H3C AP 配置手册

H3C AP 配置手册
H3C AP 配置手册

H3C 2210配置手册

一、修改电脑IP地址,如下:点确定。

二、在浏览器上输入192.168.0.50(AP默认IP地址),用户名为:admin、密码为:h3capadmin

点登陆进入设备。

点“无线服务”-接入服务,可以到看到默认SSID号。

取消默认SSID配置。点H3C旁边的“绑定”进入如下图。点中1---点“取消绑定”。

关闭H3C服务。选中H3C---点“关闭”。

选中H3C---点”删除”

三、创建我们自己的SSID和加密方式。

WEP加密方式创建(无线服务—接入服务---新建)

输入无线服务名称(如:WEP),无线服务类型选择“crypto”,点确定。

选中WEP加密,可选择密钥类型和密钥长度。如下图。

输入密码。如下图。

点确定

点WEP旁边的“绑定”

选中“1”点“绑定”

选中“WEP”点“开启”

到此WEP加密配置已经完成。

测试。

WPA加密配置(无线服务---接入服务---新建)

输入无线服务名称(WPA),无线服务类型(crypto)

选中加密类型(TKIP),安全IE(WPA、WPA2或者WPA and WPA2),选中端口设置—端口模式(PSK),预共享密钥(pass-phrase)输入密码。

点确定。

点WPA旁边的“绑定”

选中“1”点“绑定”

选中“WPA”点“开启”

到此WPA加密已经配置成功

测试。

最后记得保存配置

设备管理IP地址可进行修改

修改Vlan-interface1接口IP地址

H3C交换机DHCP服务器接口地址池典型配置指导

1.2 DHCP服务器接口地址池典型配置指导 1.2.1 组网图 图1-2 DHCP服务器接口地址池配置举例 1.2.2 应用要求 ●Switch A作为DHCP服务器,其VLAN接口1的IP地址为192.168.0.1/24; ●客户端属于VLAN1,通过DHCP方式动态获取IP地址; ●DHCP服务器通过接口地址池为MAC地址为000D-88F7-0001的客户文件服务器分配固定的IP地址192.168.0.10/24,为其它客户端主机分配192.168.0.0/24网段的IP地址,有效期限为10天。DNS服务器地址为192.168.0.20/24,WINS服务器地址为192.168.0.30/24。 1.2.3 适用产品、版本 表1-2 配置适用的产品与软硬件版本关系 1.2.4 配置过程和解释 # 使能DHCP服务 system-view [SwitchA] dhcp enable # 配置不参与自动分配的IP地址(DNS服务器、WINS服务器、文件服务器) [SwitchA] dhcp server forbidden-ip 192.168.0.10 [SwitchA] dhcp server forbidden-ip 192.168.0.20 [SwitchA] dhcp server forbidden-ip 192.168.0.30 # 配置VLAN接口1的IP地址为192.168.0.1/24 [SwitchA] interface Vlan-interface 1

[SwitchA-Vlan-interface1] ip address 192.168.0.1 24 # 配置VLAN接口1工作在DHCP接口地址池模式 [SwitchA-Vlan-interface1] dhcp select interface # 配置DHCP接口地址池中的静态绑定地址 [SwitchA-Vlan-interface1] dhcp server static-bind ip-address 192.168.0.10 mac-address 000D-88F7-0001 # 配置DHCP接口地址池的地址池范围、DNS服务器地址、WINS服务器地址 [SwitchA-Vlan-interface1] dhcp server expired day 10 [SwitchA-Vlan-interface1] dhcp server dns-list 192.168.0.20 [SwitchA-Vlan-interface1] dhcp server nbns-list 192.168.0.30 [SwitchA-Vlan-interface1] quit 1.2.5 完整配置 # interface Vlan-interface1 ip address 192.168.0.1 255.255.255.0 dhcp select interface dhcp server static-bind ip-address 192.168.1.10 mac-address 000d-88f7-0001 dhcp server dns-list 192.168.0.20 dhcp server nbns-list 192.168.0.30 dhcp server expired day 10 # dhcp server forbidden-ip 192.168.0.10 dhcp server forbidden-ip 192.168.0.20 dhcp server forbidden-ip 192.168.0.30 # 1.2.6 配置注意事项 当DHCP服务器采用接口地址池模式分配地址时,在接口地址池中的地址分配完之后,将会从包含该接口地址池网段的全局地址池中挑选IP地址分配给客户端,从而导致获取到全局地址池地址的客户端与获取到接口地址池地址的客户端处在不同网段,无法正常进行通信。 故在本例中,建议从VLAN接口1申请IP地址的客户端数目不要超过250个。

telnet 远程登录交换机典型配置指导

telnet 远程登录交换机典型配置指导 system-view System View: return to User View with Ctrl+Z. [H3C]user-interface vty 0 [H3C-ui-vty0]authentication-mode password [H3C-ui-vty0]set authentication password simple 123456 [H3C-ui-vty0]local-user guest New local user added.

