。在每个拖车乘务室内设一个具有明显标志的失火警报按钮;

3.灭火装置。在每个拖车、动车的明显处各设一个6L便携式喷雾灭火器和一个6kg干粉灭火器。

97

四、火灾发生时的对策

1.火警等级

失火警报信号可以由自动或手动发出,自动分预警、报警和紧急报警三级,通过网络传递;手动报警为一级,通过连线传递。2.失火对策

按照预警、报警和紧急报警三级分别采取相应的处置措施,目标是将火灾限制在区域内,限制在低等级火警之下,最终要实现旅客的安全转移。

98

第五节高速列车连接装置

一、欧洲高速高速列车采用的密接式车钩缓冲装置二、日本高速列车采用的车钩缓冲装置三、我国的密接式车钩缓冲装置

99一、欧洲高速高速列车采用的密接式车钩缓冲装置1.基本结构

欧洲的密接式车钩缓冲装置以德国的沙库公司生产的沙库密接式车钩缓冲装置最具有代表性,已占据了欧洲高速列车的大部分市场,ICE系列与TGV系列高速高速列车全部装用沙库车钩缓冲装置。

100

沙库密接式车钩缓冲装置包括三类:

–用于高速列车单元之间的自动密接式车钩缓冲装置

–用于高速列车内部各车辆之间的半永久式车钩缓冲装置

–用于列车(高速列车)全端的可伸缩密接式车钩缓冲装置。

101

沙库车钩缓冲装置主要由以下组成1.钩头;

2.电力连接器及风管连接器;

3.含小容量缓冲器的车钩钩体;

4.尾部橡胶缓冲器;

5.中心调整装置;

6.钩头电加热装置;

7.含于钩身之中能够吸收较大冲击能量的金属压溃管等。

102

沙库车钩缓冲装置

103

二、日本高速列车采用的车钩缓冲装置

1929年柴田卫氏(设计普通车钩的柴田兵卫氏之弟)提出了密接式车钩的设计方案,1931年完成了研制和现车试验,1932年开始在普通电动车上全面采用这种柴田密接式车钩。

1958年,开始研制新干线用密接式车钩,对以前的密接式车钩从材质、结构、制造工艺、风管连接器等进行了多项改进,以适应新干线高速电高速列车对密接式车钩的要求。

104

1.高速电高速列车采用的车钩缓冲装置的特点车钩缓冲装置由车钩、车钩尾框、橡胶缓冲器和复原装置组成,如图所示。

复原装置

钩尾框

橡胶缓冲器

车钩

105

车钩缓冲装置有以下特点:

①车钩的纵向间隙小于1.5mm;

②车钩强度高、缓冲器容量低。车钩的拉伸破坏强度为1600KN,但橡胶缓冲装置的最大容量为10KJ。

③全部采用复型橡胶缓冲器,缓冲性能良好。④由于不需要与以前的车辆连挂,根据高速列车车体高度情况,车钩高度取为1000mm。

106

2.复型橡胶缓冲器

在1960年-1978年,因橡胶缓冲装置具有结构简单、成本低、可靠性高等特点,被迅速推广至几乎所有车种上。

但由于橡胶缓冲装置有一定的初压缩力,在性能上存在一定范围的缓冲盲区,给客车的舒适性带来了不利影响,常有因车辆振动惊醒乘客的情况。

107从1978年开始开发复型缓冲装置,它是由两个橡胶缓冲器,既非串连亦非并联地组合在一起形成的。

其中一个缓冲器承担拉伸时的缓冲作用,另一个缓冲器承担压缩时的缓冲作用,它们靠一定的初压力(通常为20kN-60kN)组装在本该由一个缓冲器占据的空间内。

108

车钩牵引时,压缩左边的缓冲器,右边的缓冲器随着张开(因有初压缩量),并随时占满因压缩左边缓冲器出现的空间。车钩压缩时的工作原理与此相同。因此,无论是牵引还是压缩,缓冲装置中的从板均不离开从板座,既避免了从板与从板座间因出现间隙而发生冲击,又消除了缓冲盲区,大大提高了车辆的乘坐舒适性。

复型橡胶缓冲器于1979年正式推广应用。

109三、我国的密接式车钩缓冲装置

近些年,随着我国高速列车的开发、运用,四方车辆研究所在开发北京地铁密接式车钩缓冲装置的基础上,吸收日本、欧洲密接式车钩的经验,开发了采用金属环簧缓冲器的密接式车钩缓冲装置,在“兰箭”号、“先锋”号和“中华之星”等高速列车上装用。

110

又经过改进,采用弹性胶泥缓冲器的密接式车钩缓冲装置已部分推广应用于25T 型提速客车,明显地改善了列车纵向冲击性能,取得了较好的运用效果。

虽然国产密接式车钩缓冲装置的开发时间不长,与国外的同类产品相比还存在很大差距,但也取得了一些成功经验,下面作一比较。

1111.与沙库车钩缓冲装置相比

不足之处有:

①车钩破坏强度为1800kN,所传递地纵向牵引力和压缩载荷分别为1000kN和1200kN。而沙库车钩缓冲装置却能分别传递1000kN和1500kN纵向牵引和压缩载荷,压缩载荷甚至可以提高到2200kN。

112

②橡胶缓冲元件只能产生不太大的变形,只有很小的缓冲容量、较低的使用寿命。而沙库车钩缓冲装置的橡胶缓冲元件可产生高达55mm的变形位移,具有较高的缓冲容量、较长的使用寿命。

③用于列车(高速列车)前端的可伸缩密接式车钩缓冲装置国内还是空白,对于半永久式车钩缓冲装置也缺乏深入的研究。

113

④钩缓装置在低温环境下的工作性能,包括在冰雪天气下的连挂与解钩性能需要改善。可取之处有:

①钩头借鉴了日本车钩的经验,采用了圆锥形的钩头,与沙库车钩的棱锥形钩头相比,更方便制造、便于保证制造精度。

②车钩与缓冲器之间采取法兰型式的连接,与沙库车钩缓冲装置结构相比,更容易实现与现有车钩的兼容连接。

114

2.与日本的车钩缓冲装置相比不足之处有:

①无论是G1型缓冲器,还是弹性胶泥缓冲器,都做不到零初压力或很低的初压力,因此,缓和列车冲击的性能不是最理想。

②在安装结构上借鉴了沙库的经验,与日本的钩缓结构相比,其安装结构相对简单。

高速铁路安全常识

高速铁路安全常识 铁路线上的路外安全,与社会公众密切相关。很多事实证明,发生路外伤亡事故,主要原因是行人在铁路线路上行走、坐卧、横过线路、穿越铁路站场、爬车、钻车、跳车,行人、机动车辆抢过铁路道口以及自杀等。铁路有明文规定,铁路桥梁和铁路隧道是禁止一切行人通过的。 在享受高速铁路给我们带来出行更方便、更快捷、更实惠的同时,更要关注高速铁路的安全。因为高速铁路列车速度快,因此我们在铁路周边生活或经过铁路时必须严格遵守相关安全规定,避免给铁路运输和我们自身人身安全带来严重的后果,我们应该做到以下几个严禁: 一、严禁行走、坐卧或在铁路线上跨越 速度快是动车组列车的一大特点,动车组列车运行时,每秒达到70 米。由于惯性作用,刹车之后还要滑行1200 米。而人如果行走在铁路中间的道心上,需要离开道心到道肩这一简单的动作,从反应到完成要2-3 秒的时间;如果横穿、跨越一条单线铁路要3-4 秒的时间,况且现在高速铁路均为双线双向铁路。因此,行走、跨越铁路时即便在200-300 米人的视线范围内发现火车也难于幸免,更不用说有时会听不到火车的声音,铁路弯道、路树遮挡等原因,看不见行驶的火车。另外火车经过时,会掀起8-10 级翰旋大风,行人在铁路边2-3 米的范围内可能被风吹倒吸入车轮。根据已通车的高速铁路有关数据显示,行走、跨越铁路发生人身伤亡事故的概率高达92.3%。在通过铁路道口时,行人和车辆违反有关通行规定,撞、钻、爬、越道口栏杆(栏门),也是发生人身伤亡事故的重要因素。 二、严禁在铁路上置放障碍物 众所周知火车是在两根平行的钢轨上行驶,列车的向心力是保证列车运行的速度和平稳的关键要素之一。

CRH2动车组设备组成及布置汇总

概 述 中国铁路高速动车组是时速200公里及以上,动力分散形式的电动车组,是铁路客车装备的重要组成部分,具有安全、高速、高效、便捷、环保等显著特点。CRH2型EMU (Electric Multiple Unit)适用于我国电气化铁路的既有线和客运专线,采用的是以200km/h 运行的动力分散型交流传动方式。 动车组采用了动力分散和交直交传动方式,以及IGBT 大功率模块与变频变压调速等先进技术,代表了世界高速列车技术的发展方向。动车组在集成、车体、转向架、牵引传动与控制、列车网络控制和制动等方面体现了当今铁路机车车辆制造业的先进成果,是高度机电一体化的高新技术产品。 CRH2动车组以4辆动车和4辆拖车共8辆车构成一个编组,编组内的各种配置如下图所示。另外,根据必要配备了可同时使2个编组进行整体运行的相关设备,可以两组重联运行。 T :拖车 M :动车 C :驾驶室车 K :带酒吧车 S :一等车 一、主要技术参数: 主电源:25kv (17.5kv-31kv ),50Hz ,单相交流 电动机:额定功率300kw 运行速度: 营业运行速度: 200km/h 最高试验速度: ≦250km/h

车体主要尺寸: 车体最大长度 头车:25,700 mm 中间车:25,000 mm 全长:201,400 mm 车体最大宽度:3,380 mm 车体最大高度:3,700 mm 车门处地板面高度:1,300 mm 车厢天花板高度:2,277 mm 轨距:1,435 mm 转向架中心距:17,500 mm 固定轴距:2,500 mm 车轮径:860 mm 车钩中心线高度:1,000 mm 二、具体编组结构

高速铁路安全常识

高速铁路安全常识 一、高速铁路动车组每小时速度达250公里以上,每秒速度达到79米,运行时形成8-10级斡旋大风,列车紧急刹车后还要滑行三千多米才能停得下来,当行走铁路的人察觉已来不及避让火车,必然造成行人伤亡事故。 铁路天桥、跨线桥等跨越接触网的地方,距离带电部分较近,容易发生触电事故,行人通过时,严禁用竹竿、棍棒、铁线等非绝缘物件穿捅安全栅栏网,避免触电。 因高速铁路电力接触网线设置在铁路线路上方,电压高达二万七千伏,在接触网线各导线及其相连接部件2米范围内即为危险区,由于风、雨雪或其他外界条件的变化,都会危及行人安全,尤其行人带着物件(如雨伞、木棒等高长物件)及下大雨,水流成线,就会发生触电伤人。 二、请严守以下法律或规定,以确保安全。 1、严禁破坏、攀爬、钻越栅栏;严禁进入高速铁路防护栅栏网内行走、逗留、玩耍。 2、严禁盗窃损坏电气化高速铁路设施,严禁自行从接触网上接电,或者私拉民用电线横越铁路上空。 3、禁止在高速公路立交桥以及隧道两端的平台上玩耍、逗留,更不准向下倒水和乱扔杂物。 4、未经允许严禁在电气化铁路附近施工,不得在高速铁路两旁的山坡、路堑上放牧或砍树,不得过于靠近接触网灭火,不准高举工ropaganda Department, district authorities and other members of the working committees to coordinate with, and work together. Various units of the Department to draw up a concrete plan, quickly set up the corresponding study

