A Roadmap for Technology Literacy and a Vehicle for Getting There Educational Robotics and

A Roadmap for Technology Literacy and a Vehicle for Getting There Educational Robotics and
A Roadmap for Technology Literacy and a Vehicle for Getting There Educational Robotics and

Abstract—Current technology literacy trends in the United States show declining interest and engagement in technological fields of study. We propose a roadmap by which robotics applications can enliven technology education and capture the interest of new students. We also describe our current efforts to design appropriate technologies and apply them at the middle school, high school, and college levels.

I.T ROUBLING T ECHNOLOGY L ITERACY T RENDS

OMETHING is dangerously wrong with science and engineering education in the United States. At a time when total college enrollment is booming, most science and engineering departments are seeing decreasing student interest in high technology fields. The forecast is especially dismal for Computer Science (CS) with interest in the CS major among incoming freshmen dropping by 60% from 2000 to 2004 [1]. These trends are a uniquely American phenomenon, as science and engineering enrollment is climbing in nearly every other part of the world. Technology industry leaders are becoming increasingly concerned that a workforce shortage is imminent in high technology fields, and this will cause the United States to lose its technological edge [2].

We believe that there are two underlying reasons for the drastic decline in Computer Science enrollment. First, science and engineering fields have failed to engage a broad range of intelligent and creative thinkers, especially women and minorities. By appealing to only a narrow cross-section of college undergraduates, science and engineering programs shrink the pool of potential applicants by at least half, as women make up the majority of undergraduate college students. Second, high school and introductory college courses in science and engineering often bore and discourage students, when they should be inspiring and exciting them to continue their studies. As a field, we are missing critical opportunities to bridge the gender gap and

Manuscript received May 19, 2006. This work is supported in part by Google, Microsoft, Intel, and The Heinz Foundation.

I. Nourbakhsh is with The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA (phone: 412-268-2007; fax 412-268-7350; e-mail: illah@https://www.360docs.net/doc/f32930699.html,).

E. Hamner is with The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA (e-mail: etf@https://www.360docs.net/doc/f32930699.html,).

T. Lauwers is with The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA (e-mail: tlauwers@https://www.360docs.net/doc/f32930699.html,).

D. Bernstein is with the University of Pittsburgh’s Center for Learning in Out of School Environments (UPCLOSE), Pittsburgh, PA, 15213, USA (e-mail: dlb36@https://www.360docs.net/doc/f32930699.html,).

C. Disalvo is with the School of Design, Carnegie Mellon University, Pittsburgh, PA, 15213, USA (e-mail: cdisalvo@https://www.360docs.net/doc/f32930699.html,). engage students at different points along the educational pipeline.

Engaging and creative educational experiences with technology at the middle school and high school levels can help to stimulate life-long interest in technological endeavors for both girls and boys. While adolescents are given some opportunities to engage with technology, many of the experiences that hook boys on technology are not capturing the interest of girls in the same way. Video and computer games are frequently violent, repetitive, and perpetuate negative female stereotypes [3]. Most existing robotics opportunities are either competitive by nature (Botball [4], RoboCup Junior [5], RoboFesta-Europe [6], US First [7]), or are classes which incorporate competitive games into the curriculum. While these competitions can be a strong motivator for some, they also act to turn off those who would rather work in a collaborative environment than a competitive one. The development of technology experiences that appeal to a broad range of students is key to engaging a larger segment of the adolescent population in technology-rich activities.

Middle school age (11 – 13 years old) is one of several critical ages in terms of student identification and engagement with technology. Gender gaps in interest, confidence and performance, particularly in the physical sciences, have historically emerged when students are in middle school [8], [9], [10], [11]. At this age, students are actively developing identities that reflect combinations of peer culture and academic self. These factors make the early adolescent years a key time to incorporate technological literacy in girls’ self identities, as well as to engage a diverse population of boys and girls.

High school students are another important target population because these students are making active decisions that will have a bearing on their future lives: which high school classes to take in preparation for college or career, which college programs to apply to, and which career paths to pursue. While some progress has been made towards reducing the gaps in math and science achievement and enrollment in advanced math and science coursework, boys are still much more likely than girls to choose to study advanced physical sciences, engineering, and computer science [12].

Another critical point along the educational pipeline is the undergraduate Introduction to Computer Science course (CS1). The inadequacy of fielded CS1 programs is well-researched. Schoenberg and Margolis demonstrate that CS1

A Roadmap for Technology Literacy and a Vehicle for Getting

There: Educational Robotics and the TeRK Project

Illah Nourbakhsh, Emily Hamner, Tom Lauwers, Debra Bernstein, and Carl Disalvo

S

fails to attract and retain women because it does not contain key qualities that women find appealing: usefulness, relevance to other activities and interests, and intellectual depth [3], [13]. Moreover, the problem extends well beyond women alone. CS1 has poor engagement and retention with significant numbers of men as well. In currently ongoing studies, Blum and Frieze demonstrate that the above qualities are valued as much by men as by women [14], [15]. These new studies suggest that incorporating usefulness and application-oriented programming can play critical roles in turning around the current CS1 slump. Reforming the CS1 curriculum has the potential to affect a sea change in Computer Science enrollment. Additionally, as Advanced Placement CS classes1 are required to be similar in nature to CS1, major reforms in the undergraduate CS1 curriculum may have a positive impact at the high school level as well. Robotics has recently evolved into an effective tool for education and presents a sound opportunity to help solve the problem of motivating and exciting students to study science and engineering [16], [17]. We submit that new technologies, particularly robotic technologies that enable multi-modal sensing, computation, and actuation, have the potential to enliven learning experiences at the middle school, high school, and college levels and bring about a positive change in students’ experiences.

Rich embedded devices, such as kinetic sculptures, dramatic performances by robotic casts, humanoid robots, and light show and music-playing robots, all have the potential to excite and inspire students who see courses such as computer science as irrelevant to their interests. Our hypothesis is that enabling state of the art technology to be a superior creative outlet for those with diverse interests beyond technology is an effective way to significantly increase and diversify the technology-literate community.

Our lab has been developing educational robotics applications since 1998. Through the Toy Robots Initiative [18] and the Personal Rover Project [19] we have brought educational robots to informal learning spaces [20], [21], [22] as well as formal learning environments [23]. With our colleagues at the University of Pittsburgh’s Center for Learning in Out of School Environments (UPCLOSE) we have conducted formal educational evaluations on several of these efforts and found measurable, positive learning outcomes resulting from the robotics experiences [21], [22], [23]. In this paper we outline the components that we believe are necessary for a successful, engaging educational robotics application. We then describe our current efforts under our latest project called Telepresence Robot Kit (TeRK) which aims at broadly disseminating rich technology learning experiences that appeal to a diverse cross-section of learners.

1 Advanced Placement classes allow high school students to study material at the college level. Based on their scores on special Advanced Placement tests, students may be able to skip introductory courses once they reach college, and go directly to a more advanced class.

II.R OADMAP

The qualities of usefulness, relevance to activities and interests, and intellectual depth are critical engagement and retention issues for technology literacy. We propose that, given the current technological state of the art in robotics, it is now feasible to develop a robotics roadmap that addresses infusion of these qualities into scientific and technical activities throughout the developmental pipeline, from middle school through college. Three critical criteria comprise such a roadmap, reinforcing the fact that compelling technology is only one enabler, whereas social and interaction design serve as both catalyst and guide.

A.High-functioning multi-modal robotics at an accessible and competitive price point

A recent confluence of inherently multi-modal technologies (e.g. mobile phone electronics; USB-based cameras; low-cost wireless transceivers) suggests that richly functional robotics is now feasible at significantly lower price points than seen before. Furthermore robotics itself, often thought of in terms of sensing and simple actuation, has become expansive enough to include interactive aural, visual, tactile, and motive qualities students can relate to: music, sound, light, and motion. A multi-modal robot should be a tangible device that can express and interact with multiple human senses in a compelling manner.

From a functional perspective, connectivity, sight, and sound are critical for a multi-modal robotic system. Specifically, we propose wireless connectivity, USB-based camera vision, high-quality sound, and servo action as core requirements. Yet the price point for such a solution should not exceed the cost of the LEGO Mindstorms kit, approximately $250. In terms of price sensitivity in educational applications, Mindstorms is at the upper threshold of school budgets, and even a high-functioning system, if priced higher, will achieve dramatically lower rates of use. The ARM processors prevalent in mobile phones, coupled with low-cost, high-end technologies such as USB 2.0 drivers and USB-based wireless transceivers, make this financial proposition realistic.

B.Software and hardware interfaces for life-relevant creative expression

We hypothesize that the quality of engagement can be significantly improved when a robot system can be used for creative purposes in concert with non-technological activities in the lives of the students: dance, writing, theater, music, sports, et cetera. Thus the system must operate outside its own technology bubble, putting forth software and hardware interfaces that allow for creative participation of the robotic system in non-technical daily activities in a variety of settings –school, work, home, and public spaces. To effect this unbounded level of interactivity, hardware must be truly robust, and software must provide multi-modal interconnectivity, including internet communication. We believe that a student inventor will desire to connect their

robot to their email, their blog, other robots, and their immediate surroundings through the internet as readily as through local visual processing.