[H3C-luser-guest]password simple 123456 [H3C-luser-guest]service-type telnet level 3 [H3C-luser-guest]quit [H3C]user-interface vty 0 [H3C-ui-vty0]authentication-mode scheme [H3C-ui-vty0]quit [H3C]save The configuration will be written to the device. Are you sure?[Y/N]y

Please input the file name(*.cfg)(To leave the existing filename unchanged press the enter key): Now saving current configuration to the device. Saving configuration. Please wait... ... Unit1 save configuration flash:/20111025.cfg successfully [H3C] %Apr 3 17:39:34:984 2000 H3C CFM/3/CFM_LOG:- 1 -Unit1 saved

aSV快速部署手册-ISO全新安装-V3.0

aSV软件安装和初始化配置指导书1.1.aSV安装说明 1.1.1.最低硬件要求 CPU:支持x64与Intel? Virtualization Technology (VT-x) 内存:4GB 硬盘:60GB 主板:开启VT(VT-x)功能 1.1. 2.BIOS开启VT(VT-x)功能 在bios里开启vt技术支持,实例如下(注意每款主板不一样,大同小异)

1.1.3.U盘烧录ASV安装镜像 所需使用的软件:UltraISO 制作过程:首先插入U盘,然后按下面的步骤做1)打开软件UltraISO 2)加载vtp的iso,然后选择需要刻盘的iso文件。

3)加载iso之后如下所示(文件名以当前下载镜像名为准,此处仅为参考) 4)然后点击启动---写入硬盘映像

5)然后点击“写入”,其他默认就行了。完成后返回把U盘拔出即可。 注意: 1)U盘写入格式使用USB-HDD或USB-HDD+都可以,推荐勾上刻录完成后校验。 1.1.4.安装ASV 1)服务器光驱插入ASV安装光盘,启动设备,BIOS设置光驱启动为第一优先级,重启设 备(设备内存需要大于4GB,才允许安装);系统进入启动界面,按【ENTER】键,进入安装界面;

2)点击【OK】,会检测当前CPU是否为Intel架构(如果CPU为AMD架构,会提示CPU 类型不支持,退出安装); 3)选择安装所在磁盘,如果只有一块硬盘,直接点击【OK】(所选硬盘容量需要大于60GB 才允许安装); 4)选择磁盘后提示需要格式化硬盘数据,请点击【YES】,如果硬盘数据需要保留,请选择 【NO】回退到硬盘选择界面;硬盘满足大于40GB容量的检查后,开始安装;