高速铁路安全防护管理办法-交通运输部

高速铁路安全防护管理办法(征求意见稿) 第一章总则 第一条为了加强高速铁路安全防护,防范铁路外部风险,保障高速铁路安全和畅通,维护人民生命财产安全,根据《中华人民共和国铁路法》《中华人民共和国安全生产法》《中华人民共和国反恐怖主义法》《中华人民共和国突发事件应对法》《中华人民共和国网络安全法》和《铁路安全管理条例》等相关法律、行政法规,制定本办法。 第二条本办法适用于设计开行时速250公里以上(含预留),并且初期运营时速200公里以上的客运列车专线铁路。 第三条高速铁路安全防护坚持安全第一、预防为主、依法管理、综合治理的方针,坚持技防、物防、人防相结合,构建企业主体、政府监管、社会监督的高速铁路安全防护综合管理格局。 第四条铁路监管部门应当按照法定职责,健全完善高速铁路安全防护标准,对危害高速铁路安全的违法行为加强行政执法,协调相关单位部门及时消除危及高速铁路安全的隐患。 第五条各级交通运输、工信、公安、国土资源、环境保护、住建、水利、安监、能源、地震、气象等部门应当依照法律法规和职责规定,协调和处理保障高速铁路安全的有关事项,做好保障高速铁路安全的相关工作。必要时加强日常检查管理,防范和制止危害高速铁路安全的行为。 第六条铁路监管部门应当督促协调高速铁路沿线地方人民政府构建高速铁路综合治理体系,健全治安防控运行机制,落实高速铁路护路联防责任制。 第七条从事高速铁路运输、建设、设备制造维修等相关企业应当落实安全生产主体责任,执行高速铁路安全防护有关的国家标准、行业标准和技术规范,建立健全高速铁路安全防护相关管理制度,保证高速铁路安全防护所必需的资金投入。 铁路运输企业应当加强对从业人员的教育培训,对高速铁路安全防护情况进行经常性巡查,对发现的安全问题应当立即处理或报告。 第八条有关单位和个人在高速铁路保护范围内施工、建造构筑物、生产经营等应当遵守保证高速铁路安全的法律法规标准,采取措施防止影响高速铁路运输安全。 第九条铁路监管部门应当联合有关地方人民政府及相关部门、铁路运输等相关企业建立安全信息通报和问题督办机制,做到协调配合、齐抓共管、联防联控。 第十条铁路运输企业应当围绕高速铁路安全制定洪水、地震、风雪雷雨、冰冻等灾害和各类突发事件应急预案,并组织演练。应急预案中应当充分发挥沿线地方人民政府及相关部门、铁路监管部门的职能作用。

如何保证高速铁路的速度与安全

如何保证高速铁路的速度与安全 20世纪60年代以来,高速铁路在世界发达国家崛起,百年铁路重振雄风,传统铁路再展新姿,铁路发展进入到一个崭新的阶段,高速铁路的蓬勃发展,在世界范围内引发了一场深刻的交通革命。当今世界上,客运铁路速度的分挡一般定为:时速100~120公里称为常速;时速120~160公里称为中速或准高速;时速160~200公里称为快速;时速200~400公里称为高速;时速400公里以上称为特高速。 高铁能以300公里以上的时速安全行驶,主要是由以下几个条件保证的,那就是能高速行驶的列车、无砟轨道、全封闭的线路和智能化的交通信号系统。在这些条件之中,高速行驶的列车反而是最容易得到的,而性能完善的轨道线,才是一直以来限制列车速度的原因。 普通的列车钢轨由碎石路砟和枕木固定,虽然承压力比较好,但却完全不能承受列车的高速运营。无砟轨道则是将钢轨直接浇铸在混凝土上,这样能保证列车即使高速行驶,钢轨也不会变形。中国的高铁轨道都是由德国进口的最先进的轨道技术,在这一点上,也没有任何安全隐患。而智能交通信号系统,原理其实和控制飞机飞行相似,也是相当成熟的技术了。 所以要保证高铁的安全,一条全封闭的轨道线是其中最重要的环节

之一。高铁自身很难发生什么毁灭性的故障,但在它行驶的过程中,任何一点外来的故障或碰撞都有可能让高铁发生出轨这样的恶性事故。 经过十几年的发展,高铁车轮的设计也发生了很大的改变。从德国高铁事故之后,人们就已经完全摈弃那种箍着钢条的双彀钢轮,而采用整块钢材切割而成的单彀钢轮;之后,工程师又改变了钢轮安放的位置,将之从车厢下挪到两节车厢之间。经过计算,这样的改变能减少钢轮的磨损,从而让高铁变得更加安全。 影响运输安全的“三大因素”: 维持铁路运输生产所必备的先进技术设备、完善的规章制度和高素质的运营人员是保证铁路运输安全稳定的“三大因素”。铁路运输企业的设备、制度和人员情况在其安全生产中起至关重要的作用。 1)铁路设备对安全的影响。对行车设备的改造施工及故障处理,多数情况需停止信号联锁的使用,要在无联锁的情况下接发列车,操纵台无显示、信号停用、道岔失去联锁,从准备进路、交递凭证、引导接车到区间列车的掌握均由人工来完成,对接发列车安全影响较大。