C.Internet infrastructure for vibrant networked communities

At each educational level, age level, and community of common interests, we believe that community-wide sharing has an important role in enhancing retention by providing a network of like-minded peers and friends. Such active community-building is a difficult task, and we believe the infrastructure enabling such sociality will prove to be as important as the technology of embedded systems in making educational robotics a successful enterprise. A well-designed infrastructure must support communities of practice and/or interest, e.g. high school computer science teachers, and in so doing must provide the functionality that distinguishes active, healthy internet communities from those that fail due to lack of interest and participation. Kim [24] identifies nine principles essential for vibrant internet communities, including:

1)Define and articulate your purpose

2)Build flexible, extensible gathering places

3)Create meaningful and evolving member profiles

4)Design for a range of roles

5)Develop a strong leadership program

6)Encourage appropriate etiquette

7)Promote cyclic events

8)Integrate the rituals of community life

9)Facilitate member-run subgroups

We believe that any project which successfully addresses the above three criteria can have a significant positive impact on technology literacy, and furthermore that any meaningful application of robotics to education demands that all three criteria be addressed. This naturally requires an interdisciplinary team of researchers and educators from design, embedded computing, robotics, computer science, education, and psychology to collaborate under a unified roadmap. In our own efforts, we are pursuing just such a course along one specific instantiation, that of a “Telepresence Robot Kit” for project-based, out-of-school and formal learning activities in middle school, high school, and college.

III.O UR EFFORT:T E RK

The Telepresence Robot Kit, or TeRK, project combines four thrusts of research and development in order to meet the requirements previously specified: 1) design of a microprocessor dubbed ‘Qwerk’, 2) development of a rich software API, 3) design of “robot recipes” for physical robot construction, and 4) development of a community web site infrastructure. The ways in which each of these technologies support the roadmap points are described in brief along with our specific plans for using this technology to launch communities at the middle school, high school, and college levels.

A.Technology

1)High-level Functionality at a Low Cost

The need for a low-cost and yet high-functioning multi-modal robot platform is addressed through two different aspects of the TeRK effort, namely the Qwerk microprocessor and the development of accompanying robot recipes. The Qwerk microprocessor was designed in cooperation with Charmed Labs LLC. With a bill of materials under $150, this processor is inexpensive, yet can form the core of the high-functioning, multi-modal robot necessary to impact technology literacy trends. The Qwerk is designed to control myriad robots; it can control up to four motors and eight servos, while interfacing to sensors with eight analog ports, sixteen digital I/O, and an i2c bus. It also has two USB sockets so that robots may include a USB webcam and a wireless 802.11b network adapter. Visual and aural robot interactions are made possible through support for full-color LEDs and high-fidelity audio playback.

The development of so-called ‘robot recipes’ also facilitates our goal of keeping robot designs low-cost yet high-functioning. Freely available on the internet, the recipes are composed of instructions on how to construct robots using commercially available, off-the-shelf parts. All robot designs can be built using only hand-tools.

2)Relevant Creative Expression

An important goal of the TeRK project is to allow anyone, regardless of technical experience, to use robotics to create and express their ideas. With software that allows out-of-the-box internet connectivity and support for wireless networking, someone unfamiliar with the complexities of computer networking is able to connect their robot to the internet. Several robot recipes, such as a robotic flower which incorporates multicolored lights, sounds, and various sensors, support creative and non-traditional expression using technology. Freely available software applications are designed for unique activities incorporating writing, theater, music, and light shows. A library of software will be available through the internet so that people can utilize advanced algorithms, for example face recognition software, without the need for an advanced programming background. An important technical requirement for this system to succeed is an internet-based infrastructure for communication between communities of humans and communities of robots. Users will naturally want to be able

to both control their robots regardless of locale, and to be able to share their robot hardware and software with friends and colleagues. We have been implementing a specialized “relay server” designed to enable registration of robots and people, with sharing of software and robot control from throughout the internet. This functionality will allow an individual to program, configure, and teleoperate a robot from anywhere, using just a web browser, even if the robot and the individual are at different firewall-protected

locations (e.g. at university and at home on a DSL wireless hookup). Such functionality is essential to relieve the non-technology expert from being burdened with learning details of networking technology before being able to express themselves creatively with robotic technologies. As with all of our software, this entire relay server architecture is in the public domain.

3) Web Community

The TeRK web site [25] has been designed with the help of the web design firm LotterShelly LLC. The purpose of our site is multifold: support the development of a participatory community centered around robotics; enable free dissemination of robot recipes, software, and educational curricula; empower community members by encouraging the sharing of feedback, new recipes, new software, and new curricula. The intent is to expand the site as appropriate based on the uses and needs of the developing community. Keeping with Kim’s recommendations [24], the site includes profiles that aim to highlight members’ robotic interests and recognize their contributions to the web community. In order to encourage appropriate etiquette, all contributions to the site (posted feedback, new robot recipes, et cetera ) are linked to the contributor’s profile.

B. Plans for Action

We plan to create communities at the middle school, high school, and college levels through various applications of the TeRK technology. In cooperation with our partners at UPCLOSE, we are planning a formal rollout and educational evaluation process which we will use to measure the efficacy of the TeRK package in various educational settings. Early pilot experiments, combined with in vivo evaluation as the community builds, will enable follow-on refinements of the TeRK package. 1) Middle School We believe that the technology experiences currently

available to middle school students (e.g., Botball, LEGO

Mindstorms, and computer gaming) are designed to engage

individuals, primarily but not exclusively boys, who already

have an interest in technology and competitive games. In

order to encourage creative engagement with technology

among a more diverse group of students, we have developed

the Robot Diary Project. The Robot Diary is a customizable

robot designed to serve as a unique means of exploring,

expressing, and sharing emotions, ideas, and thoughts. We

believe that by providing a tool that can be responsive to a

user’s interests, activities, and emotions, we can encourage

creative technology use among students who are typically

under-represented in more traditional technology

communities. Our primary goal for the Robot Diary is to

broaden girls’ engagement with technology.

The Robot Diary is physically an expressive kinetic robot.

Using the TeRK Qwerk board this robot has the ability to make sound, play music, create light shows, interpret diverse sensors and actuate motors for vibration and gesticulation.

The Robot Diary kit will be a modular substructure, or skeleton, on which a variety of textures and patterns can be applied to create a personal expressive device with a standardized input/output architecture underneath.

For example users can choreograph their Robot Diaries to be responsive to a diary entry or other piece of text. Importantly, the user is responsible for defining the boundaries of the choreography – users will decide how the robot will respond to their diary entries, thus engaging in an ongoing intellectual experiment about how technology can interface with human emotions. Additionally, because TeRK robots are web enabled, Robot Diary users will be able to share the emotional content of diary entries through embodied robotic expressions with friends in a web-based diary community. This means that a user will be able to see how their friend is feeling by playing the friend’s entry on their own robot. The actual written content of the diary entry would remain private, but the emotional expression will be shared publicly with the friend group. By incorporating technology into the existing community practice of sharing emotions and experiences, we hope to facilitate entry into the technology community among a more diverse group of users, particularly girls. Specifically, we strive to increase girls’ motivation and interest in technology, and give them the confidence they need to

continue their technology explorations.

Once Robot Diary communities have been established, we will conduct a series of studies to assess their impact. One set of studies will compare the experiences of girls participating in a Robot Diary community with girls participating in a more typical robotics community (e.g., Botball). Our evaluation will center around two key areas: identity and knowledge change. By identity, we mean the extent to which the girls come to view themselves as a part of a community that is interested in, competent at, and motivated to engage in technology with a mission. By knowledge, we mean the amount of declarative and

conceptual robotics content (e.g., robot assembly,

programming, debugging) that girls learn during their

engagement with Robot Diaries. If we are correct in our

belief that Robot Diaries will provide a unique and powerful

educational opportunity for girls, we would expect to find

knowledge gains and a positive identity shift for Robot

Diary participants.

Although our initial work will focus on girls in informal

learning settings, we believe that the Robot Diary concept

can be expanded to a classroom setting and that it can be

beneficial for both girls and boys. Once the platform has

been fully developed, a second research project will

investigate the use of Robot Diaries to support and enhance

formal educational objectives in different areas, including

literacy, science, and technology education.

2) High School

We believe that combining the arts and engineering fosters creativity and encourages students to engage

technology as a means for both conducting science and producing innovative forms of personal expression. Neighborhood Nets is a project for high school students that promotes citizen science by combining robotic technology with public art and design to explore and address local environmental concerns. High-school students participating in Neighborhood Nets will use the Qwerk board as a platform for community oriented environmental sensing and collaborative creative expression. By outfitting the Qwerk board with simple sensors, student groups can monitor

pollution and other environmental phenomena. Multiple Qwerk boards will be networked together to create a "net" that collects data from locations across a neighborhood or multiple neighborhoods. The sensed data can then be represented to the public through robotic sculptures or other forms of display that involve motion, light, and sound that participants design and build.

At its core, The Neighborhood Nets project employs an integrated arts and engineering curriculum to educate and empower students to use emerging technology (distributed sensor nets) and public art to produce representations and expressions of their neighborhoods. One of the key research questions is of what benefit is an integrated arts and engineering curriculum, i.e., a curriculum that privileges neither perspective but seeks to use the arts to inform engineering and engineering to inform the arts. A corollary

question is how to best construct such a curriculum. In addition we are interested in better understanding if and how a participatory design process can foster technological literacy and improve the public understanding of both the given technology and of pressing environmental concerns in urban neighborhoods.