电能计量装置配置原则精编版

电能计量装置配置原则公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电能计量装置配置原则 1.配置原则 (1)贸易结算用的电能计量装置原则上应配置在供受电设施的产权分界处:发电企业上网线路、电网经营企业间的联络线路两侧都应配置电能计量装置。 (2)I、II、 III类贸易结算用电能计量装置应按计量点配置计量专用电压、电流互感器或者专用二次绕组。电能计量专用电压、电流互感器或专用二次绕组及其二次回路不得接入与电能计量无关的。 (3)单机容量100MW及以上的发电机组上网结算电量,以及电网经营企业之间购销电量的计量点,宜配置准确度等级相同的主、副两套电能表。即在同一回路的同一计量点安装一主一副两套电能表,同时运行、同时记录,实时比对和监测,以保证电能计量装置的准确、可靠,避免较大的电量差错。 (4)35KV以上贸易结算用电能计量装置中的电压互感器二次回路,应不装设隔离开关辅助触点,但可装设熔断器;35kV及以下贸易结算用电能计量装置的电压互感器二次回路,应不装设隔离开关辅助触点和熔断器。 (5)安装在用电客户处的贸易结算用电能计量装置,1OKV及以下电压供电的,应配置符合GB/T16934规定的电能计量柜或计量;35kV电压供电的,宜配置GB/T16934规定的电能计量柜或电能计量箱。 (6)贸易结算用的高压电能计量装置应装设电压失压计时器。未配置计量柜(箱)的电能计量装置,其互感器二次回路的所有接线端子、试验端子应能实施铅封。 (7)互感器的实际二次负荷应在25%~100%额定二次负荷范围内;电流互感器额定二次负荷的功率因数应为电压互感器额定二次功率因数应与实际二次负荷的功率因数接近。 (8)电流互感器在正常运行中的实际负荷电流应为额定一次电流值的60%左右,至少应不小于30%。否则,应选用具有高动热稳定性能的,以减小变比。 (9)选配过载4倍及以上的宽负载电能表,以提高低负荷计量的准确性。 (10)经电流互感器接人的电能表,其标定电流宜不超过TA额定二次电流的30%,其额定最大电流应为TA额定二次电流的120%左右。直接接入式电能表的标定电流应按正常运行负荷电流的30%左右进行选择。(11)对执行功率因数调整电费的客户,应配置可计量有功电量、感性和容性无功电量的电能表;按最大需量计收基本电费的客户,应配置具有最大需量计量功能的电能表;实行分时电价的客户,应配置复费率电能表或多功能电能表。 (12)配有数据通信接口的电能表,其通信规约应符合DL/T645的要求。 (13)具有正、反向送受电的计量点,应配置计量正向和反向有功电量以及四象限无功电量的电能表。一般可配置1只具有计量正、反向有功电量和四象限无功电量的多功能电能表。 (14)中性点绝缘系统(如经消弧线圈接地)的电能计量点,应配置经互感器接人的三相三线(3×100V)有功、无功电能表;但个别经过验证、接地电流较大的,则应安装经互感器接人的三相四线(3×有功、无功电能表。 (15)中性点非绝缘系统(即中性点直接接地)的电能计量点,应配置经互感器接人的三相四线(3×有功、,无功电能表。 (16)三相三线低压线路的电能计量点,配置低压三相三线(3×380V)有功、无功电能表;当照明负荷占总负荷的15%及以上时,为减小线路附加误差,应配置低压三相四线(3×380V/220V)有功、无功电能表,或3只感应式无止逆单相电能表。

华为链路聚合典型配置指导

链路聚合典型配置指导(版本切换前) 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用链路聚合服务 的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。同时,同一 聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。 组网图 链路聚合配置示例图 应用要求 设备Switch A用3个端口聚合接入设备Switch B,从而实现出/入负荷在各成 员端口中分担。 Switch A 的接入端口为GigabitEthernet1/0/1 ?GigabitEthernet1/0/3 。 适用产品、版本 配置过程和解释 说明: 以下只列出对Switch A的配置,对Switch B也需要作相同的配置,才能实现链路聚合。 配置聚合组,实现端口的负载分担(下面两种方式任选其一) 采用手工聚合方式 #创建手工聚合组1。 system-view [SwitchA] link-aggregation group 1 mode manual | # 将以太网端口GigabitEthernet1/0/1 至GigabitEthernet1/0/3 加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1

[SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 采用静态LACP聚合方式 #创建静态LACP聚合组1。 system-view [SwitchA] link-aggregation group 1 mode static #将以太网端口GigabitEthernet1/0/1 至GigabitEthernet1/0/3 加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 完整配置 采用手工聚合方式: # link-aggregation group 1 mode manual # interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 | port link-aggregation group 1 # 采用静态LACP聚合方式: # link-aggregation group 1 mode static interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 配置注意事项 不同平台软件对静态聚合方式的实现不同,所以不同平台软件的产品采用静态 聚合方式对接时,容易产生问题。有关平台软件的版本信息可以通过 display version 命令查看。