高速铁路列车安全质量管理

高速铁路列车安全质量管理 安全是铁路的宗旨之一,列车乘务人员应该严格按照中国国家铁路集团有限公司(局)颁布的安全质量标准进行作业,安全、正点、快速、舒适地把旅客运送到目的地。 安全质量标准应该遵循“严格制度、规范管理、安全有序、作业受控、设备完好、达到七消灭”的原则。铁路职工要坚持“人民铁路为人民”的宗旨,在服务中做到全面服务、重点照顾。所谓全面服务,是指对旅客要做到“三要、四心、五主动”。对重点照顾的旅客要做到“三知、三有”,三知即知座席、知到站、知困难,三有即有登记、有服务、有交接。 一、乘务安全 列车乘务人员在乘务方面应严明制度、加强宣传、规范作业、确保安全。1、车门管理 (1)认真执行“停开,动关锁,出站台四门检查、瞭望”制度。做到列车进站到岗试车门,车停平稳后开车门,组织乘客验票上车,扶老携幼,禁止旅客在对面下车。还应做到列车停站时,始发站出车隔离;途中停站三隔离(硬卧与软卧、软卧与餐车、餐车与硬座隔离);列车运行时全车畅通。与机车相连的客车前部端门应加锁,餐车厨房边门和尾部端门应设置防护栏。 (2)消灭“五门”现象,即不开车门、早开车门、晚开车门、早关车门、开反面门;遇有临时停车,应看守车门;车门临时故障,一时不能修复,应从外部扎紧;乘务人员在关闭车门、腰门、厕所门前,应检查有无旅客手扶在门缝处,防止发生责任伤。 2、安全宣传 乘务人员应经常向旅客宣传安全常识,劝阻旅客不要站在车辆连接处,不要手扶风挡、门框,不要将头、手伸出窗外。在列车运行中,乘务人员要宣传、阻止旅客向窗外乱扔空瓶、杂物,在列车过大桥、隧道时宣传、通告注意事项,锁闭厕所并巡视车厢。乘务人员要宣传和教育旅客不得在车厢内吸烟,即使允许吸烟的地点也要告之不要乱扔烟头和火种。列车员在立岗时要认真做好扶老携幼工作,做到眼快、嘴快、手快,真扶、真背,确保旅客安全。

新一代高速动车组车体结构创新设计

新一代高速动车组车体结构创新设计 发表时间:2019-01-03T17:10:43.290Z 来源:《基层建设》2018年第34期作者:惠美玲王鹏石守东 [导读] 摘要:为满足固速度提升带来的车体评价标准改变,新一代高速动车组车体在CRHs型动车组成熟结构基础上进行结构优化设计。 中车唐山机车车辆有限公司河北唐山 063035 摘要:为满足固速度提升带来的车体评价标准改变,新一代高速动车组车体在CRHs型动车组成熟结构基础上进行结构优化设计。仿真和试验结果表明,新一代高速动车组车体结构在轻量化、强度、振动模态、空气动力学和动应力测试等方面具有优异的性能,结构安全可靠。 关键词:高速动车组;车体结构;轻量化;振动模态;空气动力学 1车体结构优化设计 车体由司机室(仅头车)、底架、侧墙、车顶和端墙组成。司机室采用接近旋转抛物体特征的流线形造型,车体表面进行平顺化设计,具有空气动力学性能;底架为边梁承载的无中梁形式铝合金焊接结构,车下设备采用横梁滑槽吊挂方式,便于设备安装;侧墙和车顶为大型超薄中空铝合金型材的通长拼焊结构;端邮牵枕缓使用高强度铝合金型材烨接结构,强化局部承载能力,根据车内设备布置的需求,端墙分为固定式和活动式两种。 1.1司机室结构 司机室结构由头部骨架、气密隔墙及焊件、窗骨架及电线支架和焊件组成。头部骨架由纵骨架和横骨架相互插接组焊而成,外部焊接蒙皮。为提高成型精度,所有铝合金板梁均采用数控加工,外敷蒙皮采用分幅模压和涨拉成型工艺。车窗、车门三维骨架由铝合金挤压型材经模具加工后制成,保证门窗安装精度和承载强度。 为满足因速度提升带来的气密载荷值增加,司机室结构主要改动如下: (1)增加司机室蒙皮板厚; (2)改进气密隔墙,板梁结构改为双层中空型材。为更好的提升车体空气动力学性能,对司机室轮廓进行了截面优化,为旋转抛物体特征的楔形结构,纵断面双拱形、水平断面扁梭形。 1.2底架 底架结构主要由牵引梁、枕梁、缓冲梁、边梁、横梁和双层中空地板等结构组成。边梁及地板由长大铝合金型材纵向焊缝整体拼接而成;中部与端部地板保留高度差,为空调风道,内装、转向架及车下设备保留设计空间;车下安装设备采用特殊螺栓吊挂方式,保证运用安全和安装方便。 为满足EN 12663中纵向压缩力( 1 500kN)的要求,底架部位的优化设计主要在于: (1)增加牵引梁刀把位置上下翼面的寬度和补板; (2)在高低地板处连接部位增加纵向梁,使该部位有更大的传力截面,降低该部位因高低差导致的应力集中; (3)底架边梁结构由原来的口字形结构改为桁架结构,增加边梁的承载刚度。 1.3侧墙结构 侧墙结构主要分为头车侧墙和中间车侧墙。由于头车同机室车头造型的需要,头车侧墙长度要比中间车侧墙短些。头车和中间车侧墙上设有侧门开口和窗开口,不同的是侧门开口位置及窗开口的大小和位置有所不同。为了满足运背需要,侧墙上还设有车号显示开口、目的地显示开口等。 为了满足高速列车士6kPa的气密载荷要求,侧墙结构主要改动如下: (1)侧墙门袋处门口两侧结构由单板凸筋加补结构改为中空型材; (2)侧墙和边梁连接部位的侧墙型材轮廓线改为圆滑过渡,增加该部位型材的刚度,同时提高车体菱形模态频率。 为了提高车体模态和局部模态,底架地板由原来的单板凸筋结构改为双层中空型材;提高局部模态频率,型材内壁敷热熔性减振材料,衰减车体振动和嵘声,提升采客乘坐舒适度。 1.4 车顶结构 车顶结构主要由7块大型通长中空挤压型材焊接而成。通长挤乐型材上适当位置设通长的T形槽或焊接铆接连接骨架,用于顶板等内装部件的安装。侧顶处的两块型材为变截面设计。在车项工作的人员每隔750 mm施加100 kg集中载荷时,车顶结构具有足够强度,以支撑该载荷而不会产生永久性变形。 为满足气密载荷值的提升,车顶结构主要改动如下: (1)车填结构型材中部改为变截面,增加了车顶刚度,控制车顶垂向变形; (2)侧顶圆甄处改为变截面设计,增加该部位刚度,显著提升侧墙和车项刚度,控制其在气害载荷作用下的变形量。 1.5 端墙结构 端墙结构分为带活门的端墙结构和固定端壙结构,主要由门框、端角柱、嘴顶弯梁和端壩板(中空型材)等组成。端角柱和门框为型材焊接结构,端顶弯梁为拼焊结构。中空铝型材之间相互插接,端角柱和门口立柱采用搭接结构,侧顶圆弧处端角柱采用拼焊结构。 端墙上设蹬车扶梯。端墙设搬运卫生问模块的开口和可拆卸的结构盖板;开口处采用板梁和中空型材连接结构,结构盖板和固定端墙间采用螺栓连接并作气衡处理。 为满足气密载荷值提升及强度标准规定的端部载荷要求,端墙结构优化改进如下: (1)端部结构由板梁结构改为中空梨材; (2)优化改进端角柱结构。 2车体结构性能评估 车体强度方面,车体设计除了首先要满足静强度设计准则外,还委满足疲劳强度标准。车体刚度是在载荷作用下抵抗弹性变形的能力,相同载荷下刚度越大变形量越小,产生共振时所需变形能越大。考虑转向架振动特性,整备状态F的车体振动模态须大于10Hz,保证车体和转向架的重向主顿共振峰错开。车体空气动力学方面,车体轮廓线及同机室有很好的气动外形,降低气动阻力。