The Neighborhood Nets project will be composed of four phases: Discovery, Invention, Expression, and

Communication. Each phase includes specific participant activities and research questions.

Discovery. In the discovery phase, students and researchers will work together to discover and articulate the implicit knowledge that residents have about their community. Through a series of activities such as walking tours, photo/video documentation, information mapping, and story telling, the students will use creative methods to represent the social and material ecology of their community. These activities build on a tradition of artistic

engagement with the urban environment as a means to explore and represent those aspects of a community that are often not recorded in more “official” surveys, but nonetheless are important and distinctive to residents of the neighborhood.

Invention. In the invention phase, students and researchers will work together to invent, design, and construct robotic devices for sensing those aspects of their neighborhood that they discovered to be most salient in the discovery phase. This phase will begin with a series of informal workshops in which the students will learn about and explore the capabilities of contemporary sensing technologies. These workshops make use of and build on established methods of creative problem solving using performance, art, and design techniques to explore the limitations and possibilities of a given technology. Once the student groups have conceived of their devices and how they will function, using the Qwerk board as a ready-made platform and off-the-shelf sensors, the groups will work with engineers and designers to implement and deploy their devices in their neighborhood.

Expression. In the expression phase students and researchers will work together to design and produce public displays of the data being collected by their devices. These activities build on the artistic and activist practices of visualizing otherwise obscure, hidden, or ignored data, making public what is relevant to the community. Students will be encouraged to use the capabilities of the Qwerk

board to explore kinetic modes of expression by producing robotic sculptures that move and make sound, learning basic engineering principles in the process. Students will also be challenged to consider how the displays they create interface with their neighborhood residents and present an image of their neighborhood to the broader community of the city. Of particular importance will be the question of how to represent the data they have collected from their devices in manners that are both appropriate and compelling.

Communication. In this phase, the students produce documentation of the project and share it with their neighborhood, local scientists and artists, the media, and city government. The purpose of this phase is to promote the idea that the work the students do as citizen scientists and public artists must be brought into the public

discourse/record and not dismissed as “just the work of kids.” We believe that students’ communication of their

process and findings beyond the class room is an integral part of the experience.

3) College A prime target for the TeRK effort is to use robotics to motivate novice programmers, by exposing them to both practical and exciting applications of the art of programming. We believe that demonstrating these applications will help decrease the historically high drop-out rate seen in computer science programs during and following CS1.

Traditional introductory computer science courses are heavily focused on teaching programming, so much so that the general public considers computer science and programming synonymous. While this pedagogical strategy is effective at laying a strong foundation for programming

skills, it creates curricula which do little to motivate students. Programming exercises rarely incorporate real-world data. By enabling assignments and curricula which allow students to tackle practical, real world problems by creating relevant and exciting software programs, multi-modal robotic systems such as TeRK can be used as a tool for major change in CS1.

Although the TeRK technology is a necessary condition for creating CS1 curricular technology, it is by no means

sufficient. In addition to technological design, we plan to conduct extensive evaluations of existing CS1 classes to identify critical points in the current curriculum at which students lose interest, as well as creating and evaluating our own robotics centered curricula. As such, our major

research questions in this project are focused on how to

design and refine technology and curricula based on evaluations of current CS1 courses as well as courses

piloting TeRK:

? What microgenetic learning mechanisms guide

knowledge acquisition in CS1 today?

? Throughout the curricular arc of CS1, where and how

are engagement and retention factors adversely affected?

? What critical touch points in CS1, if invigorated by

concrete active learning projects, have the potential to

have a significant impact on engagement and retention? ? What active learning modules can be designed agnostically for applicability across the most commonly used pedagogical approaches to CS1?

? What interaction richness (e.g. multi-modal sound,

light, motion, sensing, internet connectivity, speech,

visualization, et cetera ) represents a spanning set of

features required to satisfy the needs of active learning modules for CS1?

? What is the cost-minimizing software and hardware reference device that implements the above functionality and demonstrates significant

improvements for CS1 curricula?

These questions represent the research agenda of this project. The ordering is significant because technology development can proceed only when the desired interaction richness has been clearly identified. Our project blends formal educational evaluation of existing CS1 together with the innovation that leads to validation experiments for new modules in CS1. We are convinced that an assessment-led

research program is the only way to arrive at a solution that

can truly have a great impact: tens, then hundreds, of CS1 teachers affordably introduce a new form of tool and problem set into their courses around the country, with ensuing statistically significant engagement and retention results. We will address the issues of student motivation, conceptual understanding of Computer Science, and confidence by developing a program of robotics-based curricular modules to cover four of the main topics taught in introductory Computer Science classes across a diversity of textbooks, languages, and teaching styles. The modular approach represents an elegant solution to the wide diversity of contexts, lesson plans, and textbooks that we face in attempting to provide useful and effective curricula to the

largest possible audience of college instructors. Furthermore, creating modules allows instructors to choose which concepts they would like to use TeRK robots to teach.

The evaluation of the curricular modules and the effect of these modules on the student must be developed in harmony with the curricula themselves. Our plan for designing the curricular modules is to:

1) Identify, through a study of textbooks and survey of

instructors, a set of main topics that are covered in a large majority of CS1 courses. 2) Evaluate current CS1 classes to identify which concepts

and topics are poorly communicated and uninteresting. 3) Develop curricular modules along with relevant software applications and robot hardware. 4) Pilot the modules and technology, and conduct intensive evaluations of these pilots. 5) Analyze the evaluation results in formal educational

terms, and refine the curricular modules and technology as appropriate. This plan, and especially steps three through five, represents an iterative design process that we believe will lead to new and demonstrably effective curricular options

for CS1 instructors interested in increasing their students’

motivation, confidence, and conceptual understanding. IV. C ONCLUSION Robotics has the potential to enliven technical education for students at all stages of the technology literacy pipeline.

We believe that three necessary components of a successful educational robotics application are 1) high-functioning

multi-modal robotics at an accessible price point, 2)

interfaces for life-relevant creative expression, and 3) internet infrastructure for vibrant communities of practice. Through the TeRK project we are striving to meet these demands and evaluate the outcome of educational interventions at three points in the educational pipeline. We hope that the results of these program evaluations will demonstrate the positive impact that robotics can have and serve to lay a foundation for future innovations. A CKNOWLEDGMENT We would like to thank the following individuals for their contributions to the TeRK project: Chris Bartley, Ben Brown, Kevin Crowley, Michael Dille, Brian Dunlavey, Ray Feng, Rich Juchniewicz, Rich LeGrand (Charmed Labs LLC), Jack Li, Mark Lotter, Zack Menegakis, Jonathan Terleski, Steven Shamlian, Ed Shin, and Michel Xhaard. R EFERENCES

[1] J. Vegso, “Interest in CS as a major drops among incoming freshmen.” Computing Research News, vol. 17 (3), 2005.

[2] T. Bishop, “Gates laments decreasing interest in computer science,”

https://www.360docs.net/doc/f32930699.html,/business/233128_gates19.html , Seattle

PI , July 19, 2005.

[3] J. Schoenberg, The Girl Difference: Short-Circuiting the Myth of the

Technophobic Girl. New York: Girl Scouts of America, 2001. [4] Botball 2006: https://www.360docs.net/doc/f32930699.html,

[5] RoboCup Junior 2006: https://www.360docs.net/doc/f32930699.html,/dev/rcj/

[6] RoboFesta-Europe 2001: https://www.360docs.net/doc/f32930699.html,/

[7]US First 2006: https://www.360docs.net/doc/f32930699.html,/

[8]American Association of University Women (AAUW). The AAUW

Report: How Schools Shortchange Girls. Wellesley College Center for

Research on Women. Washington, D.C.: AAUW Education

Foundation and National Education Association. 1992.

[9]American Association of University Women (AAUW). Tech-saavy:

Educating girls in the new computer age. Washington D.C.: AAUW

Educational Foundation. 2000.

[10]M. Beller and N. Gafni, “The 1991 international assessment of

educational progress in mathematics and sciences: The gender

differences perspective,” Journal of Educational Psychology, vol. 88

(2), pp. 365-377, 1996.

[11]J. A. Fredrics and J. S. Eccles, “Children’s competence and value

beliefs from childhood through adolescence: Growth trajectories in

two male-sex-typed domains,” Developmental Psychology, vol. 38 (4),

pp. 519-533, 2002.

[12]National Center for Education Statistics (NCES). (2004). Trends in

educational equity of girls and women: 2004. Retrieved November 5,

2004 from the Department of Education Website,

https://www.360docs.net/doc/f32930699.html,/pubs2005/equity/.

[13]J. Margolis and A. Fisher, Unlocking the clubhouse: Women in

computing. Cambridge: MIT Press, 2002.

[14]L. Blum and C. Frieze, “As the culture of computing evolves,

similarity can be the difference.” Frontiers, 26 Jan. 2005.

[15]L. Blum and C. Frieze, “In a more balanced Computer Science

environment, similarity is the difference and Computer Science is the

winner.” Computing Research News, vol. 17 (3), May 2005.