西门子装置基本参数设置

6SE70调试基本参数设置 恢复缺省设置 P053=6 允许参数存取 6:允许通过PMU和串行接口OP1S变更参数 P060=2 固定设置菜单 P366=0 0:具有PMU的标准设置 1:具有OP1S的标准设置 P970=0 参数复位 参数设置P060=5 系统设置菜单 P071= 装置输入电压 P095=10 异步/同步电机,国际标准 P100= 1:V/f控制 3:无测速机的速度控制 4:有测速机的速度控制 5:转矩控制 P101= 电机额定电压 P102= 电机额定电流 P103= 电机励磁电流,如果此值未知,设P103=0 当离开系统设置,此值自动计算。 P104= 电机额定功率因数 P108= 电机额定转速 P109= 电机级对数 P113= 电机额定转矩 P114=3 3:高强度冲击系统(在:P100=3,4,5时设置)P115=1 计算电机模型 参数值P350-P354设定到额定值 P130= 10:无脉冲编码器 11:脉冲编码器 P151= 脉冲编码器每转的脉冲数 P330= 0:线性(恒转矩) 1:抛物线特性(风机/泵) P384.02= 电机负载限制 P452= % 正向旋转时的最大频率或速度 P453= % 反向旋转时的最大频率或速度 数值参考P352和P353 P060=1 回到参数菜单 P128= 最大输出电流 P462= 上升时间 P464= 下降时间 P115=2 静止状态电机辩识(按下P键后,20S之内合闸)P115=4 电机模型空载测量(按下P键后,20S之内合闸) 6SE70 变频装置调试步骤

一.内控参数设定 1.1 出厂参数设定 P053=7 允许CBP+PMU+PC 机修改参数 P60=2 固定设置,参数恢复到缺省 P366=0 PMU 控制 P970=0 启动参数复位 执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机调试。 1.2 简单参数设定 P60=3 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数 P071 进线电压(变频器400V AC / 逆变器540V DC) P95=10 IEC 电机 P100=1 V/F 开环控制 3 不带编码器的矢量控制 4 带编码器的矢量控制 P101 电机额定电压 P102 电机额定电流 P107 电机额定频率HZ P108 电机额定速度RPM P114=0 P368=0 设定和命令源为PMU+MOP P370=1 启动简单应用参数设置 P60=0 结束简单应用参数设置 执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手 册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。 1.3 系统参数设置 P60=5 P115=1 电机模型自动参数设置,根据电机参数设定自动计算 P130=10 无编码器 11 有编码器(P151 编码器每转脉冲数) P350=电流量参考值A P351=电压量参考值V P352=频率量参考值HZ 3 3 P353=转速量参考值1/MIN P354=转矩量参考值NM P452=正向旋转最大频率或速度%(100%=P352,P353) P453=反向旋转最大频率或速度%(100%=P352,P353) P60=1 回到参数菜单,不合理的参数设置导致故障 1.4 补充参数设定如下 P128=最大输出电流A P571.1=6 PMU 正转 P572.1=7 PMU 反转

H3C交换机IRF典型配置指导

目录 1 IRF典型配置举例 ······························································································································· 1-1 1.1 简介 ··················································································································································· 1-1 1.2 使用限制············································································································································ 1-1 1.2.1 硬件限制 ································································································································· 1-1 1.2.2 软件限制 ································································································································· 1-1 1.2.3 单板使用限制 ·························································································································· 1-1 1.2.4 IRF端口连接限制 ···················································································································· 1-1 1.3 选择MAD检测方式····························································································································· 1-2 1.4 使用四台设备搭建IRF典型配置举例(LACP MAD检测方式) ························································· 1-2 1.4.1 适用产品和版本 ······················································································································ 1-2 1.4.2 组网需求 ································································································································· 1-2 1.4.3 搭建IRF的配置························································································································ 1-3 1.4.4 LACP MAD配置 ······················································································································ 1-8 1.4.5 业务配置 ······························································································································· 1-10 1.4.6 验证配置 ······························································································································· 1-14 1.4.7 配置文件 ······························································································································· 1-16 1.5 使用四台设备搭建IRF典型配置举例(BFD MAD检测方式)·························································· 1-21 1.5.1 适用产品和版本 ···················································································································· 1-21 1.5.2 组网需求 ······························································································································· 1-21 1.5.3 搭建IRF的配置······················································································································ 1-22 1.5.4 BFD MAD配置 ······················································································································ 1-26 1.5.5 业务配置 ······························································································································· 1-28 1.5.6 验证配置 ······························································································································· 1-33 1.5.7 配置文件 ······························································································································· 1-35

加密装置详细配置步骤

纵向加密配置 纵向加密配置步骤 (2) 第一步:生成证书请求 (2) 第二步:设置装置IP地址 (4) 第三步:VLAN配置(如果需要) (5) 第四步:证书配置 (7) 第五步:隧道配置 (8) 第六步:策略配置 (8) 纵向加密装置内核升级 (10) 恢复配置 (12)