CRH2型高速动车组车辆车体结构总体设计

XX工程学院 车辆工程系 本科毕业设计(论文) 题目:C R H2型高速动车组车辆车体结构总体设计 专业:机械设计制造及其自动化 (城市轨道车辆) 班级:城轨081学号:215080301 学生姓名: 指导教师:副教授 起迄日期:2012.3~2012.6 设计地点:车辆工程实验中心

摘要 随着科技和生活水平的提高,城市之间的距离越来越小,高速动车作为一种新的交通工具,正逐步代替原有的交通。本文对CRH2型200km/h的高速动车组车体结构进行了总体设计。根据国内外高速动车的发展概况和最新研究成果,以及为实现列车车体气密性和轻量化为目的,完成了CRH2型动车组的车体结构总体设计。基本编组方案采用2动2拖,整车由8辆车组成,主要对头车车体进行了详细研究。首先,是对车体的材料选择,经过对耐候钢,不锈钢和铝合金的比较可以看得出,采用铝合金是最合适的。它可以降低车重,提高车辆加速度,降低运能消耗、牵引及制动能耗,减轻了对线路的磨耗及冲击,扩大了运输能力。其次是对车体的结构进行选择,主要以双壳结构为主,并引入了模块化的概念,把铝合金车体分成若干模块,包块底架模块,侧墙模块,车顶模块,端部模块和车体附件等五大部分,每一种模块单独加工,互不影响。最后把所有模块整合在一起,组成铝合金车体。 关键词:车辆工程;高速动车组;车体;铝合金

ABSTRACT With the technology and the improvement of living standards, the distance between the cities getting shorter and shorter. High-speed EMU as a new means of transport is replacing the existing traffic gradually. This paper introduces the design of overall body structure for 200 km/h of CRH2 EMU. According to the development overview and the latest research results of domestic and foreign high-speed EMUs, as well as to achieve the air tightness and weight of train for purpose, completing the design of overall body structure for the 200km /h EMU. 2M2T is selected as the basic formation program and it’s made up of eight vehicles, mainly taking some study on the rival car body. First of all, the choice of body material, compared with weathering steel, stainless steel and aluminum alloy, aluminum alloy is the most suitable. It can reduce the vehicle weight and improve vehicle acceleration. It also can reduce consumption of transport capacity, traction and braking, and even can reduce wear on the line and the impact, expand the transport capacity. Secondly, choose the structure of the body, mainly double-shell structure. It introduces the modular concept, the aluminum alloy body is to be divided into several modules, including block chassis modules, side-wall modules, roof modules, the end modules and annex to the bottom of vehicle, each module processes separately. Finally, form the aluminum alloy body with all modules together. Keywords: Vehicle Engineering; High-speed EMU; Body structure; Aluminum alloy

CRH1车体流线型结构

CRH1车体流线型结构 随着列车运行速度的提高,周围空气的动力作用对列车和列车运行性能也产生影响:列车高速运行引起的气动现象对周围环境也产生影响,这就是高速列车的空气动力学问题。 高速列车在行驶中所受力: 1.运行中列车承受表面压力 2.会车时列车承受表面压力 3.通过隧道时列车承受表面压力 4.列车风 5.运动列车受力 为了减少这些里的作用,高速列车车体有如下设计: 一般来说,动车和拖车的车体长、宽、高需要根据内部布置要求由设计任务书规定,所以车体设计主要是横断面设计。 其设计有以下特点: 整个车身断面呈鼓形,即车顶为圆形,侧墙下部向内部倾斜(5*左右)并以圆弧过渡到底架,侧墙上部向内倾斜(3*左右)并以圆弧过渡到车顶,这不仅能减少空气阻力,而且有利于缓解列车交汇压力波及横向阻力、侧滚力矩的作用。车辆底部形状对空气阻力影响很大,为了避免地板下部设备的外露,采用与车身横断面形状相吻合的裙板遮住车下设备,以减少空气阻力,也可以防止运行时砂石击打车下设备。另外,车体表面光滑平整,减少突出物。如侧门采用塞拉门,扶手为内置式,脚蹬做成翻板式,使

侧门关闭时可以包住它,两车辆连接处采用橡胶大风挡,与车身保持平齐,避免形成涡流。 CRH1的部分问题: 座位无法旋转:最早出厂的21组CRH1A(编号001~021)列车,一等座及二等座(定员101人)均没有回转座椅设备,导致座椅方向不能调较,所以整列列车大约有一半乘客会坐反向座位(倒后位),容易引致乘客不适。而其后的19组的CRH1A(编号022~040)作出了改进,透过减少定员(定员92人),使大部分座椅(二等座车/餐车除外)可以回转,但是回转座椅设备的可靠性比CRH2、CRH3和CRH5等动车组差,而且仍然有部份座椅仍是不能调较。