[16] A. Druin and J. Hendler, Robots for kids: exploring new technologies

for learning, The Morgan Kaufmann Series in Interactive

Technologies, Morgan Kaufmann, 2000.

[17]H. H. Lund and P. Marti, “Physical and conceptual constructions in

advanced learning environments.” Interaction Studies, vol. 5 (2), pp.

271-301, 2004.

[18]Toy Robots Initiative 2006: https://www.360docs.net/doc/f32930699.html,/~illah/EDUTOY

[19]Personal Exploration Rover 2005:

https://www.360docs.net/doc/f32930699.html,/~personalrover/PER

[20]S. All and I. Nourhakhsh, "Insect Telepresence: Using robotic tele-

embodiment to bring insects face-to-face with humans." Autonomous

Robots, special issue on Personal Robotics, vol. 10, pp. 149-161,

2001.

[21]I. Nourbakhsh, E. Hamner, D. Bernstein, K. Crowley, E. Ayoob, M.

Lotter, S. Shelly, T. Hsiu, E. Porter, B. Dunlavey, and D. Clancy, "The

Personal Exploration Rover: Educational assessment of a robotic

exhibit for informal learning venues." International Journal of

Engineering Education, Special Issue on Robotics Education, to be

published.

[22]I. Nourbakhsh, E. Hamner, B. Dunlavey, D. Bernstein, and K.

Crowley, "Educational results of the Personal Exploration Rover

museum exhibit," Proceedings of ICRA 2005, Barcelona, Spain.

[23]I. Nourbakhsh, K. Crowley, A. Bhave, E. Hamner, T. Hsiu, A. Perez-

Bergquist, S. Richards, and K. Wilkinson, “The Robotic Autonomy

mobile robotics course: Robot design, curriculum design and

educational assessment,” Autonomous Robots Journal, vol. 18 (1),

Jan. 2005.

[24] A. Kim, Community building on the web: Secret strategies for

successful online communities. Peachpit Press, 2000.

[25]TeRK 2006: https://www.360docs.net/doc/f32930699.html,/~terk

酷睿i系列处理器介绍

酷睿i系列处理器介绍以及如何选择 文章编号:43208 2011-8-12 9:37:38 新酷睿处理器从发布到现在也有很长一段时间了,几乎市面上所有的主流笔记本都能见到它。“32nm”,“超线程技术”,“智能处理器”和“睿频加速”等词语也开始被大家所接受。我们将在后面为大家详细解剖这些术 语,为大家理性选择合适的处理器作参考。 首先还是要介绍下新酷睿家族的身份。我们以酷睿i5-450M举例说明:“i”是酷睿处理器的标志,“5”是主流级别处理器,相对应的“7”和“3”分别对应高端和入门级别。数字450代表处理器的详细规格,同型号处理器,数字越大说明越高端。字母“M”代表移动版CPU,如果前面出现了“Q”、“L”和“U”,则分别代表着“四核 处理器”、“低电压处理器”和“超低电压处理器”。 下面我们来为大家详解一下上面提到的一些术语。 1、“32nm技术”:我们都知道在PC业界英特尔大名鼎鼎的“摩尔定律”:其实这得益于英特尔大名鼎鼎的“摩尔定律”:简单地说就是集成电路芯片上所集成的晶体管的数目,每隔18个月就翻一番;微处理器的性能每隔18个月就提高一倍,而价格下降一半。由此可以推测,到了未来笔记本处理器的制程更加先进:到了2011年底,采用22纳米制造工艺的处理器开始量产。

也许AMD和Intel的竞争会加速摩尔定律的失效 新酷睿i犀利处理器家族均采用了业界最强的英特尔32nm Nehalem微架构,新一代32nm高K制造工艺让芯片可以做的更小,新技术的采用在减小芯片体积的同时带来了极低的能量损耗,这使得核心的发热量大为减少。而这种技术就也同时催生了一个新技术,即“一颗芯片,两颗核心”――集成显示核心单元(GPU)被封装在处理器(CPU)?取J?据传输速度获得大幅度提升。

酷睿系列CPU型号前字母的含义

酷睿系列CPU型号前字母的含义 目前酷睿2双核中,CPU类型还分E系,Q系,T系,X系,P系,L系,U系,S 系 E系就是普通的台机的双核CPU,功率65W左右 Q系就是四核CPU,功率会在100W-150W T系是普通的笔记本CPU,功率在35W或者31W X系是酷睿2双核至尊版,笔记本的X系CPU的功率是45W,台机的X系的CPU功率是100W左右 P系是迅驰5的低电压CPU,功率25W L系是迅驰4的低电压CPU,功率17W U系是迅驰4的超低电压CPU,功率5.5W S系是小封装系列,SL的功率是12W,SP的笔记本目前还没有上市,功率未知有些CPU的前面是QX的,目前有的QX系列CPU全部都是台式机的,功率在125W左右,今后会有一款QX9300的笔记本CPU,功率是45W Intel 双核的E系列的CPU有: 名称与型号核数具体参数参考价格 奔腾双核E 2140(散) 双核1.6G/800MHz/1MB/65nm/65W 375 奔腾双核E 2160(散) 双核1.8G/800MHz/1MB/65nm/65W 390 奔腾双核E 2160(盒) 双核1.8G/800MHz/1MB/65nm/65W 430 奔腾双核E 2180(散) 双核2.0G/800MHz/1MB/65nm/65W 425 奔腾双核E 2180(盒) 双核2.0G/800MHz/1MB/65nm/65W 465 奔腾双核E 2200(散) 双核2.2G/800MHz/1MB/65nm/65W 445 奔腾双核E 2200(盒) 双核2.2G/800MHz/1MB/65nm/65W 470 酷睿2 E4300(散) 双核1.8G/800MHz/2MB/65nm/65W 640 酷睿2 E4400(散) 双核2.0G/800MHz/2MB/65nm/65W 670 酷睿2 E4500(散) 双核2.2G/800MHz/2MB/65nm/65W 710 酷睿2 E4500(盒) 双核2.2G/800MHz/2MB/65nm/65W 730 酷睿2 E4600(散) 双核2.4G/800MHz/2MB/65nm/65W 730 酷睿2 E4600(盒) 双核2.4G/800MHz/2MB/65nm/65W 760 酷睿2 E6300(散) 双核1.86G/1066MHz/2MB/65nm/VT 840 酷睿2 E6320(散) 双核1.86G/1066MHz/4MB/65nm/VT 830 酷睿2 E6400(散) 双核2.13G/1066MHz/2MB/65nm/VT 880 酷睿2 E6420(散) 双核2.13G/1066MHz/4MB/65nm/VT 940 酷睿2 E6600(散) 双核2.4G/1066MHz/4MB/65nm/VT 1220 酷睿2 E6700(散) 双核2.66G/1066MHz/4MB/65nm/VT 1240 酷睿2 E6550(散) 双核2.33G/1333MHz/4MB/65nm/VT 1010 酷睿2 E6550(盒) 双核2.33G/1333MHz/4MB/65nm/VT 1100 酷睿2 E6750(散) 双核2.66G/1333MHz/4MB/65nm/VT 1100 酷睿2 E6750(盒) 双核2.66G/1333MHz/4MB/65nm/VT 1200

I3 I5 I7笔记本处理器详解

2010年1月8日,英特尔发布了2010年最新产品,酷睿I3 I5 I7三种处理器,采用这3种处理器的新品笔记本电脑一面世就产生强烈的反响,很多朋友都对这些新品笔记本产生了浓厚的兴趣。网上对这些新品笔记本电脑的点击量也是不断上升,但是,这三种新处理器又让不少消费者头疼,到底应该选择哪一型号处理器的笔记本,哪一种才是真正适合自己的呢?今天,我为大家收集了一些关于这三种型号处理器的资料,希望对大家有帮助,能够让大家选到适合自己的型号。 下面我们先来看看酷睿I系列CPU的主要特点。I系列的CPU基于最新的Nehalem微架构,共有4 个主要特点: 1、英特尔睿频加速技术(仅限于英特尔酷睿I5和酷睿I7处理器) 内核运行动态加速。可以根据需要开启、关闭以及加速单个内核的运行。例如,在一个四核的Nehalem微架构处理器中,如果一个任务只需要两个内核,可以关闭另外两个内核的运行,同时把工作的两个内核的运行主频提高。如果任务只需要一个内核,可以关闭其他的三个内核,同时把工作的一个内核提高到更高的主频运行。这样动态的调整可以提高系统和CPU整体的能效比率。 相当于自动超频,比如2.8G的CPU在运行某些大型程序时睿频技术可以自动超到3.4G,且不需要任何手动设置,也就不会造成以往手动超频带来的死机、散热等问题。所以说,带睿频技术的酷睿I CPU的速度比同频率的CPU速度至少快30%!(这是酷睿I系列为普通用户带来的最直接的好处!) 2、英特尔高清显卡(仅限于xDale产品 Clarkdale/Arrandale) 业界第一次将“高清图形引擎”融合到处理器中。 业内首款内置“高清图形引擎”。能让办公应用速度提高15%,视频制作速度提高33%,多媒体应用 速度提高38%。 3、英特尔超线程技术(仅限于英特尔酷睿I3,I5,I7处理器) 采用第三代超线程技术,四核心时多大八个线程。 同时处理多任务的能力更强大!如果说以前的酷睿能支持魔兽世界双开,那现在就能支持4开! 4、支持虚拟化设备输入/输出(VT-d) 在之前以虚拟化CPU为主的基础上增加设备输入/输出的虚拟化,能有效提高虚拟机的性能和效率。 是指虚拟化系统对硬件的支持,这样用户可以在以太电脑上虚拟化多个系统,电脑一样稳定且支持