纵向加密配置步骤 现在纵向加密为双路网口,内网1和外网1为第1路,内网2和外网2为第2路,如果在两路同时使用时,一般第1路连接实时业务,第2路连接非实时业务。内网连接本地接入交换机,外网连接外出路由器。除此之处,加密装置还带有一个配置口(RJ-45接口转RS-232)和一个心跳口。 在配置前,需要在本地电脑上安装专用的纵向加密装置配置终端“”,安装文件在随机光盘里面或者联系厂家获取。目前纵向加密装置的内核版本为 2.4.7,因此对应的配置终端程序的版本为3.5。 对纵向加密装置的配置可以通过两种方式,一是用串口线连接配置口进行配置,在“图1”中选择“串口通信”;二是用网线连接心跳口(或者其他已配置好IP地址的网口),在“图1”中选择“网口通信”,然后在后面输入IP地址(心跳口IP地址默认为:192.168.100.1,掩码:255.255.255.248) 图1 第一步:生成证书请求 如果是重新配置,则在登录时,需要为装置生成设备证书请求(如“图2”所示),按要求输入相关参数后,点击“生成证书请求”,等待几秒钟后,会提示“图3”所示,则点击“下一步”,在“图4”中,选择证书请求存储路径,然后点“导出”导出证书请求(如“图5”所示),生成证书请求成功,把证书请求发给CA机构签发设备证书。

EPON灵活QINQ典型配置指导手册V1.0

EPON灵活QINQ典型配置指导手册 编号: 版本:V1.0 编制:技术中心热线部 审核:熊志军 批准: 瑞斯康达科技发展股份有限公司

文档修订记录 文档说明: 本文档主要用于指导工程师完成EPON灵活QINQ典型配置,本文以某商用网络为例,介绍了新在EPON系统上具体的配置操作步骤和注意事项。

前言 读者对象: 本文档适合ISCOM5000系列EPON设备灵活QinQ操作维护管理人员使用,主要面向各区域工程师。本文档介绍ISCOM5000系列EPON设备根据灵活QinQ的配置、常用故障排查方法、FAQ 等内容。 编写时间:2010年3月 相关参考手册: ISCOM 5000 EPON设备主要手册及用途如下

目录 前言 (3) 一、Q-IN-Q概述 (6) 二、技术介绍 (6) 2.1 QinQ报文格式 (6) 2.2 QinQ封装 (7) 2.2.1 基于端口的QinQ封装 (7) 2.2.2 基于流的QinQ封装 (7) 三、典型案例配置 (8) 3.1 EPON交换端口VLAN配置 (8) 3.2 根据以太网报文类型灵活Q-IN-Q 应用拓扑 (10) 3.3三种数据的业务流向及处理过程 (12) 3.4配置流程 (13) 3.5 具体数据配置流程: (14) 1) 创建加载板卡 (14) 2) 在olt上配置数据业务,创建vlan ,修改TPID值 (14) 3)配置3槽位PON板第一个PON口 (14) 4)配置上联GE口(PORT 11) (15) 5)配置上联GE口(PORT 12) (15) 6)配置网管地址及网关 (15) 7)EPON 以太网报文类型灵活Q-IN-Q配置实例 (15) 8)灵活Q-IN-Q抓包样本 (15) 四、常见故障处理FAQ (16) EPON以太网报文类型灵活Q-IN-Q常见FAQ (16) Q1:在配置根据以太网报文的灵活Q-IN-Q时,若两种数据存在一样的以太网报文类 型,该怎么区分? (16) Q2:为什么从OLT上无法PING通EOC及交换机的网管地址,而经过USR或者BRAS 的网管服务器可以PING通EOC、交换机及OLT。 (16) Q3:为什么同一台电脑在测试过一个业务后,马上测试另外一种业务,该电脑会存在