高速动车组车辆车体结构总体设计

摘要 随着科技和生活水平的提高,城市之间的距离越来越小,高速动车作为一种新的交通工具,正逐步代替原有的交通。本文对CRH2型200km/h的高速动车组车体结构进行了总体设计。根据国内外高速动车的发展概况和最新研究成果,以及为实现列车车体气密性和轻量化为目的,完成了CRH2型动车组的车体结构总体设计。基本编组方案采用2动2拖,整车由8辆车组成,主要对头车车体进行了详细研究。首先,是对车体的材料选择,经过对耐候钢,不锈钢和铝合金的比较可以看得出,采用铝合金是最合适的。它可以降低车重,提高车辆加速度,降低运能消耗、牵引及制动能耗,减轻了对线路的磨耗及冲击,扩大了运输能力。其次是对车体的结构进行选择,主要以双壳结构为主,并引入了模块化的概念,把铝合金车体分成若干模块,包块底架模块,侧墙模块,车顶模块,端部模块和车体附件等五大部分,每一种模块单独加工,互不影响。最后把所有模块整合在一起,组成铝合金车体。 关键词:车辆工程;高速动车组;车体;铝合金

ABSTRACT With the technology and the improvement of living standards, the distance between the cities getting shorter and shorter. High-speed EMU as a new means of transport is replacing the existing traffic gradually. This paper introduces the design of overall body structure for 200 km/h of CRH2 EMU. According to the development overview and the latest research results of domestic and foreign high-speed EMUs, as well as to achieve the air tightness and weight of train for purpose, completing the design of overall body structure for the 200km /h EMU. 2M2T is selected as the basic formation program and it’s made up of eight vehicles, mainly taking some study on the rival car body. First of all, the choice of body material, compared with weathering steel, stainless steel and aluminum alloy, aluminum alloy is the most suitable. It can reduce the vehicle weight and improve vehicle acceleration. It also can reduce consumption of transport capacity, traction and braking, and even can reduce wear on the line and the impact, expand the transport capacity. Secondly, choose the structure of the body, mainly double-shell structure. It introduces the modular concept, the aluminum alloy body is to be divided into several modules, including block chassis modules, side-wall modules, roof modules, the end modules and annex to the bottom of vehicle, each module processes separately. Finally, form the aluminum alloy body with all modules together. Keywords: Vehicle Engineering; High-speed EMU; Body structure; Aluminum alloy

《高速铁路乘务安全管理与应急处置》B卷

学年第学期级期末测试卷 (高速铁路客运乘务专业) B卷 《高速铁路乘务安全管理与应急处置》 一、填空题。(一空1分,共15分) 1.影响铁路行车安全的主要因素分人、运输设备、环境、管理。 2.事故救援工作应当遵守以人为本、逐级复制、应急有备、处置高效的原则。 3.高速铁路应急预案的类型分为现场处置预案、综合应急预案、专项应急预案。 4.遇到恶劣天气,信号机显示不足200、时司机或车站值班员须立即报告列车调度员。 5.常见包扎方法有环形法、蛇形法、螺旋形法、螺旋反折法、8字型法。 二、判断题(一题3分,共15分) 1.为了实现安全工作,需要开展三方面的工作,安全管理、安全技术、劳动卫生。(√) 2.接到事故救援报告后,应当根据事故严重程度和影响范围,按特别重大,重大,较大三个等级。(×) 3.高速铁路采用非全封闭式、全立交的形式,因此列车调度不需要本线封

锁。(×) 4.列车应急结束时“谁启动、谁结束"。(√) 5.根据铁路红十字药箱药品的配置情况,可以将药箱分为甲乙丙丁四类。(×) 三、选择题(一题4分,共20分) 1、从微观角度看下列那一项不是风险因子(C)? A.危险源 B.隐患 C.经济影响 D.事故 2、下列不需要各铁路局应当接到报告后2小时内报部卫生行政主管部门(D) A.铁路列车上30人以上发生旅客食物中毒或有人员死亡。 B.铁路沿线发生传染病或疾病爆发。 C.铁路单位职工发生三人或三人以上的职业中毒身亡事故。 D.铁路运输包装完好的发射性物质。 3、高速铁路应急预案综合评价不包括(C ) A.预防 B.准备 C.组织 D.恢复 4、高速铁路动车组列车故障应急处置基本原则中工作原则不包括(D) A.以人为本 B.统一领导 C. 依靠科学 D.实事求是 5、铁路红十字药箱的配备原则错误的一项是(C ) A.药箱内的药品配置应是国家基本药物范围内的常用、安全、方便、有效的非处方药品、消毒剂及临床常用的诊疗用具。 B.配备突发性心血管疾病、高热、咳喘、发泄等处方药。 C.根据配置情况,配置任意类别药箱。 D.药品配置数量由管理单位根据使用情况配备。

高速列车车体维修特点及发展趋势

高速列车车体维修特点及发展趋势 班级:成铁代培学号:无姓名:何赛 一高速列车维修特点及发展趋势 高速列车维修是高速铁路系统综合保障工程中的重要组成部分,是提高车辆效率,提高可用性,安全运输,降低寿 1.大量采用高新技术.以德国汉堡动车段为例,该动车段能在60 h内完成412 m长整列ICE动车组的维修保养和整备工作,具有先进的维修技术和设备.①车载微机诊断系统,通过远程无线通信技术将运行中检测到的故障信号传输给动车段,提前做好维修准备;②建立三层维修工作面,在下部,内部和顶部同时作业;③具有轨道桥的架空轨道,便于走行部的检查与更换;④具有气垫走行装置的轮对和转向架更换设备;⑤真空排污处理系统和自动化清洗装置;⑥自动检测轮对踏面裂纹,磨损和不圆度的诊断设备;⑦控制和管理整个维修过程的微机信息系统等。 2.系统工程的维修观点.首先对高速列车寿命周期成本(LCC)进行研究;其次把技术,财物,管理等各方面的因素综合起来进行全面管理;另外利用系统工程理论对高速列车可靠性,维修性和可用性进行研究.对高速列车的各环节(草拟,设计,制造,安装,运用,维修和更新等)进行综合分析.此外还要进行信息反馈以便制造部门改进设计。 3.设计中对维修做全面考虑.要求高速列车具有良好的维修性,即列车出现故障时,容易修理和便于维护的能力。为此在可维修性方面要使设计和运用成为一体化(图1). 图1 换件修.