酷睿处理器全面解析

返璞归真:酷睿处理器全面解析 文章来源:PC Labs 中国实验室作者:其他 2006-11-30 在奔腾及其以前的微处理器发展阶段,x86家族处理器的走势是以英特尔为代表,AMD、Cyrix等兼容微处理器厂商紧紧跟随为基本特征的。这一时期各家处理器厂商的产品彼此兼容,可以共处于同一开放的主板平台,英特尔当时专心设计制造微处理器,在486及更早的时候并不参与配套主板芯片组的开发。自奔腾时代开始,英特尔开始自主研发与奔腾配套的主板芯片组和相应主板产品,先后推出了Socket 5/Socket 7接口的奔腾主板,但是英特尔的芯片组对AMD和Cyrix等兼容处理器厂商是开放的,奔腾主板同样可以容纳AMD的K5和Cyrix的6x86处理器。但是英特尔不可能让自己的竞争对手在自己的主板平台上做大,它要在配套平台技术给自己的竞争对手设置障碍。于是,全新的并且受到专利技术保护的P6微架构出现了…… 前传:酷睿处理器的前生 奔腾Pro 1995年问世的奔腾Pro处理器(又称“高能奔腾”)在当时并不受重视,但是从现在的角度看,这可是一颗了不起的处理器,因为它是P6微处理器架构的开创者,打开了x86家族技术发展的新纪元。此后问世的奔腾II、奔腾III、奔腾M及其低价简化版赛扬、酷睿乃至酷睿2处理器,都是P6微处理器架构的继承者,绵延至今香火不断,并且即将重新占据从服务器、工作站、个人电脑乃以移动电脑的全部应用领域,由此可见奔腾Pro开创的P6架构之经典,技术特征之先进。 奔腾Pro处理器具备三个整数运算单元和一个浮点运算单元,三个整数运算单元可以同时并行执行三条指令,并且当三条指令有冲突时仍可并行执行,相比之下奔腾处理器只能并行执行两条指令,并且两条指令是不能有冲突的。奔腾Pro的一级缓存容量和奔腾一样,有16KB,其中包括8KB指令高速缓冲存储器和8KB数据高速缓冲存储器。奔腾Pro的精华在于其核心集成了256KB或者512KB的二级缓存,这一点在现在看来稀松平常,但是在当时可是了不起的杰作,此前所有的人——既包括工程师也包括普通用户,都认为二级缓存应该是主板的标准组成部分之一,从没有人想过可以把二级缓存内置于处理器中。二级缓存集成在主板上可以使成本降低,用户可以自由配置二级缓存容量的大小,但是主板集成二级缓存的致命缺点就是二级缓存的运行频率和主板外频一致,例如486主板的二级缓存标准运行速度是25MHz/33MHz/66MHz,奔腾主板的二级缓存标准运行频率是60MHz/66MHz。所以为了提高微处理器的性能,除了改进核心提升工作主频以外,将二级缓存内置于处理器核心使其能保持与处理器主频相同的工作频率也是一个好办法。奔腾Pro将二级缓存内置于核心,大大提升了处理器的性能。为了将竞争对手甩开,英特尔为奔腾Pro所采用的架构申请了专利,受到专利技术保护的配套主板平台是AMD等兼容厂商无权享受的,此后的P6微架构处理器和配套平台一直延续了这样的“排外”政策。 奔腾Pro处理器的核心经过特别优化,可以高效处理32位代码,因此它是运行Windows NT的最佳微处理器;但是在运行16位/32位混合代码的Windows 95操作系统时,性能就不如同主频的奔腾MMX了。所以在当时Windows

酷睿i3_i5_i7处理器深度剖析比对

◆模组化设计再建新功,CPU中塞进GPU 模组化设计的Nehalem微架构,可灵活组合 英特尔在去年发布的Nehalem微架构非常成功,关键在于它采用可扩展的技术,每个处理器单元均采用了Building Block模组化设计,组件包括有:核心数量、SMT功能、L3缓存容量、QPI连接数量、IMC数量、内存类型、内存通道数量、整合GPU、能耗和时钟频率等,这些组件均可自由组合,以满足多种性能需求,比如可以组合成双核心、四核心甚至八核心的处理器。 正因为这样的模组化设计,英特尔可以灵活的制造出各种差异化的核心,比如在CPU中加入三通道DDR3内存控制器就是Bloomfield核心(研发代号,Core i7-900系列),加入双通道DDR3控制器和PCI-E 2.0控制器就变成了Lynnfield 核心(Core i7-800/i5-700系列)。

1月8日,英特尔推出2010全新Core(酷睿)处理器家族 到了2010年,英特尔将GPU图形单元和CPU核心组合在一起,再加上双通道DDR3控制器和PCI-E 2.0控制器,搭配出了全新的Clarkdale核心(Core i5-600/i3-500系列),也就是本文的主角。严格上说,Clarkdale核心是基于Westmere微架构的,不过Westmere只能算是Nehalem的轻微改良版。 Clarkdale是CPU史上首款整合有GPU的处理器,同时也是首款采用32nm 制程技术的CPU,具有开创性的历史意义。 在2010年1月8日,英特尔正式发布了Clarkdale核心的处理器,这样它与之前上市的Bloomfield核心和Lynnfied核心处理器组成了全新的Core(酷睿)处理器家族,即Core i7/i5/i3系列处理器,形成一个完整的高中低产品线。

英特尔i系列处理器技术参数

i3处理器 系统处理器 号内核/ 线程数时钟 速度英特尔? 智能高速缓存芯片英特尔? 睿频加速技术?1 英特尔? 超线程(HT)技术?2 标准电压处理器 i3-350M 2 个内核 / 4 条线程 2.26 GHz 3 MB 32 纳米否是 i3-330M 2 个内核 / 4 条线程 2.13 GHz 3 MB 32 纳米否是 超低电压处理器 i3-330UM 2 个内核 / 4 条线程 1.20 GHz 3 MB 32 纳米否是 i3-540 2 个内核 / 4 条线程 3.06 GHz 4 MB 32 纳米否是 i3-530 2 个内核 / 4 条线程 2.93 GHz 4 MB 32 纳米否是 i5处理器 系统处理器 号内核/ 线程时钟 速度英特尔? 智能高速缓存芯片英特尔? 睿频加速技术?1 英特尔? 超线程(HT)技术?2 英特尔? 高清显卡(HD Graphics)技术?3 标准电压处理器 i5-540M 2 个内核/ 4 条线程 2.53 GHz,采用英特尔? 睿频加速技术后高达3.06 GHz 3 MB 32 纳米是是是 i5-520M 2 个内核/ 4 条线程 2.40 GHz,采用英特尔? 睿频加速技术后高达2.93 GHz 3 MB 32 纳米是是是 i5-430M 2 个内核/ 4 条线程 2.26 GHz,采用英特尔? 睿频加速技术后高达2.53 GHz 3 MB 32 纳米是是是 超低电压处理器 i5-540UM 2 个内核 / 4 条线程 1.20 GHz 3 MB 32 纳米是是是 i5-520UM 2 个内核/ 4 条线程 1.06 GHz,采用英特尔? 睿频加速技术后高达1.86 GHZ 3 MB 32 纳米是是是 i5-430UM 2 个内核 / 4 条线程 1.20 GHz 3 MB 32 纳米是是是