高级IPv4 ACL典型配置指导

1.1 高级IPv4 ACL典型配置指导 高级IPv4 ACL可以使用报文的源IP地址信息、目的IP地址信息、IP承载的 协议类型、协议的特性(例如TCP或UDP的源端口、目的端口,ICMP协议 的消息类型、消息码等)等信息来制定匹配规则。 高级IPv4 ACL支持对三种报文优先级的分析处理: ●ToS(Type of Service,服务类型)优先级 ●IP优先级 ●DSCP(Differentiated Services CodePoint,差分服务编码点)优先级 用户可以利用高级IPv4 ACL定义比基本IPv4 ACL更准确、更丰富、更灵活的 匹配规则。 高级IPv4 ACL的序号取值范围为3000~3999。 1.1.1 组网图 总裁办公室 192.168.1.0/24 研发部门 192.168.2.0/24192.168.3.0/24 图1-1配置高级IPv4 ACL组网图 1.1.2 应用要求 公司企业网通过交换机(以S5500-EI为例)实现各部门之间的互连。要求配 置高级IPv4 ACL,禁止研发部门和市场部门在上班时间(8:00至18:00)访问 工资查询服务器(IP地址为192.168.4.1),而总裁办公室不受限制,可以随 时访问。

1.1.3 适用产品、版本 表1-1配置适用的产品与软硬件版本关系 1.1.4 配置过程和解释 (1) 定义工作时间段 # 定义8:00至18:00的周期时间段。 system-view [Switch] time-range trname 8:00 to 18:00 working-day (2) 定义到工资查询服务器的访问规则 # 定义研发部门到工资查询服务器的访问规则。 [Switch] acl number 3000 [Switch-acl-adv-3000] rule deny ip source 192.168.2.0 0.0.0.255 destination 192.168.4.1 0 time-range trname [Switch-acl-adv-3000] quit # 定义市场部门到工资查询服务器的访问规则。 [Switch] acl number 3001 [Switch-acl-adv-3001] rule deny ip source 192.168.3.0 0.0.0.255 destination 192.168.4.1 0 time-range trname [Switch-acl-adv-3001] quit (3) 应用访问规则 # 定义类classifier_rd,对匹配高级IPv4 ACL 3000的报文进行分类。 [Switch] traffic classifier classifier_rd [Switch-classifier-classifier_rd] if-match acl 3000 [Switch-classifier-classifier_rd] quit # 定义流行为behavior_rd,动作为拒绝报文通过。 [Switch] traffic behavior behavior_rd [Switch-behavior-behavior_rd] filter deny [Switch-behavior-behavior_rd] quit # 定义类classifier_market,对匹配高级IPv4 ACL 3001的报文进行分类。 [Switch] traffic classifier classifier_market [Switch-classifier-classifier_market] if-match acl 3001 [Switch-classifier-classifier_market] quit # 定义流行为behavior_market,动作为拒绝报文通过。 [Switch] traffic behavior behavior_market [Switch-behavior-behavior_market] filter deny [Switch-behavior-behavior_market] quit

华为链路聚合典型配置指导(终审稿)

华为链路聚合典型配置 指导 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

链路聚合典型配置指导(版本切换前) 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上 的聚合组,使用链路聚合服务的上层实体把同一聚合组内的多 条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分 担,以增加带宽。同时,同一聚合组的各个成员端口之间彼此 动态备份,提高了连接可靠性。 组网图 链路聚合配置示例图 应用要求 设备Switch A用3个端口聚合接入设备Switch B,从而实现出/入负荷在各成员端口中分担。 Switch A的接入端口为GigabitEthernet1/0/1~ GigabitEthernet1/0/3。 适用产品、版本 配置适用的产品与软硬件版本关系

配置过程和解释 说明: 以下只列出对Switch A的配置,对Switch B也需要作相同的配置,才能实现链路聚合。 配置聚合组,实现端口的负载分担(下面两种方式任选其一) 采用手工聚合方式 # 创建手工聚合组1。 system-view [SwitchA] link-aggregation group 1 mode manual # 将以太网端口GigabitEthernet1/0/1至 GigabitEthernet1/0/3加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 采用静态LACP聚合方式 # 创建静态LACP聚合组1。 system-view [SwitchA] link-aggregation group 1 mode static # 将以太网端口GigabitEthernet1/0/1至 GigabitEthernet1/0/3加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1

ZXR10 T64G交换机安装与配置手册

中兴ZXR T64G万兆路由交换机 安装手册 中国电信集团系统集成有限责任公司 2008年9月

目录 1.ZXR10 T64G 体系介绍 (3) 1.1.产品概述 (3) 1.2.硬件结构与板卡介绍 (4) 1.3.软件版本升级 (5) 2.ZXR10 T64G 的安装 (6) 2.1.安装在机柜 (6) 2.2.单板的安装 (6) 3.ZXR10 T64G 配置 (7) 3.1.命令行使用 (7) 3.1.1.在线帮助 (7) 3.1.2.命令缩写 (8) 3.1.3.命令历史 (8) 3.2.端口配置 (9) 3.2.1.物理端口配置 (9) 3.3.IS-IS配置 (11) 3.3.1.IS-IS基本配置 (11) 3.3.2.IS-IS配置实例 (11) 3.4.BGP 配置 (12) 3.4.1.配置BGP (12) 3.4.2.BGP 配置实例 (13) 4.常用系统维护命令 (13) 4.1.IS-IS (13) 4.2.BGP (13)