设计,运用一体化的可维修性设计框图 4.维修制度更趋合理.高速列车维修制度主要框架仍采用计划预防修制,但正在不断扩大实施状态监测和检修以及。 5.维修停时大为缩短,利用率大大提高.当前世界各国高速列车在大修时均采用整列入库的全新维修模式,例如德国ICE列车每年平均运行里程高达50万km,其维修停留时间可不足3天.在故障维修时也有良好的设备,例如法国TGV列车更换一根车轴仅需1 h左右,更换一个非动力转向架,不超过1.5 h. 二高速列车的可靠性技术和维修性 可靠性是部件在一定的条件下,在规定的时间内,能够满足该部件性能要求的概率.产品设计是保证其使用可靠性的重要阶段,从产品投入运用以后,从可靠性的观点来看,主要表现为维修性,其定义为"在规定的条件下,并按规定的程序和手段实施维修时,产品在规定使用条件下,保持或恢复执行规定功能状态的能力".对高速列车而言,也就是在列车发生故障时容易修理和方便维护的性能。由于高速列车是一个很复杂的可维修系统,对于各种部件和不同性质故障的维修性也有不同的具体要求,但均应满足下述共性的要求。 1.高速列车维修性设计的定性要求:①良好的可达性:维修时接近维修部位的难易程度; ②提高标准化和互换性程度:高速列车零部件的标准化,互换性和通用化是维修性的重要要求;③具有完善的防差错措施和识别标记;④保障维修安全:维修活动时应避免人员伤亡或设备损坏;⑤检验诊断准确,迅速,简便;⑥重视贵重件的可修复性;⑦减少维修内容,降低维修技术要求;⑧符合维修人机工程要求:维修人机工程是研究维修作业人员的各种能力,如体力,感观力,耐受力,心理承受和人体尺寸等因素与机器之间的关系,以保证其持续工作的能力和维修效率。 2.高速列车维修性设计的定量要求:维修性定量指标很多,主要列举如下:维修度肘(t),平均修复时间MTTR,最大修复时间MTTRmax预防维修周期MTBMpt,维修费用等。 三高速列车的寿命周期费用(LCC)和寿命确定 高速列车的机车车辆及其零部件作为产品,要求在相当长的时间间隔即其寿命周期内保证使用性能的可靠性,耐用性,无故障率和适修性。在经济上可以寿命周期费用LCC作为综合性的评定指标。 1.LCC定义 产品的寿命周期按GB6992的规定可分为五个阶段,即概念与定义,设计与研制,制造与安全,使用与维修和处理阶段.产品在其整个寿命周期中所耗费的费用总和就称为产品的寿命周期费用(Life Cycle Cost,缩写为LCC)。 2.LCC模型及其分配对于铁路部门而言,简单的LCC模型通常可分为三大部分,即LCC=AC+MC+OC。式中AC——购置费,包括研制费,生产费及其他维修设备,文件,人员培训,备件等费用; MC——维修费,包括预防维修和事故维修费; OC——运营费,包括产品使用中的消耗性费用(电力,燃料,油水等),人员劳务费,通信运输,使用保障的设备,设施及管理费等。 LCC分配,根据瑞典铁路的经验,购置费,运营费及维修费用在LCC中的比例大致各占1/3.应当指出,此处所说的购置费不仅是机车辆本身的购置费,还包括备件,维修设备等的购置费用。

高速铁路安全常识

高速铁路安全常识 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

高速铁路安全常识铁路线上的路外安全,与社会公众密切相关。很多事实证明,发生路外伤亡事故,主要原因是行人在铁路线路上行走、坐卧、横过线路、穿越铁路站场、爬车、钻车、跳车,行人、机动车辆抢过铁路道口以及自杀等。铁路有明文规定,铁路桥梁和铁路隧道是禁止一切行人通过的。 在享受高速铁路给我们带来出行更方便、更快捷、更实惠的同时,更要关注高速铁路的安全。因为高速铁路列车速度快,因此我们在铁路周边生活或经过铁路时必须严格遵守相关安全规定,避免给铁路运输和我们自身人身安全带来严重的后果,我们应该做到以下几个“严禁”: 一、严禁行走、坐卧或在铁路线上跨越。速度快是动车组列车的一大特点,动车组列车运行时,每秒达到70米。由于惯性作用,刹车之后还要滑行1200米。而人如果行走在铁路中间的道心上,需要离开道心到道肩这一简单的动作,从反应到完成要2-3秒的时间;如果横穿、跨越一条单线铁路要3-4秒的时间,况且现在高速铁路均为双线双向铁路。因此,行走、跨越铁路时即便在200-300米人的视线范围内发现火车也难于幸免,更不用说有时会听不到火车的声音,铁路弯道、路树遮挡等原因,看不见行驶的火车。另外火车经过时,会掀起8-10级翰旋大风,行人在铁路边2-3米的范围内可能被风吹倒吸入车轮。根据已通车的高速铁路有关数据显示,行走、跨越铁路发生人身伤亡事故的概率高达

92.3%。在通过铁路道口时,行人和车辆违反有关通行规定,撞、钻、爬、越道口栏杆(栏门),也是发生人身伤亡事故的重要因素。 二、严禁在铁路上置放障碍物。众所周知火车是在两根平行的钢轨上行驶,列车的向心力是保证列车运行的速度和平稳的关键要素之一。因此,两根钢轨间的轨面、轨距经科学、严密的施工不得有丝毫的误差以保证列车的向心力的稳定。根据科学实验,当列车运行时速到127公里时,任何外力的作用都会使列车的向心力参数发生变化,在同等的作用下速度越快,向心力变化越大。所以,不要说在轨面上置放石子、金属、木块等,就是一只猫、一条狗被车轮碾压都会危及列车的安全,严重的将造成列车脱轨、颠覆,车毁人亡,后果不堪设想。 三、严禁击打列车。我们可能听过一只鸟造成一架飞机坠毁的故事。动车组列车外壳也是由合金材料制作,列车高速运行时,与飞机一样,任何物体的撞击都会造成列车壳体、玻璃破损,不仅对机车司机、列车乘务员、车内旅客人身安全构成威胁,而且对安装在列车车体内的电线、电气设备、精密仪器等造成破坏,可能使列车操控失灵。所以,向列车抛击弹珠、石头、砖块、垃圾物等是对他人生命安全极为不负责的危险行为。