酷睿处理器命名规则

英特尔酷睿处理器命名规则 前面酷睿和iX标识和上一代完全相同的,不做更多介绍。变化主要是中间四位数字和最后两位字母。 第一位“4”:代表英特尔酷睿第四代处理器; 第二位“5”“6”“7”“8”“9”:这些数字代表处理器等级排序,数字越大性能等级相对越高;第三位“3”“5”“0”:这一位基本上就是对应核芯显卡的型号,其中“3”代表高性能处理器配HD 4600;“5”代表核芯显卡采用的是Iris 5000、5100或者Pro 5200;而“0”则是HD 4600;第四位“0”“2”“8”:“0”在标准电压中代表47W,而在低电压中是代表15W;“2”则代表37W,“8”在低电压处理器中代表28W; 第五位“MX”“HQ”“MQ”“U”:字母“MX”代表旗舰级,“HQ”封装方式FCBGA1364,并且部分支持Trusted Execution Technology和博锐技术,“MQ”版本封装方式FCBGA946, “U”代表超低电压以15W和28为主; 英特尔官方网站首批移动版酷睿i7处理器共有14款,其中TDP为57W的只有一款,就是之前我们评测过的酷睿i7-4930MX,不过其搭载的核芯显卡是HD 4600,并不是大家想看到的Iris Pro 5200。另外,酷睿i7 M、H系列也有细微的区别,初看后可能会认为H代表高性能、M代表主流。结果恰恰相反,M系列CPU频率比H系列更高,只是GPU没有使用最好的GT3e,旗舰型号Core i7-4930MQ的热设计功耗也唯一达到了57W。 除了酷睿i7外,官方网站也展示了酷睿i5和酷睿i3的具体规格。酷睿i5和i3低电压版分为U和Y两种系列,命名规则中主要也区别在后四位上。拿其中的酷睿i5-4200Y和酷睿i5-4258U为例,第一位“4”是第四代酷睿处理器;第二位的“2”则是产品序列,个人理解理论上数字越高性能越好;第三位数字“5”代表的是核芯显卡系列HD 5000以及Iris(锐矩)5100,“0”和“1”都是HD 4400和HD 4200;第四位“0”代表15W,而如果标注数字是“8”的,TDP 则是28W,最后一位字母U依然代表低电压,而全新的“Y”字母则代表更低功耗的11.5W。注:在表格中有一项SDP是之前没有过的,英特尔以往使用热设计功耗(TDP)来衡量计算机在最差情况下的功耗,即CPU全速运行一段时间的功耗。目前,英特尔引入了一个新概念,即场景设计功耗(SDP)。这主要衡量计算机在媒体播放等轻量级应用下的功耗。英特尔将以SDP来衡量用于平板电脑和笔记本的的处理器。可以看到,只有超低功耗的11.5W处理器上才会有SDP场景设计功能。 附:酷睿i7处理器中core i7 4710MQ 排名在五名左右(联想Y400-430笔记本系列CPU)

Intel cpu后缀含义

关于英特尔?处理器号 在为满足计算机需求选购合适的处理器时,处理器号是除处理器品牌、特定系统配置和系统级性能指标评测以外的一个重要考虑因素。 在同一处理器等级或家族内,编号越高表示处理器的特性越多,但可能某一特性较强而另一特性较弱。当您确定了需要购买的处理器品牌或型号后,您可通过比较处理器号来确定该处理器是否具有您需要的特性。 查看处理器规格并比较处理器 > 查看处理器性能指标评测 > 笔记本电脑、台式机和移动设备处理器 第四代智能英特尔?酷睿?处理器家族 第四代智能英特尔?酷睿?处理器的编号采用基于一种字母数字方案,即以品牌及其标识符开头,随后是代编号和产品系列。四个数字序列中的第一个数字表示处理器的代编号,接下来的三位数是 SKU 编号。在适用的情况下,处理器名称末尾有一个代表处理器系列的字母后缀。 英特尔?高端台式机处理器依其各自的功能组合采用不同的编号方案。获得详细信息 >

英特尔?酷睿?2 处理器家族品牌的处理器号采用带有一个字母前缀的四位数字序列进行分类。下表列出了

英特尔?酷睿?2 四核处理器家族的处理器号由一个字母前缀和 4 位数字序列组成。此外,低功耗英特尔?酷睿?2 四核处理器可通过“S”后缀(表明该处理器热设计功耗较低)进行辨认。 英特尔?凌动?处理器 英特尔?凌动?处理器家族的处理器号采用三位数字序列进行分类。上网本级英特尔?凌动?处理器的字母前缀为 N,用于移动互联网终端(MID)的英特尔凌动处理器的字母前缀为 Z。 在同一处理器等级或家族内,编号越大通常表示特性越多。拥有较高编号的处理器可能某种特性较强,而另一特性较弱。 英特尔?奔腾?处理器 英特尔奔腾品牌处理器号由一个字母前缀和一个由四位字符数字组成的序列号构成。所有英特尔?奔腾?品牌处理器均为高能效双核台式机处理器,TDP 不低于 65 瓦。 在同一处理器等级或家族内,编号越高表示特性越多,如高速缓存、时钟速度、前端总线或其它英特尔技术。1拥有较高编号的处理器可能某种特性较强,而另一特性较弱。 英特尔?赛扬?处理器 英特尔?赛扬?品牌的处理器号以三位数字序列或五位字符序列(一个字母前缀和四个数字)表示,具体表示方式视处理器类型而定。 在同一处理器等级或家族内,编号越高表示特性越多,如高速缓存、时钟速度、前端总线或其它英特尔技术。1拥有较高编号的处理器可能某种特性较强,而另一特性较弱。

英特尔i系列笔记本cpu型号详解

英特尔? 酷睿? 处理器家族的处理器号由一个字母前缀/ 数字识别码和一个由三位数字组成的序列号构成。 在同一处理器等级或家族内,编号越高表示特性越多,包括:高速缓存、时钟速度、前端总线、英特尔? 快速通道互联、新指令或其它英特尔技术1。拥有较高编号的处理器可能某一特性较强,而另一特性较弱。 英特尔? 酷睿?2 处理器家族品牌的处理器号采用带有一个字母前缀的四位数字序列进行分类。下表列出了英特尔? 酷睿?2 处理器家族的字母前缀。 字母前缀说明 QX 用于台式机或移动式至尊性能四核处理器 X 用于台式机或笔记本电脑的至尊性能双核处理器 Q 用于台式机的四核高性能处理器 E TDP 不低于 55W 的高能效双核台式机处理器 T 移动式高能效处理器(TDP 为 30 至 39 瓦) P 移动式高能效处理器(TDP 为 20 至 29 瓦) L 移动式高能效处理器(TDP 为 12 至 19 瓦) U TDP 不超过 11.9W 的移动式超高能效处理器 S 采用 22x22 BGA 封装的移动式小型产品 所有英特尔? 酷睿? i3 移动式处理器都具有以下特性: ?英特尔? 超线程(HT)技术 ?增强型英特尔SpeedStep? 技术 .英特尔? 虚拟化技术 1 .英特尔? 病毒防护技术 2 .英特尔? 64 架构Δ

Processor Number Cache Clock Speed Max TDP Memory Type Intel? HD Graphics Number of Cores i3-380UM 3 MB SmartCache 1.33 GHz 18 W DDR3-800 MHz 2 i3-380M 3 MB SmartCache 2.53 GHz 35 W DDR3-800/1066 MHz 2 i3-370M 3 MB SmartCache 2. 4 GHz 3 5 W DDR3-800/1066 MHz 2 i3-350M 3 MB SmartCache 2.26 GHz 35 W DDR3-800/1066 MHz 2 i3-330UM 3 MB SmartCache 1.2 GHz 18 W DDR3-800 MHz 2 i3-330M 3 MB SmartCache 2.13 GHz 35 W DDR3-800/1066 MHz 2 i3-330E 3 MB SmartCache 2.13 GHz 35 W DDR3-800/1066 MHz 2 Processor Number = 处理器编号 Cache = 高速缓存 Clock Speed = 时钟速度 Max TDP = 最大散热设计功耗(TDP ) Memory Type = 内存类型 Intel? HD Graphics = 英特尔? HD 显卡 Number of Cores = 内核数 所有英特尔? 酷睿? i5 移动式处理器都具有以下特性: ? 英特尔? 睿频加速技术1 ? 英特尔? 超线程(HT )技术 ? 增强型英特尔 SpeedStep? 技术 . 英特尔? 虚拟化技术 2 . 英特尔? 病毒防护技术 3 . 英特尔? 64 架构 Δ Processor Number Cache Clock Speed Max TDP Memory Type Intel? HD Graphics Number of Cores

别只看表面 英特尔七代酷睿深度解析(全文)

别只看表面英特尔七代酷睿深度解析(全文) 1从一道简单的数学题开始从题目大家就知道我们今天要聊一个什么话题,没错,就是英特尔的七代酷睿平台,而且还要深度来说说。我知道聊到技术问题绝大多数人可能会拂袖而去,毕竟晦涩难懂的技术名词和各种枯燥的数据无法刺激到您的肾上腺激素,不过您先别着急走,因为最开始说的只是一道简单的不能再简单的数学题。“七代酷睿平台好吗”?这是我身边朋友抛出最多的有关英特尔新平台的 问题,但面对这个似乎有些无厘头的问题,起初我并不知道该怎么回答,毕竟评判“好”有很多个维度。然而当你系统的 梳理一遍该如何回答,并准备输出这个价值判断的时候,基本上都会吃到闭门羹,“别给我讲那些技术理论,听不懂,你就告诉我好不好”。到这个时候,我想说的那些“架构”“制程”“战略”“维度”都看起来已经毫无价值,只有好与不好这个 结论才是最有用的,面对这样的谈话我都会用“新的总比旧的好,七代酷睿平台是最新的”这句话来收尾,没想到这句看起来颇为无奈的话效果却出奇的好,因为这句话已经解开了他们心中的疑惑,七代酷睿既然是最新的,那肯定比之前的六、五、四、三、二、一代要好! 实际上,除了我身边的朋友,很多人面对技术性问题都想要一个尽可能简单的答案,毕竟在这个信息爆炸的时代里,