1.ZXR10 T64G 体系介绍 1.1. 产品概述 ZXR10 T64G是中兴通讯自主研发的以太网路由交换机,可用于城域网的骨干层或汇聚层,也可作为大型企业网、园区网的骨干/汇聚三层交换机。 ZXR10 T64G提供快速以太网、千兆以太网、万兆以太网等接口,并且支持所有端口L2/L3线速转发,能够满足日益增长的带宽要求。ZXR10 T64G还支持多种单播和组播路由协议。 随着网络的发展,数据网上承载的业务种类也越来越多,这对网络设备的服务质量保证、安全等方面都提出了更高的要求。ZXR10 T64G在QoS和ACL方面提供了丰富的策略和资源,保证了服务质量和系统安全。 作为骨干/汇聚层的重要交换节点,ZXR10 T64G具有电源模块、控制和交换模块的热备份功能,适合于建设高可靠、大容量的网络。 ZXR10 T64G具有以下特点: 电信级的可靠性 全线速的转发和过滤能力 丰富的网络协议支持 开放的体系架构,支持很好的升级能力 ZXR10 T64G为标准19英寸插箱式结构。ZXR10 T64G共有6个插槽,其中1个为控制交换板槽位,4个为线路接口板槽位,还有一个槽位可根据需要插控制交换板或线路接口板。 控制交换板实现交换、协议处理、系统配置管理、网管接口等功能,是系统的核心部分,可进行1+1冗余配置。 线路接口板主要进行报文处理,包括转发、丢弃、上报等操作,以实现业务流的线速转发。ZXR10 T64G支持多种类型和端口密度的线路接口板,包括:1.1端口万兆以太网光接口板 2.2端口万兆以太网光接口板 3.12端口千兆以太网光接口板 4.24端口千兆以太网光接口板 5.12端口千兆以太网电接口板 6.24端口千兆以太网电接口板 7.44+4快速以太网电接口板 ZXR10 T64G实现了全线速的二三层交换功能,广泛支持多种协议,提供各种功能。 1.物理端口 支持端口速率、双工模式、自适应等的配置 支持端口镜像 支持广播风暴抑制

华为链路聚合典型配置指导

链路聚合典型配置指导(版本切换前) 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用 链路聚合服务的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。 同时,同一聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。组网图 链路聚合配置示例图 应用要求 设备Switch A用3个端口聚合接入设备Switch B,从而实现出/入负荷在各成员端口中分担。 Switch A的接入端口为GigabitEthernet1/0/1~GigabitEthernet1/0/3。 适用产品、版本 配置适用的产品与软硬件版本关系 配置过程和解释 说明: 以下只列出对Switch A的配置,对Switch B也需要作相同的配置,才能实现链路聚合。 配置聚合组,实现端口的负载分担(下面两种方式任选其一) 采用手工聚合方式 # 创建手工聚合组1。 system-view [SwitchA] link-aggregation group 1 mode manual # 将以太网端口GigabitEthernet1/0/1至GigabitEthernet1/0/3加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1

[SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 采用静态LACP聚合方式 # 创建静态LACP聚合组1。 system-view [SwitchA] link-aggregation group 1 mode static # 将以太网端口GigabitEthernet1/0/1至GigabitEthernet1/0/3加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 完整配置 采用手工聚合方式: # link-aggregation group 1 mode manual # interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 采用静态LACP聚合方式: # link-aggregation group 1 mode static interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 配置注意事项 不同平台软件对静态聚合方式的实现不同,所以不同平台软件的产品采用静态聚合方式对接时,容易产生问题。有关平台软件的版本信息可以通过 display version命令查看。 配置了RRPP的端口、配置了静态MAC地址或者黑洞MAC地址的端口、使能Voice VLAN的端口以及使能802.1x的端口不能加入聚合组。 链路聚合典型配置指导(版本切换后) 组网图 链路聚合配置示例图

相关文档
最新文档