CRH2动车组设备组成及布置

C R H2动车组设备组成 及布置 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

概 述 中国铁路高速动车组是时速200公里及以上,动力分散形式的电动车组,是铁路客车装备的重要组成部分,具有安全、高速、高效、便捷、环保等显著特点。CRH2型EMU (Electric Multiple Unit)适用于我国电气化铁路的既有线和客运专线,采用的是以200km/h 运行的动力分散型交流传动方式。 动车组采用了动力分散和交直交传动方式,以及IGBT 大功率模块与变频变压调速等先进技术,代表了世界高速列车技术的发展方向。动车组在集成、车体、转向架、牵引传动与控制、列车网络控制和制动等方面体现了当今铁路机车车辆制造业的先进成果,是高度机电一体化的高新技术产品。 CRH2动车组以4辆动车和4辆拖车共8辆车构成一个编组,编组内的各种配置如下图所示。另外,根据必要配备了可同时使2个编组进行整体运行的相关设备,可以两组重联运行。 T :拖车 M :动车 C :驾驶室车 K :带酒吧车 S :一等车 一、主要技术参数: 主电源:25kv (),50Hz ,单相交流 电动机:额定功率300kw 运行速度: 营业运行速度: 200km/h 最高试验速度: ≦250km/h

车体主要尺寸: 车体最大长度 头车: 25,700 mm 中间车: 25,000 mm 全长: 201,400 mm 车体最大宽度:3,380 mm 车体最大高度:3,700 mm 车门处地板面高度:1,300 mm 车厢天花板高度:2,277 mm 轨距:1,435 mm 转向架中心距: 17,500 mm 固定轴距: 2,500 mm 车轮径: 860 mm 车钩中心线高度: 1,000 mm 二、具体编组结构

高速列车的结构

高速列车的结构 高速列车是材料、机械、电子、计算机和控制等现代技术的一个集中体现。它一般由车体、转向架、车辆连接装置、制动装置、车辆内部设备、牵引传动系统、辅助供电系统和自动控制系统组成。高速列车的设计与开发实际上就是这些组成部分及组成部分之间接口的设计与开发。 1、车体 高速列车的车体分为带司机室的头车车体和中间车体两种。它既是容纳旅客和司机驾驶的地方,又是安装与连接其他设备和部件的基础。列车运行速度的提高,使得空气的动力作用对列车和列车运行性能产生影响;列车高速运行引起的气动现象也会对周围环境产生影响。对于高速列车来说,列车头型设计非常重要,好的头型设计可以有效地减小列车表面压力、列车空气阻力、会车压力波和隧道内列车表面压力和列车风等。 为了降低列车运行能耗,节约材料,减小高速运行时轮轨间的相互作用力所引起的对线路和车辆结构的振动、噪声,以及磨耗或损伤,在满足高速列车安全性、稳定性和舒适性等各项运行性能的前提下,应最大限度地降低列车的质量。对车体进行轻量化设计,降低轴重,一方面,可以降低对车辆和线路的维护量;另一方面,能够降低运行能耗。目前,国内外高速列车的车体材料主要为不锈钢和铝合金,从轻量化设计来看,随着铝合金制造工艺的成熟,铝合金相对不锈钢材料具有更大的优势。 为了进一步提高列车通过曲线时的速度,国内外发展了各种形式的摆式列车,即通过各种措施使列车车体在通过曲线时可以向曲线内侧倾摆,即车体相对于轨道平面转动一个角度。增加重力横向分量,可以抵消列车未被平衡的离心加速度,从而使旅客感受到的未被平衡的离心加速度基本保持在容许范围之内。 2、转向架 转向架设置于车体和轨道之间,用来牵引和引导车辆沿轨道行驶,承受和传递来自车体及线路的各种载荷,并缓和其动作用力。转向架是保证列车运行品质和安全的关键部件。转向架一般由轮对轴箱装置、构架、弹簧悬挂装置、车体支

高速铁路安全常识(最新版)

Safety issues are often overlooked and replaced by fluke, so you need to learn safety knowledge frequently to remind yourself of safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 高速铁路安全常识(最新版)

高速铁路安全常识(最新版)导语:不安全事件带来的危害,人人都懂,但在日常生活或者工作中却往往被忽视,被麻痹,侥幸心理代替,往往要等到确实发生了事故,造成了损失,才会回过头来警醒,所以需要经常学习安全知识来提醒自己注意安全。 铁路线上的路外安全,与社会公众密切相关。很多事实证明,发生路外伤亡事故,主要原因是行人在铁路线路上行走、坐卧、横过线路、穿越铁路站场、爬车、钻车、跳车,行人、机动车辆抢过铁路道口以及自杀等。铁路有明文规定,铁路桥梁和铁路隧道是禁止一切行人通过的。 在享受高速铁路给我们带来出行更方便、更快捷、更实惠的同时,更要关注高速铁路的安全。因为高速铁路列车速度快,因此我们在铁路周边生活或经过铁路时必须严格遵守相关安全规定,避免给铁路运输和我们自身人身安全带来严重的后果,我们应该做到以下几个“严禁”: 一、严禁行走、坐卧或在铁路线上跨越。速度快是动车组列车的一大特点,动车组列车运行时,每秒达到70米。由于惯性作用,刹车之后还要滑行1200米。而人如果行走在铁路中间的道心上,需要离开道心到道肩这一简单的动作,从反应到完成要2-3秒的时间;如果横

相关文档
最新文档