懒的思考已经成为了大众的标签。假如您正是像我说的这类人群,其实您只要知道任何技术崇尚的都是买新不买旧,七代酷睿是最新的处理平台,必然是最好也是最值得买的就可以了,对于更深的技术细节没有必要去了解。 当然,如果您喜欢刨根问底并且想从多个维度来了解最新的七代酷睿平台,那下面的内容十分有价值,读完它们您将能够全方位立体化的了解到英特尔的七代酷睿平台。此外,您也可直接跳到最后一页,看看哪些七代酷睿游戏产品值得选购。2重芯开始打破“传统”的改变习惯成自然是我十分信奉的一则至理名言,在这十年的媒体从业经历中,一些事情早已从习惯成为了自然,其中就包括英特尔对于处理芯片的更新。英特尔针对处理芯片的更新采用的是钟摆模式(Tick-Tock),到今天已经有十来年的时间,钟摆模式一年架构更新一年制程更新的规律培养了像我这样广大媒体 人的习惯,很多时候看到文章内容中制程或架构的评析就能够知道,噢,原来又过了一年了。 然而这种习惯在这两年却有种戛然而止的感觉,实际上去年英特尔就应该切换到10nm制程,制程研发方面的困难,英特尔迅速调整了技术路线,决定将14nm制程延伸使用,采取优化迭代的方式,推出了相当于之前Haswell Reflesh 地位的第七代酷睿处理器——Kaby Lake。至此,Tick-Tock 节奏改变为同一代制程包含革新、优化、架构迭代三个步骤,

Intel酷睿处理器CPU参数大全

Intel 酷睿系列双核CPU 型号制程L2 主频FSB 核心虚拟化|超线程|节电|64位|防病毒 T7800 65nm 4MB 2.60 800 2 Yes T7600 65nm 4MB 2.33 667 2 Yes NO Yes Yes Yes T7500 65nm 4MB 2.20 800 2 Yes T7400 65nm 4MB 2.16 667 2 Yes NO Yes Yes Yes T7300 65nm 4MB 2.00 800 2 Yes T7250 65nm 2MB 2.00 800 2 Yes T7200 65nm 4MB 2.00 667 2 Yes NO Yes Yes Yes T7100 65nm 2MB 1.80 800 2 Yes T5600 65nm 2MB 1.83 667 2 Yes NO Yes Yes Yes T5500 65nm 2MB 1.66 667 2 NO NO Yes Yes Yes T5300 65nm 2MB 1.73 533 2 NO NO Yes Yes Yes T5200 65nm 2MB 1.60 533 2 NO NO Yes Yes Yes L7500 65nm 4MB 1.60 800 L7400 65nm 4MB 1.50 667 2 Yes NO Yes Yes Yes L7300 65nm 4MB 1.40 800 2 L7200 65nm 4MB 1.33 667 2 Yes NO Yes Yes Yes T2700 65nm 2MB 2.33 667 2 Yes NO Yes NO Yes T2600 65nm 2MB 2.16 667 2 Yes NO Yes NO Yes T2500 65nm 2MB 2.00 667 2 Yes NO Yes NO Yes T2450 65nm 2MB 2.00 533 2 Yes NO Yes NO Yes T2400 65nm 2MB 1.83 667 2 Yes NO Yes NO Yes T2350 65nm 2MB 1.86 533 2 NO NO Yes NO Yes T2300 65nm 2MB 1.66 667 2 Yes NO Yes NO Yes

cpu知识介绍

1,Intel篇 从奔腾3代开始,intel开始以频率的高低来区分CPU的性能高低。就当时的技术来说,的确高频的cpu的性能更优秀。 但是,从奔腾4 2.8G的cpu出现以后,对于频率的提升出现了困难。无法将频率进一步提升。因此新一代的cpu改变了cpu的工作架构,将cpu的流水线简短,即抛弃了以往cpu的超长流水线的架构,变成了类似于amd的短流水线架构,由此,获得了较小的功率和性能的提高。但是,cpu的频率便因此降了下来,所以,新的cpu命名变成了类似于奔腾d 915,820等。第一位数字代表系列,比如3系列是赛扬,经济型(所谓的赛扬M);5系列,移动型; 8、9系列,烧钱的高性能(或许还有高功耗)。 自从双核开始普及,intel采用了新的名称,酷睿,命名如e4300,e2050,qx6700,分别应用于台式机,笔记本,和高性能个人计算机(烧钱用机器)。 以上只是台式机和笔记本,不包括服务器用的xeon啊。 2,amd篇 从97年开始,amd便作为低端杀手占领的低端市场,虽然当时amd的cpu的发热量十分惊人,但是由于超频性能好,便宜(主要的),占领了相当部分市场。 从p3时候开始,amd使用slot a架构,采用了新的命名,分为duron毒龙, althon速龙,分别对应低端和高端。此时,intel仍采用频率命名,而此时虽然amd的cpu性能上开始有了优势,但是频率不及intel(核心不一样,所以自然没办法比),所以采用新的命名,如1600,1800等,表示这些cpu具有与intel的1.6GHZ,1.8GHZ的cpu具有相同的性能。实际上的运行频率只有1.2~1.3GHz。 ---------------------------------------- 这里有个官方的换算,1800是PR值, -- Athlon 系列PR值的换算法 PR标值= (3 X CPU运行频率)/ 2 - 500 EX:XP 1800+ = (3 X 1.53GHz) / 2 - 500 频率与PR标值的转换如下 频率= (2 X PR标值)/ 3 + 333 EX:1.53GHz = (2 X 1800) / 3 +333 闪龙有区别,PR值均高出以前的20% ----------------------------------- 在后来的双强争斗中,duron作为过气选手被t,而sempron闪龙则取代了它的地位继续与赛扬争斗。 现在amd的产品线有sempron闪龙/经济,althon速龙/性能,althon x2/双核,opetron皓龙/服务器。 ================================ 现在你的问题应该就可以解决了,1G CPU就是指cpu的频率是1GHz,2600+则是amd的cpu,指该cpu能达到intel 2.6GHz的水平。 但是,现在由于两个牌子都改了标注方式,所以单纯来以名字来看性能不可取(同一个系列

英特尔全线处理器型号及参数总览表

英特尔i3/i5/i7+全线处理器型号及参数总览表前言:随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Core i、酷睿2、奔腾双核、赛扬双核、凌动处理器几大家族的成员已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住每一款处理器的技术规格。 正是由于英特尔移动处理器的混乱,JS们才拥有了可趁之机,肆无忌惮的欺瞒消费者,经常以处理器的某项参数来忽悠消费者,让我们为本不需要的功能,或者被夸大的技术所买单。 下面是特尔主流移动处理器的技术参数,避免在选购笔记本时被JS商家忽悠,亲爱的网友们,你可要睁大眼睛看了。。。。。 *************************名词解释 ************************************ 前端总线:是指CPU与北桥芯片之间的数据传输总线,人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Front Side Bus,通常用FSB表示。 睿频:英特尔睿频加速技术。是英特尔酷睿 i7/i5 处理器的独有特性。也是英特尔新宣布的一项技术。 英特尔官方技术解释如下:当启动一个运行程序后,处理器会自动加速到合适的频率,而原来的运行速度会提升 10%~20% 以保证程序流畅运行;应对复杂应用时,处理器可自动提高运行主频以提速,轻松进行对性能要求更高的多任务处理;当进行工作任务切换时,如果只有内存和硬盘在进行主要的工作,处理器会立刻处于节电状态。这样既保证了能源的有效利用,又使程序速度大幅提升。 三级缓存(L3):目前只有酷睿I系列才有,之前的都是L2(二级缓存)。是为读取二级缓存后

酷睿处理器如何关闭睿频加速技术以降低CPU温度的方法

我想夏天要来了,估计论坛的各位都会为温度而烦恼。 我就简单的按照那位朋友的说法把i7的睿频关掉了,(i7的睿频很是变态啊!超频45%!直奔2.9G ) 结果效果很好!觉得应该要让大家知道关掉睿频之后的效果和性能上损失到底有多少!.想要一起凉快过夏天的朋友们!请紧跟我一起来把我们的机器都调节好吧! 首先我们先把电源模式设置好!我们按照下面的图片的路径,进入控制面板,硬件设备,电源管理 接着我们可以创建一个新的模式,我在这里是设置了2个模式, 一个是高性能一个是游戏,方便我游戏的时候直接使用。 然后我们点入更改设置计划接着是更改高级电源设置

接着我们会进到这个框里面,然后我们找到处理器设置,然后最大性能上面设置99%,同时最低新能设置为0%然后在电源设置里面选择这个模式,我们再打开intel的睿频观察器,就会发现睿频不再出现!

我的i7已经锁死在1.995G的速度了,相当于2G的运行速度,毕竟相差不会超过1%

之后在桌面的那个声音控制旁边,你可以找到这个电源设置,然后就可以快速切换是否开关睿频的设置了。 没有的朋友可以在那个地方的高级设置里面把它设置出来。

那么我们的设置已经完成了。到我们需要不开睿频的时候我们就可以直接选择我的那个“游戏”。 因为在跟很多网友交流的时候,发现如果睿频开了, 那么机器发热一大,那么显卡就会自动降频,所以关掉睿频反而能流畅的游戏。 下面我们看看关掉了睿频前和之后的性能对比!实际上我的i7关闭睿频掉性能应该影响还是比较大的,估计是i5的话会更加好比较i5的主频是比i7要高的。i7主要是物理四核。我是硬件控啊! 相信很多朋友也看过我的拆机帖,像我那样的人就算是买了i5最后也是会换个QS的i7的,所以我就直接上了i7了这回,毕竟在外国也不好找CPU换。 不废话,直接上图吧!

intel酷睿i系列CPU全解析

intel酷睿i系列CPU全解析 在酷睿2大获成功的基础上,Intel基于Core 2系列优秀的运算核心,大刀阔斧的改良了CPU架构,从而诞生了全新的Core i系列处理器。Core i首次整合了内存控制器、抛弃了老迈的FSB启用高速的QPI总线、加入大容量共享式三级缓存,在技术和架构方面以后来者居上的姿态全面压制AMD Phenom II系列产品,性能方面更是遥遥领先! BloomField、Lynnfield、Clarkdale三种核心

Nehalem、Westmere、Sandybridge三种处理器架构 全新架构的Core i系列的确非常诱人,但也很烦人。从技术方面来讲,同为Core i系列产品线,居然拥有两种不同的CPU和接口、三种截然不同的架构。在型号命名方面来讲,共有三种型号i7/i5/i3,但这三种型号并没有与三种架构相对应,三种型号又被细分为五大系列,让消费者一头雾水…… 为了帮助大家深刻认识Intel Core i产品线,理清Intel处理器及平台的技术和特色,并找到适合自己的产品,笔者特意将Intel全线产品的规格型号整理出来,并按照核心架构的不同分类介绍给大家,供选购时参考。 Bloomfield核心:Core i7 9XX

★ 首批Core i7:965X、940、920三款 2008年10月,Intel正式发布了Nehalem架构的Core i7 965/940/920三款处理器以及X58芯片组,这是Intel第一款整合内存控制器和QPI总线的产品,因此备受关注。 i7 9XX系列处理器是基于Nehalem架构的首款产品,核心研发代号是Bloomfield,采用了45nm工艺制造,是原生四核心设计,集众多先进技术于一身: 1. 超线程技术回归,四核八线程大幅提升CPU的多任务和多线程计算能力; 2. 整合三通道DDR3内存控制器,带宽大幅提升、延迟大大下降,从此内存不再是瓶颈;

Intel-CPU分类解析

英特尔?处理器发展至今,已诞生了好几个家族, 分别有赛扬?、奔腾?、酷睿?、至强?、凌动?、Quark?、安腾?等系列。 比较常见的几个系列中,最早的是赛扬Celeron系列,所以性能比较落后,主打低端市场;接着就是奔腾Pentium系列,随着家族系列的发展,奔腾Pentium系列也逐步沦为低端市场, 但在性能上相较于赛扬Celeron系列会略胜一筹; 发展至今酷睿Core系列处理器已然成为主流, 上市以来以多核心、多线程、集成GPU功能提供一体式的影音娱乐解决方案为目标, 酷睿Core系列处理器可以说是大家最为熟悉、常见的, 也是众多品牌厂商常用到笔记本处理器 酷睿Core系列处理器命名规则 1、品牌 intel?Core?(英特尔?酷睿?)为家族品牌。 2、CPU家族标识 i7为CPU家族标识,酷睿Core系列分别有i3、i5、i7 分属低中高端三个系列定位。 *移动端i3为双核处理器,支持超线程技术,也就是2个核心模拟出4个线程,无睿频技术。常见于各类商务笔记本,娱乐笔记本,性能中等,不适合大型游戏。 *移动端i5有双核和四核,支持超线程技术,相对i3主要增加了睿频技术,

可以在不同负载下主频动态变化以达到较好的节能效果。 低压i5在商务笔记本,娱乐笔记本中较为常见,标压i5则是在中高端笔记本里面使用频率最高。 *移动端i7则复杂一些,价格一般较贵,有双核和四核,支持超线程,睿频技术。 其睿频幅度非常大,指令集支持上最为完善,常见于中高端游戏本。 3、代数 4为CPU代数,至今已发展至第七代,每一代架构都不同,工艺也会有所差异。 第一代为Arrandale架构,32NM工艺。第二代为Sandy Bridge架构,32NM工艺。 第三代为Ivy Bridge架构,22NM工艺。第四代为Haswell架构,22NM工艺。 第五代为Broadwell架构,14NM工艺。第六代为Skylake架构,14NM工艺。 第七代为Kaby Lake架构,14NM工艺。第八代据有关消息透漏为7NM工艺的,架构未知。 目前,第一~三代处理器已经逐步被淘汰出市场, 市场上四代处理器也已经属于清货阶段,主流的处理器以五代和六代居多。 七代处理器是今年新推出的,暂时只是先推出低压U系列, 标压系列还未全面铺货,而价格方面也是相对比较贵。 4、产品尾缀 M属于产品线尾缀,意为移动标压。 Intel在台式主机和笔记本领域处理器型号非常多,其中型号后缀也较为复杂, 常见的笔记本处理器后缀有Y、U、M、MQ、H、HQ、K等。 尾缀Y: 代表超低电压,散热功耗为10W,如:MY-6Y30、M5-6Y54、M7-6Y75等这种处理器,主要用于二合一的产品。 尾缀U: 代表低电压,散热功耗为15W,如:i5-4200U、i5-5200U、i5-6200U,主要用于超极本和

第四代英特尔酷睿处理器

考试得分:86分 1 . 第四代智能英特尔?酷睿?处理器的功耗降低至第二代智能英特尔?酷睿?处理器的 A.1/2 B.1/10 C.1/5 D.1/20 2 . 使用锐炬?显卡的超极本,比上一代核心显卡性能提升将近 A.1.5倍 B.10倍 C.2倍(您选择的答案) D.1.2倍 3 . 第四代智能英特尔?酷睿?处理器采用了3D晶体管设计,在同样性能下功耗比上代产品降低 A.18% B.80% C.30% D.50% (您选择的答案) 4 . 第四代智能英特尔?酷睿?处理器采用业界最为先进的()制程工艺,性能更强,功耗却更低 A.32nm B.28nm C.18nm D.22nm (您选择的答案) 5 . 这款处理器如果超频坏了怎么办? A.第四代酷睿处理器的睿频加速2.0是智能超频,是在处理器正常工作范围内进行加速,不会出现故障。即使出现故障,一样能够享受正规国家三包7天包退15天包换1年保修的。(您选择的答案) 6 . 价格太贵了,还能便宜点么? A C.因为这台机器采用的是第四代的酷睿处理器,整机性能远远超过上一代产品,而且很符合您的办公需要。如果图便宜买一台用一年就跑不动的机器,您也肯定不会满意。贵那一点钱,买到的性能却好很多,其实性价比已经很高了。这样,看您确实非常想要这台机器,我给您申请一个办

公选件包,包含了正品背包和无线鼠标、贴膜、键盘膜,平时我们卖300多一套,今天送给您。(具体情况请根据本店实际情况回答顾客)(您选择的答案) 7 . i3和i5主频差不多,价格却差了几百块,这是为什么? C.主频其实只是衡量处理器性能众多指标中的一个,您办公有时候需要处理比较大的文档或者图片,用i3处理器可能就会有较长时间的卡顿,而第四代酷睿的i5处理器支持睿频加速2.0技术,可以在性能不够用的时候自动超频,处理这种文档、图片的速度就要快很多。而且两者的其他参数例如核心显卡型号都不一样,性能差距其实还是蛮大的。(您选择的答案) A.没错,电子产品确实更新的很快,但是在购买电脑时还有一句话叫做“买新不买旧”你是否知道?第四代酷睿处理器性能更强、功耗更低,锐矩核心显卡的性能是上一代产品的两倍,可以媲美高端独立显卡。而价格却比你买一台独显的机器便宜的多。其实更划算,还不容易过时。 9 . 超极本不实用,我还是买普通笔记本。 B.您是不是担心超极本没有普通笔记本的性能好?其实现在的第四代英特尔酷睿处理器的性能 已经是最强劲的了,并且它的功耗还很低,更省电也就是说续航时间更长,不发热也就是说可以节约很多内部空间把产品做的更便携。性能比传统笔记本好,外观更漂亮更轻薄,为什么不选超极本呢?(您选择的答案) 10 . 这台笔记本是集成显卡的怎么还卖那么贵? A.您确实挺了解机器配置,不过集成显卡是指把显卡集成在主板上的低性能显卡,目前已经基本被淘汰。现在我们的超极本都是在处理器内部的锐矩核心显卡,它既有集成显卡省电不发烫的优点,又能像独立显卡一样流畅运行大型3D游戏。(您选择的答案) 11 . 低电压处理器的性能是不是很差? D.这是第四代智能英特尔酷睿处理器,用的是22nm的工艺,晶体管数量比以前的老处理器多好几倍,而且还是3D晶体管,性能自然是越来越强。(您选择的答案) 12 . 这个本子的电池充一次电能用多长时间? C.这台本子采用是第四代智能英特尔酷睿处理器,不关机可以待机10多天,连续播放高清电影6个小时以上(您选择的答案) 13 . 机器(超极本)这么轻薄,散热好不好? D.我们的超极本采用是第四代智能英特尔酷睿处理器,采用了3D晶体管设计,功耗只有15w (i5-4200U),发热量非常小,散热没有任何问题(您选择的答案) 14 . 锐炬?和锐炬?Pro显卡虽然可以流畅运行大型3D游戏,但暂不支持4K 高清视频播放

相关文档
最新文档